Design Constraints Working Group
Kick-off Meeting

Mark Hahn - mhahn@cadence.com
Jin-sheng Shyr - shyrj@taec.com

March 16, 1998
Meeting Agenda

- **Opening Statement, Self-introductions** 1:00 (30 minutes)
 Who are we, and why are we here?
- **Background** 1:30 (45 minutes)
- **Discussion: Nature of Design Constraints** 2:15 (45 minutes)
- **Break** 3:00 (15 minutes)
- **Discussion: Ways to Define Constraints** 3:15 (30 minutes)
- **Getting Started** 3:45 (60 minutes)
 - Ways to Make the WG Successful
 - Meeting Logistics
 - Charter, Scope, Deliverables, Timeline
 - Topics for Investigation
- **Wrap-up** 4:45 (15 minutes)
 - Points of View Line-up
 - Action Items
Goals For Today’s Meeting

- Build a common knowledge base
- Share ideas and build consensus
 - What to work on
 - What not to work on
 - What the end result should be
 - What is achievable, and when
 - Priorities
 - How to proceed
- Prepare for subsequent meetings
Background

- Why develop a constraint standard?
- How would a constraint standard be used?
- Organizational framework
 - Where does this WG fit in?
 - VSIA Relationship
- Prior work
 - Observations from SC-WG
- Preliminary charter
Why Develop A Constraint Standard?

- Tower of Babel today
 - Many different formats for describing constraints
 - Inconsistent syntax
 - Requires re-entering or translating constraints
 - Inconsistent semantics
 - May not be able to translate constraints
 - Contributes to lack of convergence
 - Wasted effort
 - Designers must spend significant time understanding what each tool supports and getting the constraints into each tool
 - EDA developers wind up defining new formats for each new tool
 - IP providers must supply the same data in multiple formats
 - IP integrators may have to translate internal constraints for IPs to get through their particular flow
 - Semiconductor vendors have a harder time qualifying tools
How Would A Constraint Standard Be Used?

- By designers
 - As a single, consistent way to describe their intent
- By EDA tool developers
 - As a standard way to read, write, and interpret constraints
- By IP providers
 - To describe their intent for partially implemented IP blocks
 - To describe restrictions on how IP blocks may be used
- By IP integrators
 - To complete the implementation of IP blocks
- By semiconductor vendors
 - As part of tool qualification
 - In creating design flows and kits
Where Does This Working Group Fit?

VSIA
Technical Committee
Implementation Verification DWG

OVI
Technical Coordinating Committee
Design Constraints Working Group

VI
Technical Advisory Committee

Potential Sponsor

VSI Virtual Socket Interface Alliance
OVI Open Verilog International
VI VHDL International
VSIA Relationship

- Formal Sponsorship: VSIA will
 - Recruit members
 - Provide requirements specifically for IP mix and match
 - Endorse the standardization effort
 - Based on commitment to address VSIA requirements
 - Review draft specification, provide feedback
 - Adopt the standard when approved
 - Provided it meets VSIA requirements
 - Promote the standard after approval
Prior Work

- **Synthesis Constraints Working Group (SC-WG)**
 - Formed in March, 1996 under OVI
 - Joint OVI/VI sponsorship in August, 1996
 - **Charter**
 - Synthesis tool interoperability
 - **Focus**
 - Definition of the General Constraint Language (GCL), a constraint command language for user entry
 - **Problem**
 - Consolidation of synthesis tools
 - **Status**
 - Fairly good progress on timing constraints
 - Inactive since October 1997
 - Details at http://www.vhdl.org/pub/scwg/index.html
Prior Work (2)

- General Constraint Format (GCF)
 - An exchange format for tool-to-tool communication
 - Cadence-proprietary format
 - Provided to SC-WG for review
 - Status
 - Initial emphasis on timing
 - Some area, power, parasitics constraints
 - Supported by many Cadence tools
 - Joint work with Ambit to write GCF
 - Plans
 - Continue to evolve to cover additional constraints
 - Consistent semantics with DC-WG command language
 - Possible standardization
Observations from SC-WG

- A constraint standard
 - Should express the designer’s intent
 - Aspects of how the design should be implemented which aren’t covered by functional descriptions
 - Aspects of the environment in which the design will operate
 - Should not describe tool-specific behavior or control flow
- Constraints need to be updated throughout the design flow
 - Designers change constraints based on progress in implementation
 - Tools generate additional constraints (budgeting, transformations)
Observations from SC-WG (2)

- Hierarchy is important
 - Many constraints apply to both logical and physical hierarchy
 - Need to relate user specifications based on logical hierarchy to the physical hierarchy
 - Design object names may change as hierarchy is flattened or regrouped
 - Some tools are flat
 - Need to flatten hierarchical constraint descriptions
Observations from SC-WG (3)

- A constraint command language
 - Should
 - Define a set of constraint-related commands and their arguments
 - Be easy for a designer to enter
 - Provide powerful and expressive ways to specify which design objects are affected by a constraint
 - Macros, regular expressions
 - Allow constraint commands to be embedded in common extension languages, particularly Tcl
 - Should not
 - Be an extension language itself
 - No variables, looping, other programming language constructs
 - Avoid competition with tool-specific extension languages
 - Is relatively hard for tools to read
Observations from SC-WG (4)

