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Abstract

Measuring and comparing performance, cost, and other resataf advanced communication architectures for complex
multicore/multiprocessor systems on chip is a significdnallenge which has hardly been addressed so far. Thiseapgiekents a
modeling methodology for applications running on multeesystems and defines an XML format for documenting and bligtrig
network-on-chip benchmarks. It defines a black-box viewhefprocessing elements that discloses only the computhtmpects
that are relevant in interacting with the on chip data transmechanism.
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I. INTRODUCTION

Network-on-Chip (NoC) paradigm [1][2] brings the technégudeveloped for macro-scale, multi-hop networks into @.chi
The major goal of communication-centric design methodie®gnd NoC is to achieve greater design productivity and
performance by handling the increasing parallelism, mactufing complexity, wiring problems, and reliability.

No optimal NoC exists in general case and a brute-force Beiarimpossible due to vast design space. Benchmarking,
however, allows us to identify the most promising solutiarigch are then selected for detailed and time consumingysisal
This reduces the design time notably once the major chaisiate and requirements of the system are known. Benchingrk
must be done with care and by following strict scientific pijles both in measurements and in reporting. A recent gurve
on state-of-the-art NoC comparisons [3] together withgfflearly motivated the need for a common benchmarkindesise
and test cases.

The main concepts for benchmarking NoCs in a systematic antparable way are currently addressed by an OCP-IP
workgroup [6]. This complements that work by presenting enocmn modeling style and file formats which are necessary
for documenting and distribution of benchmark cases. To lmowledge, this is the first attempt to capture a common,
disciplined benchmarking methodology targeting netwonkehip. The benchmarks will be delivered as XML (eXtersibl
Markup Language) files.

This paper is structured as follows. Section Il presentsdterall view. Sections IV-VII introduce the four main pacdf
the application models followed by conclusions in Sectidi.\A short example of the utilized XML is given in Section 1X

[1. EXTENSIBLE MARKUP LANGUAGE (XML) AND SPIRIT

eXtensible Markup Language (XML) is a standard for creatmgrkup languages which describe the structure of data
[9][10]. The set of elements is not fixed as in HTML. Insteadens can define their own tags. The primary purpose of the
XML is to facilitate the sharing of structured data acrostedént information systems. XML files are plain text fileshish are
less restrictive than other proprietary document formats XML schemadescribes the type of the XML document, typically
expressed in terms of constraints on the structure and moofelocuments, above and beyond the basic constraintssiapo
by XML itself. The strict syntax and parsing requirementsthe form of schema, make the parsing algorithms extremely
simple, efficient, and consistent. A schema will be providedpart of the NoC benchmark set to validate the NoC XML files
(see www.ocpip.org for further details).

The NoC benchmarking XML is somewhat similar to SPIRIT cotism’s IP-XACT system model [11] but has a bit
different scope and higher abstraction level. IP-XACT §i@ns 1.0 and 1.2) is aimed for documenting the registeistesin
level (RTL) interfaces of the intellectual property (IP)neponents whereas the NoC XML describes the application traouk
its mapping on the hardware architecture. Furthermore, XML does not specify individual signals or pins but sockets.
socket groups together all the data and control signaleptes certain interface and specifies their timing and othktions.

IIl. BASIC STRUCTURE AND MODELING CONCEPTS

Fig. 1 depicts the proposed NoC system model. Some of the bascepts of the system model and a very similar format
were previously presented in the Koski design automatiohget [7][8]. The model and the corresponding XML descapti
are divided into four main sections:

1) Applicationdefines the computation and communication load

2) Mappingbinds the application tasks to the resources

3) Platform defines the resources and the NoC interconnecting them

4) Measuremensection defines how to perform the evaluation, for exampl&ioseand simulation length.

