Design Constraints Working Group
Kick-off Meeting

Mark Hahn - mhahn@cadence.com
Jin-sheng Shyr - shyrj@taec.com

March 16, 1998

Meeting Agenda

- Opening Statement, Self-introductions 1:00 (30 minutes)
 Who are we, and why are we here?
- Background 1:30 (45 minutes)
- Discussion: Nature of Design Constraints 2:15 (45 minutes)
- Break 3:00 (15 minutes)
- Discussion: Ways to Define Constraints 3:15 (30 minutes)
- Getting Started 3:45 (60 minutes)
 - Ways to Make the WG Successful
 - Meeting Logistics
 - Charter, Scope, Deliverables, Timeline
 - Topics for Investigation
- Wrap-up 4:45 (15 minutes)
 - Points of View Line-up
 - Action Items
Goals For Today’s Meeting

- Build a common knowledge base
- Share ideas and build consensus
 - What to work on
 - What not to work on
 - What the end result should be
 - What is achievable, and when
 - Priorities
 - How to proceed
- Prepare for subsequent meetings

Background

- Why develop a constraint standard?
- How would a constraint standard be used?
- Organizational framework
 - Where does this WG fit in?
 - VSIA Relationship
- Prior work
 - Observations from SC-WG
- Preliminary charter
Why Develop A Constraint Standard?

- Tower of Babel today
 - Many different formats for describing constraints
 - Inconsistent syntax
 - Requires re-entering or translating constraints
 - Inconsistent semantics
 - May not be able to translate constraints
 - Contributes to lack of convergence
 - Wasted effort
 - Designers must spend significant time understanding what each tool supports and getting the constraints into each tool
 - EDA developers wind up defining new formats for each new tool
 - IP providers must supply the same data in multiple formats
 - IP integrators may have to translate internal constraints for IPs to get through their particular flow
 - Semiconductor vendors have a harder time qualifying tools

How Would A Constraint Standard Be Used?

- By designers
 - As a single, consistent way to describe their intent
- By EDA tool developers
 - As a standard way to read, write, and interpret constraints
- By IP providers
 - To describe their intent for partially implemented IP blocks
 - To describe restrictions on how IP blocks may be used
- By IP integrators
 - To complete the implementation of IP blocks
- By semiconductor vendors
 - As part of tool qualification
 - In creating design flows and kits
Where Does This Working Group Fit?

VSIA
- Technical Committee
- Implementation Verification DWG

OVI
- Technical Coordinating Committee

VI
- Technical Advisory Committee

Potential Sponsor

Sponsor

VSI Virtual Socket Interface Alliance
OVI Open Verilog International
VI VHDL International

Formal Sponsorship: VSIA will
- Recruit members
- Provide requirements specifically for IP mix and match
- Endorse the standardization effort
 - Based on commitment to address VSIA requirements
- Review draft specification, provide feedback
- Adopt the standard when approved
 - Provided it meets VSIA requirements
- Promote the standard after approval

VSIA Relationship
Prior Work

• Synthesis Constraints Working Group (SC-WG)
 ◆ Formed in March, 1996 under OVI
 ◆ Joint OVI/VI sponsorship in August, 1996
 ◆ Charter
 • Synthesis tool interoperability
 ◆ Focus
 • Definition of the General Constraint Language (GCL),
 a constraint command language for user entry
 ◆ Problem
 • Consolidation of synthesis tools
 ◆ Status
 • Fairly good progress on timing constraints
 • Inactive since October 1997
 ◆ Details at http://www.vhdl.org/pub/scwg/index.html

Prior Work (2)

• General Constraint Format (GCF)
 ◆ An exchange format for tool-to-tool communication
 ◆ Cadence-proprietary format
 • Provided to SC-WG for review
 ◆ Status
 • Initial emphasis on timing
 • Some area, power, parasitics constraints
 • Supported by many Cadence tools
 • Joint work with Ambit to write GCF
 ◆ Plans
 • Continue to evolve to cover additional constraints
 • Consistent semantics with DC-WG command language
 • Possible standardization
Observations from SC-WG

- A constraint standard
 - Should express the designer’s intent
 - Aspects of how the design should be implemented which aren’t covered by functional descriptions
 - Aspects of the environment in which the design will operate
 - Should not describe tool-specific behavior or control flow
- Constraints need to be updated throughout the design flow
 - Designers change constraints based on progress in implementation
 - Tools generate additional constraints (budgeting, transformations)
 - Information about the tradeoffs between constraints changes as you go through the flow

Observations from SC-WG (2)

- Hierarchy is important
 - Many constraints apply to both logical and physical hierarchy
 - Need to relate user specifications based on logical hierarchy to the physical hierarchy
 - Design object names may change as hierarchy is flattened or regrouped
 - Some tools are flat
 - Need to flatten hierarchical constraint descriptions
Observations from SC-WG (3)

- A constraint command language
 - Should
 - Define a set of constraint-related commands and their arguments
 - Be easy for a designer to enter
 - Provide powerful and expressive ways to specify which design objects are affected by a constraint
 - Macros, regular expressions
 - Allow constraint commands to be embedded in common extension languages, particularly Tcl
 - Should not
 - Be an extension language itself
 - No variables, looping, other programming language constructs
 - Avoid competition with tool-specific extension languages
 - Is relatively hard for tools to read

