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Introduction

The Open Core Protocol™ (OCP™) delivers the only non-proprietary, openly 
licensed, core-centric protocol that comprehensively describes the system-
level integration requirements of intellectual property (IP) cores. 

While other bus and component interfaces address only the data flow aspects 
of core communications, the OCP unifies all inter-core communications, 
including sideband control and test harness signals. OCP’s synchronous 
unidirectional signaling produces simplified core implementation, 
integration, and timing analysis.

OCP eliminates the task of repeatedly defining, verifying, documenting, and 
supporting proprietary interface protocols. The OCP readily adapts to support 
new core capabilities while limiting test suite modifications for core upgrades.

Clearly delineated design boundaries enable cores to be designed indepen-
dently of other system cores yielding definitive, reusable IP cores with 
reusable verification and test suites. 

Any on-chip interconnect can be interfaced to the OCP rendering it 
appropriate for many forms of on-chip communications:

• Dedicated peer-to-peer communications, as in many pipelined signal 
processing applications such as MPEG2 decoding.

• Simple slave-only applications such as slow peripheral interfaces.

• High-performance, latency-sensitive, multi-threaded applications, such 
as multi-bank DRAM architectures.

The OCP supports very high performance data transfer models ranging from 
simple request-grants through pipelined and multi-threaded objects. Higher 
complexity SOC communication models are supported using thread 
identifiers to manage out-of-order completion of multiple concurrent transfer 
sequences. 
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The CoreCreator™ tool automates the tasks of building, simulating, verifying 
and packaging OCP-compatible cores. IP core products can be fully 
“componentized” by consolidating core models, timing parameters, synthesis 
scripts, verification suites, and test vectors in accordance with the OCP 
Specification. CoreCreator does not constrain the user to either a specific 
methodology or design tool.

Support
The OCP Specification is maintained by the Open Core Protocol International 
Partnership (OCP-IP™), a trade organization solely dedicated to OCP, 
supporting products and services. For all technical support inquiries, please 
contact techsupport@ocpip.org. For any other information or comments, 
please contact admin@ocpip.org.
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Changes for Version 3.0
Changes for Version 3.0 include:

• Coherence Extensions.

• Updated semantics for the write response enable.

• Support for new sideband signals that enable the master to control the 
connection state of the interface based upon the input of both master and 
slave. The new MConnect, SConnect, SWait and ConnectCap signals 
implement the connection protocol and the connection parameter 
configures these signals. 

• Advanced High-Speed Profile.
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1 Overview

The Open Core Protocol™ (OCP) defines a high-performance, bus-
independent interface between IP cores that reduces design time, design risk, 
and manufacturing costs for SOC designs. 

An IP core can be a simple peripheral core, a high-performance micropro-
cessor, or an on-chip communication subsystem such as a wrapped on-chip 
bus. The Open Core Protocol:

• Achieves the goal of IP design reuse. The OCP transforms IP cores, making 
them independent of the architecture and design of the systems in which 
they are used.

• Optimizes die area by configuring into the OCP interfaces only those 
features needed by the communicating cores.

• Simplifies system verification and testing by providing a firm boundary 
around each IP core that can be observed, controlled, and validated.

The approach adopted by the Virtual Socket Interface Alliance’s (VSIA) Design 
Working Group on On-Chip Buses (DWGOCB) is to specify a bus wrapper to 
provide a bus-independent Transaction Protocol-level interface to IP cores. 

The OCP is equivalent to VSIA’s Virtual Component Interface (VCI). While the 
VCI addresses only data flow aspects of core communications, the OCP is a 
superset of VCI that additionally supports configurable sideband control 
signaling and test harness signals. The OCP is the only standard that defines 
protocols to unify all of the inter-core communication.

1.1 OCP Characteristics
The OCP defines a point-to-point interface between two communicating 
entities, such as IP cores and bus interface modules (bus wrappers). One 
entity acts as the master of the OCP instance and the other as the slave. Only 
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the master can present commands and is the controlling entity. The slave 
responds to commands presented to it, either by accepting data from the 
master, or presenting data to the master. For two entities to communicate in 
a peer-to-peer fashion, there need to be two instances of the OCP connecting 
them—one where the first entity is a master, and one where the first entity is 
a slave.

Figure 1 shows a simple system containing a wrapped bus and three IP core 
entities: one that is a system target, one that is a system initiator, and an 
entity that is both. 