Fig. 1 shows a simple task in network consisting of six tasks-(F") and two triggering events, which trigger tasksand
D. The tasks are grouped into five grougs{V’) that are mapped to four PE® £0 — PE3). The data amounts in bytes are
expressed beside each edge. Assuming that the events impitilisation are periodical and their time interval is seaigarly,
all the PEs 0-3 can execute tasks simultaneously.

Separation to distinct parts is necessary to handle conaptdnitectures and applications [12]. Orthogonality a@xercising
or modifying one of the components, while keeping the reshair previous configuration. Thus, the mapping, for exampl
may be varied without touching the application or hardwaralets. Similarly, one can describe the particular NoC onge b
change the application when needed.

The benchmarks set covers the three uppermost sectionsgoflF{application, mapping, computation resources) and
measurement settings but leave the network definition td\ih€ designer/evaluator. The XML is given as input to a traffic
generator that will be used during the simulation. The tafénerator will inject/eject traffic to/from the NoC, calaie statistics
(PE utilization, data latencies etc.), and detect trarsioniserrors (corrupted, dropped, out-of-order data eWessage-passing
communication paradigm is assumed at this stage of research

Fig. 2 shows the major tags and their relations in the prapo€dL description. The top level tag is called system, it
includes four tags under it, the first of those, applicationludes two and so on. The numbers show the minimum number of
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Fig. 1. Conceptual view of the utilized system model.

occurrences of each tag. A number followed by the plus sighdenotes that multiple instances of the same tag are allowed
In those cases, the upper bound is case-dependent (if any).
Next we introduce the major sections of the XML model.

IV. APPLICATION MODEL

An application includes a task graph that models the contipnta load as well as the induced communication. In thedasi

case, there is only one task graph. Model includes deperegiticning, destination, and size of data transfers. Irsk taaph:

1) task nodes model the computation. The execution time is derivenh fthe task’s operation count and the properties
of the PE executing that task No actual computation is peréar during the simulation, only the external behavior
of application tasks is modeled. (Actual computation issiue in [7], but not necessary at the first stage of NoC
benchmarking.)

2) connectiondetween nodes carry out the communication. Tasks nodes oaioate via connection channels (directed

edges) that carry the data tokens between tasks. Chaneeltached to the tasks’ ports. Bidirectional ports are not
allowed.

3) trigger eventgyenerate stimulus to the tasks

4) path definitionsare used for measurements, especially when real-timereamstare present.

Model of Computation (MoC) is similar to Kahn Process Netw@PN), where vertices represent computation tasks and
edges represent communication channels [7]. Chosen medelctive due to dependencies. For example, when a certain
transfer is delayed, all the tasks (and transfers) depgmalinthat transfer are also delayed. The task set is statimardsks
are spawn during execution.

Application model may include several task graphs (smalpglications) in order to model multitasking. Tasks in eliént
graphs may be connected. Even if graphs are disjoint (no agriwation between graphs) they can still affect each agher’

execution times as they may compete for the shared resqureePEs and NoC. Some tasks may model memory accesses
instead of computation.

A. Application tasks

Tasks are the primary means of expressing the communicatidcomputation load. Fig. 3 shows the tags used for desgribi
the tasks. Tasks communicate via unidirectional ports.sk ta triggered for execution according to a condition thepehds
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Fig. 2. Major tags in XML system model. The numbers show thaimim number of occurrences of each tag. Each of the four msgotions occurs
exactly once. Task description is shown in Fig. 3.

on the received data tokens and possibly on the interna sfiathe task. A task may include several behaviors but exactl
one is executed at a time.

Triggering conditions have two variables: input ports amel ¢xecution history of the task. The number of ports in tisk ta
or trigger condition is not limited. Hence, all inputs of ttask can be present, if needed. There are two types of depeirde
on multiple input ports

1) AND: triggered when there is data in all inputs,

2) OR triggered when any of the input receives a token.