- A constraint interchange format should
 - Define a set of constraint-related constructs
 - Be easy for tools to interpret and update
 - Provide limited ways to specify which design objects are affected by a constraint
 - Share semantics with a standard constraint command language
Preliminary Charter

- Original Proposal:
 - Define
 - A constraint command language (entered by users)
 - A corresponding interchange format (tool-to-tool)
 - Covering
 - Logic architecture
 - Timing
 - Area
 - Power
 - Test
 - Clocking
 - Physical Implementation
 - Environment/Operating Conditions
 - ...
 - Supporting language independence (Verilog, VHDL)
Nature of Design Constraints

Some thoughts to lead off discussion

- Major categories
 - High level design goals
 - Throughput, reliability, error rates, cost
 - Boundary conditions and operating environments
 - What is the environment around each block?
 - Budgets
 - Hierarchical partitioning of design goals
 - Special cases (exception handling)
 - Modes of operation
 - Don’t care conditions
 - Mutually exclusive conditions
 - Infeasible states (false paths, feedback loops)
 - Detailed implementation controls
Nature of Design Constraints (2)

• Different levels of abstraction
 ◆ Many transformations of system design goals into detailed implementation constraints

• Different levels of flexibility
 ◆ Goals/objectives versus design rules
 ◆ Tradeoffs between constraints
 • Smallest area which meets timing
 • Fastest design which meets power

• Multiple sources
 ◆ System designers
 ◆ Logic, physical designers (novice through expert)
 ◆ IP providers
 ◆ Cell library developers
 ◆ Semiconductor vendors
 ◆ Tools
Nature of Design Constraints (3)

- Multiple contexts
 - Analysis
 - Estimation
 - Resource planning
 - Partitioning
 - Implementation
 - Optimization
 - Timing, area, power
 - Correction
 - Design rule violations
 - Signal integrity
 - Verification
Nature of Design Constraints (4)

- Multiple applications
 - Design Estimation
 - RTL Synthesis
 - Design Planning (floorplanning)
 - Timing Analysis
 - Timing-driven Layout
 - Timing (gate-level signoff) simulation
 - Post-layout or Location-based Optimization
 - Power Analysis
Ways to Define Constraints

Some thoughts to lead off discussion

- Command Language
 - Example: GCL
 - Mature methodology and compiler technology
 - Low cost way to achieve interoperability
 - Yet another language for designers to learn

- Information Model and API
 - Example: DPCM
 - Object oriented, easy to evolve
 - Major investment in database, API, and programming language
 - Not for everyday designers
Ways to Define Constraints (2)

- **Formal Specification**
 - Example: EXPRESS
 - Top-down, applying theorem proving techniques
 - Hardest to implement
 - Not for every designer

- **Attribute Dictionary**
 - Designers can input in tabular form, like a spreadsheet
 - Tools to extract symbolic or physical values from the table
 - Not able to define semantics precisely
 - Not general enough to cover all conditions, 20-80 solution
Ways to Make the WG Successful

Some thoughts to lead off discussion

- Charter, Scope, Deliverables
 - Focus on expressing the designer’s intent
 - Consider the design flow as a whole
 - Leverage previous work
 - Consider backward compatibility, but don’t be driven by it
 - Avoid
 - Describing tool-specific behavior
 - Defining a mixture of extension language and constraints
 - A win-lose outcome
 - Add value to mix-and-match IP exchange
Ways to Make the WG Successful (2)

- **Process**
 - **Begin with the end in mind**
 - Start out with a paper pilot project
 - Define the roadmap from beginning to end
 - **Break work into phases**
 - Provide useful results early to build momentum
 - **Break phases into sub-projects/sub-groups**
 - Allow people to focus their time and effort on selected areas
 - **Use the “Point of View” approach to build consensus**
Ways to Make the WG Successful (3)

- Process (continued)
 - Prepare proposals off-line, circulate through e-mail
 - Use meetings to discuss proposals, not create them
 - Build high visibility
 - Press coverage
 - Presentations/tutorials at conferences
 - Endorsements
 - Companies, other standards organizations
 - Pilot projects
Getting Started

- Meeting Logistics
 - Bi-weekly teleconferences (2 hours)
 - What time?
 - Mornings are best for European, East Coast members
 - Can reduce time if enough work is being done off-line
 - VSIA will cover cost
 - Quarterly face-to-face meetings (1/2 day)
 - Coordinate with conferences to minimize travel

- Charter, Scope, Deliverables, Timeline
 - Focus on process for developing these
 - Not enough time to finalize today
 - Want to let people think about it
Getting Started (2)

- Topics for investigation
 - VI Sponsorship
 - Preliminary discussions with Gabe Moretti, Steve Schulz, Victor Berman
 - Technical Activities meeting this week
 - Constraint dictionary spreadsheet
 - Mixed signal constraints
Wrap-Up

- Points Of View
Wrap-Up (2)

- Action Items