Observations from SC-WG (4)

- A constraint interchange format should
 - Define a set of constraint-related constructs
 - Be easy for tools to interpret and update
 - Provide limited ways to specify which design objects are affected by a constraint
 - Share semantics with a standard constraint command language
Preliminary Charter

- Original Proposal:
 - Define
 - A constraint command language (entered by users)
 - A corresponding interchange format (tool-to-tool)
 - Covering
 - Logic architecture
 - Timing
 - Area
 - Power
 - Test
 - Clocking
 - Physical Implementation
 - Environment/Operating Conditions
 - ...
 - Supporting language independence (Verilog, VHDL)

Nature of Design Constraints

Some thoughts to lead off discussion

- Major categories
 - High level design goals
 - Throughput, reliability, error rates, cost
 - Boundary conditions and operating environments
 - What is the environment around each block?
 - Budgets
 - Hierarchical partitioning of design goals
 - Special cases (exception handling)
 - Modes of operation
 - Don’t care conditions
 - Mutually exclusive conditions
 - Infeasible states (false paths, feedback loops)
 - Detailed implementation controls
Nature of Design Constraints (2)

- Constraint Domains
 - Timing
 - Area
 - Power
 - Signal Integrity
 - Logic Architecture
 - Clocking
 - Test
 - Manufacturability
 - Reliability/Lifetime

Nature of Design Constraints (3)

- Different levels of abstraction
 - Many transformations of system design goals into detailed implementation constraints
 - Need ways to track derivation history
 - Low level constraints may be directly entered, rather than derived from higher level constraints

- Multiple sources
 - System designers
 - Logic, physical designers (novice through expert)
 - IP providers
 - Cell library developers
 - Semiconductor vendors
 - Tools

- Different levels of flexibility
 - Goals/objectives versus design rules
 - Tradeoffs between constraints
 - Smallest area which meets timing
 - Fastest design which meets power
Nature of Design Constraints (4)

- Multiple contexts
 - Constraint Entry/Management
 - Analysis
 - Estimation
 - Resource planning
 - Partitioning
 - Implementation
 - Optimization
 - Timing, area, power
 - Correction
 - Design rule violations
 - Signal integrity
 - Verification
 - Process Migration

Nature of Design Constraints (5)

- Multiple applications
 - Design Estimation
 - RTL Synthesis
 - Design Planning (floorplanning)
 - Timing Analysis
 - Timing-driven Layout
 - Timing (gate-level signoff) simulation
 - Post-layout or Location-based Optimization
 - Power Analysis
Ways to Define Constraints

Some thoughts to lead off discussion

- Command Language
 - Example: GCL
 - Mature methodology and compiler technology
 - Low cost way to achieve interoperability
 - Yet another language for designers to learn
 - Possible strategy: co-existence versus replacement

- Information Model and API
 - Example: DPCM
 - Object oriented, easy to evolve
 - Major investment in database, API, and programming language
 - Not for everyday designers

Ways to Define Constraints (2)

- Formal Specification
 - Example: EXPRESS
 - Top-down, applying theorem proving techniques
 - Hardest to implement
 - Not for every designer

- Attribute Dictionary
 - Designers can input in tabular form, like a spreadsheet
 - Tools to extract symbolic or physical values from the table
 - Not able to define semantics precisely
 - Not general enough to cover all conditions, 20-80 solution
Ways to Make the WG Successful

Some thoughts to lead off discussion

- Charter, Scope, Deliverables
 - Focus on expressing the designer’s intent
 - Consider the design flow as a whole
 - Leverage previous work
 - Consider backward compatibility, but don’t be driven by it
 - Avoid
 - Describing tool-specific behavior
 - Defining a mixture of extension language and constraints
 - A win-lose outcome
 - Add value to mix-and-match IP exchange

- Process
 - Begin with the end in mind
 - Start out with a paper pilot project
 - Define the roadmap from beginning to end
 - Break work into phases
 - Provide useful results early to build momentum
 - Break phases into sub-projects/sub-groups
 - Allow people to focus their time and effort on selected areas
 - Use the “Point of View” approach to build consensus
Ways to Make the WG Successful (3)

- Process (continued)
 - Prepare proposals off-line, circulate through e-mail
 - Use meetings to discuss proposals, not create them
 - Build high visibility
 - Press coverage
 - Presentations/tutorials at conferences
 - Endorsements
 - Companies, other standards organizations
 - Pilot projects

Getting Started

- Meeting Logistics
 - Bi-weekly teleconferences (2 hours)
 - What time?
 - Mornings are best for European, East Coast members
 - Can reduce time if enough work is being done off-line
 - VSIA will cover cost
 - Quarterly face-to-face meetings (1/2 day)
 - Coordinate with conferences to minimize travel

- Charter, Scope, Deliverables, Timeline
 - Focus on process for developing these
 - Not enough time to finalize today
 - Want to let people think about it
Getting Started (2)

- Topics for investigation
 - VI Sponsorship
 - Preliminary discussions with Gabe Moretti, Steve Schulz, Victor Berman
 - Technical Activities meeting this week
 - Constraint dictionary spreadsheet
 - Mixed signal constraints

Wrap-Up

- Points Of View
Wrap-Up (2)

- Action Items