The OR dependency distinguishes the model from the traditi&kPN. The history means here simply the count of how
many times the task has been executed. For example, a taskawaya different behavior on the first execution but aftet tha
the same on all other executions. Another example couldddeatkask performs functioA on every even execution count and
function B on every odd. In the extreme case, the task behavior is diffesn each execution. This is suitable for capturing
a trace for highly varying tasks for which the average valaesmisleading.

Each execution behavior is characterized by three elements

1) the operation count,

2) data amount to be sent (in bytes) and the output ports wheredata will be sent, and

3) the next state of the task after execution.

The operation count and data amount are expressed withr aitbatistical distribution (uniform, normal, or Poisspa) as
a polynomial function, which depends on the received datawsr(a constant value is subset of the latter). Polynonmidl a
statistical are mutually exclusive choices and hence @ehwaith (i) and (ii) in Fig. 3. However, the choice is done pask;
certain tasks may have polynomial count/amount values #mer® statistical ones.

Each output is assigned a certain probability. The sameubuspalways chosen if its probability is equal td0, i.e. in
100% of cases. Other probability values allow compacting the ehad less triggering conditions are needed. There is one
send tag for each destination.

Few possible example behaviors with different triggeriogditions are

« Always perform the same action (same number of operati@mesamount of output data, same destinations) irrespective

of execution count or input port.
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Fig. 3. XML tags for describing the tasks.

]

a: The task has all the data for the next execution
b: Scheduler selected the task for execution

c: Fully executed but has not all data for the next execution
d: Fully executed and is not dependent on any data anymore

Fig. 4. The possible states of an application task duringikition.

« Operation count and data amount depend on the received ahatana but not on the execution count; destination(s) are

always the same.

« Select the output according to the input port similarly orrgvexecution; however, operation count and data amount may

be constants, polynomial, or statistical.

« All parameters depend on both the input port list and exenutbunt.

1) Task state machine During simulation, the internal state of a task is expressithl an execution counter and a status
variable. Fig. 4 illustrates the scheduling state machina single task. Tasks start in state “wait”. Once it receigasugh
data tokens and triggering condition is fulfilled, it will t@me ready for execution. Scheduling policy of the PE defineish
task from the ready list is selected for execution (edge bjameters related to scheduling are defined in the mappirg pa
After execution, task’s next state is usually set again taitivIt may also be "free” (as indicated in Fig. 4 which medhat
the task won't be executed anymore. The execution counteiciemented every time when the task leaves the state "Run”

(pre-emption necessitates detecting the completion afwgia and not just state change).

Every task may have other restrictions and settings, fomgka, can a task be pre-empted or to which PEs is may be
mapped. Hence, these affect the mapping and schedulingpjfities. This section is included mainly for future exsons.

B. Connections

The connections simply define the structure of the task grapgtich tasks communicate with each other. Their only

parameters include the source and destination ports oaies.t
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C. Triggering events

Triggering events model the environment and usually at leas event is required to start the task graph. In other words
they generate the input data stream that is "processed” éwpiplication.

Their behavior is similar to that of timers. Events are spenbdes because they are not mapped to any PE, and hence
do not reserve computational resources. However, theyagdar connections to transmit their data to the tasks. Svare
either periodic or one-shat Their data emission may have a probability less than 100feé&ded. This means that an event
does not always send data at all although it is triggeredy Heenot consume "CPU-time” of the resources or NoC capacity.

As mentioned, all tasks are initially in state "wait” andgtbfore, at least one event is needed to trigger the executio
Currently, events do not have input ports so they cannot teaihie application’s outputs.

D. Real-time constraints and paths

A task graph can also include real-time constraints, fomeda, computation deadlines with tasks and communication
deadlines with connections. In addition to single tasksl@)mr connections (edgegathsthat constitute several tasks may
be defined.