Figure 1 System Showing Wrapped Bus and OCP Instances

The characteristics of the IP core determine whether the core needs master, 
slave, or both sides of the OCP; the wrapper interface modules must act as 
the complementary side of the OCP for each connected entity. A transfer 
across this system occurs as follows. A system initiator (as the OCP master) 
presents command, control, and possibly data to its connected slave (a bus 
wrapper interface module). The interface module plays the request across the 
on-chip bus system. The OCP does not specify the embedded bus 
functionality. Instead, the interface designer converts the OCP request into an 
embedded bus transfer. The receiving bus wrapper interface module (as the 
OCP master) converts the embedded bus operation into a legal OCP 
command. The system target (OCP slave) receives the command and takes the 
requested action. 

Each instance of the OCP is configured (by choosing signals or bit widths of a 
particular signal) based on the requirements of the connected entities and is 
independent of the others. For instance, system initiators may require more 
address bits in their OCP instances than do the system targets; the extra 
address bits might be used by the embedded bus to select which bus target 
is addressed by the system initiator. 

The OCP is flexible. There are several useful models for how existing IP cores 
communicate with one another. Some employ pipelining to improve 
bandwidth and latency characteristics. Others use multiple-cycle access 
models, where signals are held static for several clock cycles to simplify timing 
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analysis and reduce implementation area. Support for this wide range of 
behavior is possible through the use of synchronous handshaking signals 
that allow both the master and slave to control when signals are allowed to 
change. 

1.2 Compliance
1. The core must include at least one OCP interface.

2. The core and OCP interfaces must be described using an RTL 
configuration file with the syntax specified in Chapter 8 on page 129.

3. Each OCP interface on the core must:

• Comply with all aspects of the OCP interface specification 

• Have its timing described using a synthesis configuration file following 
the syntax specified in Chapter 9 on page 141.

4. The following practices are recommended but not required:

a. Each non-OCP interface on the core should:

• Be described using an interface configuration file with the syntax 
specified in Chapter 7 on page 123.

• Have its timing described using a synthesis configuration file with 
the syntax specified in Chapter 9 on page 141.

b. A performance report as specified in Chapter 16 on page 349 (or an 
equivalent report) should be included for the core.
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2 Theory of Operation

The Open Core Protocol interface addresses communications between the 
functional units (or IP cores) that comprise a system on a chip. The OCP 
provides independence from bus protocols without having to sacrifice high-
performance access to on-chip interconnects. By designing to the interface 
boundary defined by the OCP, you can develop reusable IP cores without 
regard for the ultimate target system.

Given the wide range of IP core functionality, performance and interface 
requirements, a fixed definition interface protocol cannot address the full 
spectrum of requirements. The need to support verification and test 
requirements adds an even higher level of complexity to the interface. To 
address this spectrum of interface definitions, the OCP defines a highly 
configurable interface. The OCP’s structured methodology includes all of the 
signals required to describe an IP cores’ communications including data flow, 
control, and verification and test signals.

This chapter provides an overview of the concepts behind the Open Core 
Protocol, introduces the terminology used to describe the interface, and offers 
a high-level view of the protocol. 
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Point-to-Point Synchronous Interface
To simplify timing analysis, physical design, and general comprehension, the 
OCP is composed of uni-directional signals driven with respect to, and 
sampled by, the rising edge of the OCP clock. The OCP is fully synchronous 
(with the exception of reset) and contains no multi-cycle timing paths with 
respect to the OCP clock. All signals other than the clock signal are strictly 
point-to-point. 

Bus Independence
A core utilizing the OCP can be interfaced to any bus. A test of any bus-
independent interface is to connect a master to a slave without an intervening 
on-chip bus. This test not only drives the specification towards a fully 
symmetric interface but helps to clarify other issues. For instance, device 
selection techniques vary greatly among on-chip buses. Some use address 
decoders, while generate independent device-select signals (analogous to a 
board-level chip select). This complexity should be hidden from IP cores, 
especially since in the directly-connected case there is no decode/selection 
logic. OCP-compliant slaves receive device selection information integrated 
into the basic command field.

Arbitration schemes vary widely. Since there is virtually no arbitration in the 
directly-connected case, arbitration for any shared resource is the sole 
responsibility of the logic on the bus side of the OCP. This permits OCP-
compliant masters to pass a command field across the OCP that the bus 
interface logic converts into an arbitration request sequence.

Commands
There are two basic commands—Read and Write—and five command 
extensions: WriteNonPost, Broadcast, ReadExclusive, ReadLinked, and 
WriteConditional. The WriteNonPost and Broadcast commands have 
semantics that are similar to the Write command. A WriteNonPost command 
explicitly instructs the slave not to post a write. For the Broadcast command, 
the master indicates that it is attempting to write to several or all remote 
target devices that are connected on the other side of the slave. As such, 
Broadcast is typically useful only for slaves that are in turn a master on 
another communication medium (such as an attached bus).