A path is a list of tasks and/or connections that is used focbhmarking. For example, pathincludes tasksA, B, andC
(in this order) and this path has a real-time constrairt ofs. It is measured from the triggering of tagkto the completion
of task C. The transaction generator will monitor is the deadlineagisvmet and report violations. In addition, the average
runtime of the path may be also used in to define the cost fomcti

There are multiple choices to start event respect to whiehréfal-time constraints are given. The time may be measured
starting from the time instant when

« triggering conditionX occurs,

o current task received all its input data,

« previous task is completed,

« current task last completed.

V. MAPPING MODEL

Mapping model defines on a per-PE basis where the tasks acatege Mapping is performed in two stages: grouping of
tasks together, and mapping the groups to resources. A ¥ggessive mapping could be done without the groups, but the
chosen method allows more possibilities (including thepdémmapping). If uncertain, users can have just one task fmemg
The main ideas in grouping are to model operating systenadisrand to restrict mapping exploration. Both tasks andggou
may have parameters related to scheduling, such as pgoriti

Group contents may be modified by automated design automtztads if allowed (hutable="yes") or they can be moved
elsewhererfiovable="yes"). The former restriction can be also done for a PE and therl&it a task. Although the application
is fixed in each benchmark, there are various options:

« assign fixed mapping for a NoC of a certain size, $éyterminals. Designers can easily vary NoC parameters withou
modifying other parts of the XML description.

« assign fixed grouping of tasks, and let the designer map thdnster NoC freely. Note that the number of NoC terminals
can be smaller than the number of groups.

o as previous, but without groups. This option gives full tem in mapping.

The tag software platform is included for the sake of futuxeersions.

VI. PLATFORM MODEL

Platform has two parts: resources and NoC. The resourcésbwidefined by the benchmark set and the NoC by its
designer/evaluator.

A. Resource model

Computation architecture is modeled on a very coarse |éMet PEs are characterized with few parameters, such as
operations-per-cycle, silicon area, power consumptior{3], these values are stored in separate PE library buttheseare
directly in the XML for simplicity. For each resource the lobmark defines

1) type: processing element (PE) or storage

2) NoC terminal where it is connected to

3) operating frequency, number of operations per cyclea grem2 or kilogates, aspect ratio), active and idle power

consumption

4) inclusion of DMA controller

5) the associated communication overheads.
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Fig. 5. Different communication costs between two tasksnvliptasks are on the same PE or b) on different PEs. The syraboisspond to Fig. 1.

The PE model performs the scheduling of tasks. The schegfcifinices are FIFO (default choice), preemptive/nonpreiemp
static priority, and round-robin. Priorities are set at paertime. When a task is mapped on a PE and scheduled foutaerg
the simulation engine calculates the associated runtirhe.clcle count becomes:

Ncycles,i,pe = ops,i/IPCpev (1)

where N, ; is the operation count of the tagkand/PC),. defines how many operations the PE can execute in one clock
cycle. The runtime of task on that PE is then:

ti,pe = Ncycles,i,pe/fpe- (2)

When the task has finished its execution, it emits data taeA(direct memory access (DMA) controller allows simuéans
computation and communication which means sending onnecgilata while executing application tasks. The PE modetkh
the destination of the transfers in order selects whethed#ia is transmitted to the NoC or is the communication rirateto
PE.

This defines which PE-specific communication costs are egpppli3]. The communication overhead has the form

tcomm,pe =a+ biC, (3)

wherea is constant cost (cycles), is the data amount in bytes, ahds the cycles per byte. Values afandb are defined
separately for each PE type and its software platform. Theyfiged in the benchmark’s XML document.

Time overhead is smallest when the source and destinatsis t&e in the same group (thread). A different cost is used
when the destination is in another group but still on the s&fe The largest overhead occurs when the destination task is
mapped on a different PE. In that case, the delay induced doyétwork will be added t®.omm pe. However, note that the
network delay is not static, unlike andb, but it is determined at the simulation time.

For example in Fig. 1, communication between the taBkand C is type intragroup, betweenC and F' intergroup and
betweenC and any other taskter-PE The two latter can possibly cause a context switch at theirecPE. Only the inter-PE
communication is passed via network model.

Fig. 5 presents two examples of inter-task communicatiora)] the communication occurs between two tasks in the same
PE whereas b) presents inter-PE communication. In bothsc#ise execution times of the tasks are the same. The network
delay is naturally not present in a), but otherwise the comgation procedure is the same as in b). In addition, bothl sen
and receive costs are shorter in a), because the data dobaveoto be prepared for the network transaction.

B. Network model

This section presents an XML description of a NoC, althoughNoC is not usually defined in the benchmark. The purpose
is to promote a consistent way of documenting the experisnand also to enhance inter-operability of EDA tools. Thermai
emphasis is on documenting the topology and basic parasn@®ecC is here defined by its:

1) Terminals which may include network interfaces

2) Topology, i.e. routers and links

3) Parameters (optional part).
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Fig. 6. Three types of supported NoC terminals.

1) Terminals and Network Interface®Es are bound to NoC terminals which are the "public interfaaf a NoC. This
provides a generic way to bind PEs without exposing the riatisr of the NoC. It depends on the NoC internals how the
terminals are connected inside the network. In contramneoting PEs directly to router ports is a network-specifiy \and
not reusable.

Fig. 6 illustrates three different terminal types.

1) On the left, there is a direct point-to-point link betweR#0 and PE1. The corresponding terminals are simply the two
ends of the link. Of course, the PEs must have directly coitlgainterfaces.

2) In the middle,PE2 and PE3 communicate via two routers. Each terminal is associated eértain router port. PEs
must use the communication protocol (signals, their timamyd packet structure) as the router ports. Hence, theratsni
may be conceptual, i.e. just aliases to certain router pattich do not require any logic in HW implementation.

3) On the right, there are network interfaces (NIs) in additto the routers. This is the most generic and probably the
most common option. The interface does conversion betweemminication protocols. For examplBFE4 could have
an OCP-IP compliant interface but the router could use @difft, proprietary protocol and expects exactly 8-wordjlon
packets with 2-word headers. The NI executes packetizgsidding/removing headers), checks integrity, and pogsibl
reordering of packets.

A terminal may include network interface logic, as shown ba tight, but it is not always necessary. One might consider
defining NI together with the resource. Here, they are withenNoC because that part is commonly left undefined in beackm
and completed by the NoC designer or evaluator.

One might consider also point-to-point links with netwonkerfaces, although this option seems rare. It is left cunfthe
figure but its behavior is easy to understand with the preiexamples.

2) NoC topology:The NoC may be instantiated asavite-boxmodel that defines all necessary topological details, or as a
black-boxthat defines only the terminals and parameters in XML.

Fig. 6 illustrates also the internal structure of a NoC: ¢hare links and routers. Links connect the ports of the reuter
which can be uni- or bidirectional. Bidirectional ports dimtks simplify XML description in many cases although in gtiae
they are likely realized as a pair of unidirectional poitsd.

Each router includes the following basic parameters

1) varying number of ports and their directions

2) flit width and optionally also frequency

3) buffer capacity (number of flits per buffer) per port.

4) number of virtual channels per port

5) minimum latency for forwarding the packet header

Each link defines

1) the end points, each defining a router and its port
2) number of wires in one direction
3) pipeline depth, default is 0 which means no pipelining
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4) operating frequency (optional).
The connections between routers and PEs are included innt@raescription. Occasionally, the link or router list miag
empty.

3) (Default) NoC ParametersDefault values can be defined for any parameters, such aswddtta, to avoid repeating
them for every single router or link instance. However, tikap be overridden on a per-component basis.

The most common parameters, see the previous subsectioa, spacific tags but it is possible to include additional,
arbitrary parameters aseame-valuepairs. This supports using XML as input for proprietary figaration and synthesis tools.
For example, specific arbitration, routing, queue managemgions may be given this way. The XML file may define arbitra
parameters for the NoC or its sub-lists.