The other command extensions—ReadExclusive, ReadLinked and WriteCon-
ditional—are used for synchronization between system initiators. 
ReadExclusive is paired with Write or WriteNonPost, and has blocking 
semantics. ReadLinked, used in conjunction with WriteConditional has non-
blocking (lazy) semantics. These synchronization primitives correspond to 
those available natively in the instruction sets of different processors.
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Address/Data
Wide widths, characteristic of shared on-chip address and data buses, make 
tuning the OCP address and data widths essential for area-efficient 
implementation. Only those address bits that are significant to the IP core 
should cross the OCP to the slave. The OCP address space is flat and 
composed of 8-bit bytes (octets).

To increase transfer efficiencies, many IP cores have data field widths signifi-
cantly greater than an octet. The OCP supports a configurable data width to 
allow multiple bytes to be transferred simultaneously. The OCP refers to the 
chosen data field width as the word size of the OCP. The term word is used in 
the traditional computer system context; that is, a word is the natural 
transfer unit of the block. OCP supports word sizes of power-of-two and non-
power-of-two (as would be needed for a 12-bit DSP core). The OCP address is 
a byte address that is word aligned.

Transfers of less than a full word of data are supported by providing byte 
enable information that specifies which octets are to be transferred. Byte 
enables are linked to specific data bits (byte lanes). Byte lanes are not 
associated with particular byte addresses. This makes the OCP endian-
neutral, able to support both big and little-endian cores.

Pipelining
The OCP allows pipelining of transfers. To support this feature, the return of 
read data and the provision of write data may be delayed after the presen-
tation of the associated request.

Response
The OCP separates requests from responses. A slave can accept a command 
request from a master on one cycle and respond in a later cycle. The division 
of request from response permits pipelining. The OCP provides the option of 
having responses for Write commands, or completing them immediately 
without an explicit response.

Burst
Burst support is essential for many IP cores, to provide high transfer 
efficiency. The extended OCP supports annotation of transfers with burst 
information. Bursts can either include addressing information for each 
successive command (which simplifies the requirements for address 
sequencing/burst count processing in the slave), or include addressing 
information only once for the entire burst.

In-Band Information
Cores can pass core-specific information in-band in company with the other 
information being exchanged. In-band extensions exist for requests and 
responses, as well as read and write data. A typical use of in-band extensions 
is to pass cacheable information or data parity.



10 Open Core Protocol Specification

OCP-IP Confidential

Tags
Tags are available in the OCP interface to control the ordering of responses. 
Without tags, a slave must return responses in the order that the requests 
were issued by the master. Similarly, writes must be committed in order. With 
the addition of tags, responses can be returned out-of-order, and write data 
can be committed out-of-order with respect to requests, as long as the 
transactions target different addresses. (Refer to Section 4.7.1 on page 57 for 
the case when requests from different tags of a thread target overlapping 
addresses.) The tag links the response back to the original request. 

Tagging is useful when a master core, such as a processor, can handle out-
of-order return, because it allows a slave core such as a DRAM controller to 
service requests in the order that is most convenient, rather than the order in 
which requests were sent by the master.

Out-of-order request and response delivery can also be enabled using 
multiple threads. The major differences between threads and tags are that 
threads can have independent flow control for each thread and have no 
ordering rules for transactions on different threads. Tags, on the other hand, 
exist within a single thread and are restricted to shared flow control. Tagged 
transactions to overlapping addresses have to be committed in order but their 
responses may be reordered if the transactions have different tag IDs (see 
Section 4.7.1 on page 57). Implementing independent flow control requires 
independent buffering for each thread, leading to more complex implemen-
tations. Tags enable lower overhead implementations for out-of-order return 
of responses at the expense of some concurrency.

Threads and Connections
To support concurrency and out-of-order processing of transfers, the 
extended OCP supports the notion of multiple threads. Transactions among 
threads have no ordering requirements, and independent flow control from 
one another. Transfers within a single thread must remain ordered unless 
tags are in use. The concepts of threads and tags are hierarchical: each thread 
has its own flow control, and ordering within a thread either follows the 
request order strictly, or is governed by tags.

While the notion of a thread is a local concept between a master and a slave 
communicating over an OCP, it is possible to globally pass thread information 
from initiator to target using connection identifiers. Connection information 
helps to identify the initiator and determine priorities or access permissions 
at the target.