Another use case is when the NoC is used as black-box and thel atructure is described separately in VHDL files (or
similar) instead of XML. The compilation and synthesis paeters are extracted from the XML and passed to correspgndin
EDA tools. This allows instantiating third-party NoCs wailt knowledge of their internals while allowing parametation.

The white-box NoC model can represent arbitrary networlologies but might be somewhat awkward for a large, say
100-node, NoC. The black-box approach is suitable in such oasgecially for regular topologies. The designer/evaluato
must only define the name of the library component (e.g. 2-Bhhenetwork dimensionse(= 10, y = 10), terminal list
(0 — 99), and possibly some other parameters. Effort is minimizedhare is no need to describe individually all the routers
and links. There is no need to describe individually all tl® touters, all 360 links, connect links between west(x,y) to
eastin(x+1,y) (except on the edges!), and so on. The detailed XMscription, such as IP-XACT, may be eventually generated
automatically based on the above parameters, if desired.

VIl. M EASUREMENT CONSTRAINTS

This section includes restrictions related to the simatatand benchmarking. The simulation time may be defined as a
constant value, for exampl200 miliseconds. However, adequate absolute time is hard toecgmwith in general case and
hence there are other, dynamic conditions for the simuldgagth:

« total of B bytes has been injected/ejected

« total count of all tasks’ executions equdls

« task X has been executel times

« communication edg&X has been executed (usel)times

« path P has been traverselN times (paths are defined inside a task graph)

o Ssame as previous but for several tasks/edges/paths areinméasd average or maximum time will be used.

These conditions ensure that the evaluated system reaetaely state and that enough data has been transferred ino obta
reliable performance results.

This section defines also the criteria that must be measukteported and at least one cost function. Cost functiorbioaes
various metrics into single value (smaller the better) taat be used for direct comparison and ranking of approa&xasnple
metrics are silicon area, power or energy consumption, Isition time, path time, execution count of a task, sum of agks’
execution counts, deadline violations, and packet lagsndihe deadline related information defined separately@mpplication
description.

Basic arithmetic operations (sum, subtract, multiply,iadty power) and weights are applied to the metrics. The e/
benchmark set fixes a certain minimum set of criteria and fuogttions. Researchers are, of course, encouraged torperfo
other complementary measurements and the same XML formabeaised for reporting those studies also. The workgroup is
currently preparing separate rules and guidelines for gotirly the NoC studies in order to avoid ambiguities and hmigs.

VIII. CONCLUSIONS

This paper presents a common modeling style and XML file forimaperforming and delivering network-on-chip bench-
marks. They capture the necessary aspects in an easy to enforagat. Authors believe that common, publicly available
benchmarks in the form presented here offer a valuable ibotitn to the current state-of-the-art in NoC researche gbal
is to promote disciplined evaluation, sharing of ideas aul tases, as well as to promote healthy competition witli@ N
and MP-SoC communities.

In the fufure the workgroup will prepare general guidelireesl instructions for performing NoC evaluations as well as
publish the actual benchmarking cases. Since this is wokraggress, we encourage the readers to contact the authirs an
other workgroup members in any relevant issue or improvemsgggestion.
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IX. PART Il: EXAMPLE

This short example aims to show the basic properties of thpgeed XML format. The symbols correspond to Fig. 1 and
Fig. 6.
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<?xml version="1.0'?>
<IDOCTYPE system_description>

<system_description xmIns:noc="http://www.ocpip.org/namespace/noc” xsi:SchemaLocation="../xsm_content_model.xsd”>

<application>
<task_graph id="Example_application”>
<task id="A" name="filter” class="general” >
<in_port port_id="0"/>
<out_port port_id="1"/>

<trigger dependence_type="or”>
<in_port_ref value="0" />
<exec_count>
<op_count>
<int_ops>
<distribution>
<uniform min="100" max="150"/>
</ distribution >
</int_ops>
</op_count>
<send out_port_ref="1" prob="1.00">
<byte_amount>
<polynomial>
<param value="28" exp="0"/>
</polynomial>
</byte_amount>
</send>
<next_state value="READY”/>
</exec_count>
</trigger>
<restriction> For future enhancements </restriction>
</task>
<task id="B”>...</task>...<task id="F">... </task>

<task_connection> <!-- Event’s data goes to task A -->
<src task_ref="e0” port_ref="0"/>
<dst task_ref="A" port_ref="0"/>
</task_connection>
<task_connection> ... </task_connection>

<event_list>
<event id="e0” name="“timer_1" out_port_id="0" amount="1"
trigger_type="one-shot” prob="1" time_sec="5.0e-006"/>
</event_list>

<path id="p1” name="upper_branch”>
<task> A </>
<task> B </>
<task> C </>
</path>
</task_graph>
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<!-- Several task graphs may be combined to form a single, heterogeneous application -->
<task_graph> Another application model </task graph>

<connection>
<src tg_ref="Example_application” task_ref="F" port_ref="5">
<dst tg_ref="other_tg_identifier” task_ref="start” port_ref="4">
</connection>
</application>

<mapping>
<resource ref="PEQ” contents="mutable”>
<group id="1" position="movable” contents="mutable*“>
<task ref="D" position="movable*/>
</group>
</resource>

<resource ref="PE3” contents="mutable”>
<group id="1V” position="movable” contents="“mutable“>
<task ref="E” position="movable"/>
<task ref="C” position="movable”/>
</group>
<group id="V” position="movable” contents="“mutable*“>
<task ref="F" position="movable”/>
</group>
</resource>
<Other resources here...>
</mapping>

<platform>

<resource_list>
<defaults>
<frequency MHz="100" />
</defaults>
<resource id="PEQ” type="pe” >
<port id="portX” terminal_ref="0" />
<frequency MHz="200" />
<performance ops_per_cycle="1.0" />
<area kilogates=""50e3” ratio_y per_x="1.0"/>
<dma activated="yes” />
<sw_platform context_switch_cycles="500" ... />
</resource>
<Other resources here...>
</resource_list>

<noc>
<router_list>
<defaults>
<data_width bits="32" />
<buff_depth flits="5" />
<n_virtual_chan value=*2" />
</defaults>
<router id="r_x0_y0” >
<port id="east” buff_depth="10"/>
<port id="resource” />
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<latency cycles="3" />
<parameter name="my_proprietary_param” value="hpk” />
</router>
<Other routers here...>
</router_list>

<link_list>
<defaults> ... </defaults>
<link id="10"> ...</link>
<link id="I1">
<src router_ref="r_x0_y0” port_ref="gast” />
<dst router_ref="r_x1_y0” port_ref="west” />
<pipeline_depth value=*1" />
</link>
<link id="I2"> ...</link>
</link_list>

<terminal_list>

<defaults> ... </defaults>

<terminal id="0"> <!-- direct connection on the left of Fig. 6 -->
<connection link_ref="10" />

</terminal>

<terminal id="1">
<connection link_ref="10" />

</terminal>

<terminal id="2"> <!-- middle of Fig. 6 -->
<connection router_ref="r_x0_y0” port_ref="resource”>
</terminal>
<terminal id="4"> <I-- right side of Fig. 6 -->
<connection router_ref="r_x2_y0” port_ref="resource”>
<address value="0x35000" />
<network_interface type="“OCP/AXIl/other”>
<delivery value="in-order” dropping="no”/>...
</network interface>
</terminal>
<Other terminals here...>
</terminal_list>

<parameter name="param_for_blackbox_noc” value="“cmx” />
<Other arbitrary params that have no special tags in XML />
</noc>
</platform>

<measurements>
<simulation_time sec="500e-3” /> <I-- i.e. 500 ms -->
<cost_function f="A*t_p1” />
<Other measurement settings>

</measurements>

</system_description>
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