Interrupts, Errors, and other Sideband Signaling
While moving data between devices is a central requirement of on-chip 
communication systems, other types of communications are also important. 
Different types of control signaling are required to coordinate data transfers 
(for instance, high-level flow control) or signal system events (such as 
interrupts). Dedicated point-to-point data communication is sometimes 
required. Many devices also require the ability to notify the system of errors 
that may be unrelated to address/data transfers.
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The OCP refers to all such communication as sideband (or out-of-band) 
signaling, since it is not directly related to the protocol state machines of the 
dataflow portion of the OCP. The OCP provides support for such signals 
through sideband signaling extensions.

Errors are reported across the OCP using two mechanisms. The error 
response code in the response field describes errors resulting from OCP 
transfers that provide responses. Write-type commands without responses 
cannot use the in-band reporting mechanism. The second method for 
reporting errors across the OCP uses out-of band error fields. These signals 
report more generic sideband errors, including those associated with posted 
write commands.

Two additional groups of sideband signals—the reset signal group and the 
connection signal group—are used to control the state of the interface itself. 
The reset signals enable the master and/or slave to immediately transition 
the interface from normal operation into a reset state, independently from any 
activity on the dataflow signals. The connection signals allow the master and 
slave to cooperate to cleanly achieve quiescence before putting the interface 
into a disconnected state where none of the other in-band nor sideband 
signals have meaning, except for the OCP clock.





OCP-IP Confidential

3 Signals and Encoding

OCP interface signals are grouped into dataflow, sideband, and test signals. 
The dataflow signals are divided into five groups: basic signals, simple 
extensions, burst extensions, tag extensions, and thread extensions. A small 
set of the signals from the basic dataflow group are required in all OCP config-
urations. The remaining dataflow signals are optional; optional signals can be 
configured as needed to support additional core communication 
requirements. All sideband and test signals are optional.

The OCP is a synchronous interface with a single clock signal. All OCP 
signals, other than the clock and reset, are driven with respect to, and 
sampled by, the rising edge of the OCP clock. Except for clock, OCP signals 
are strictly point-to-point and uni-directional. The complete set of OCP 
signals are shown in Figure 4 on page 36.

3.1 Dataflow Signals
The dataflow signals consist of a small set of required signals and a number 
of optional signals that can be configured to support additional core 
communication requirements. The dataflow signals are grouped into five 
groups: basic signals, simple extensions (options such as byte enables and in-
band information), burst extensions (support for bursting), tag extensions (re-
ordering support), and thread extensions (multi-threading support).

The naming conventions for dataflow signals use the prefix M for signals 
driven by the OCP master and S for signals driven by the OCP slave.

3.1.1 Basic Signals
Table 1 lists the basic OCP signals. Only Clk and MCmd are required. The 
remaining OCP signals are optional.
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Table 1 Basic OCP Signals

Clk
Input clock signal for the OCP clock. The rising edge of the OCP clock is 
defined as a rising edge of Clk that samples the asserted EnableClk. 
Falling edges of Clk and any rising edge of Clk that does not sample 
EnableClk asserted do not constitute rising edges of the OCP clock.

EnableClk
EnableClk indicates which rising edges of Clk are the rising edges of the 
OCP clock, that is. which rising edges of Clk should sample and advance 
interface state. Use the enableclk parameter to configure this signal. 
EnableClk is driven by a third entity and serves as an input to both the 
master and the slave.

When enableclk is set to 0 (the default), the EnableClk signal is not 
present and the OCP behaves as if EnableClk is constantly asserted. In 
that case all rising edges of Clk are rising edges of the OCP clock.

MAddr
The Transfer address, MAddr, specifies the slave-dependent address of 
the resource targeted by the current transfer. To configure this field into 
the OCP, use the addr parameter. To configure the width of this field, use 
the addr_wdth parameter.

MAddr is a byte address that must be aligned to the OCP word size 
(data_wdth). The parameter data_wdth defines a minimum addr_wdth 
value that is based on the data bus byte width, and is defined as:

min_addr_wdth = max(1, floor(log2(data_wdth)) - 2)

Name Width Driver Function

Clk 1 varies Clock input

EnableClk 1 varies Enable OCP clock

MAddr configurable master Transfer address

MCmd 3 master Transfer command

MData configurable master Write data

MDataValid 1 master Write data valid

MRespAccept 1 master Master accepts 
response

SCmdAccept 1 slave Slave accepts transfer

SData configurable slave Read data

SDataAccept 1 slave Slave accepts write 
data

SResp 2 slave Transfer response
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If the OCP word size is larger than a single byte, the aggregate is 
addressed at the OCP word-aligned address and the lowest order address 
bits are hardwired to 0. If the OCP word size is not a power-of-two, the 
address is the same as it would be for an OCP interface with a word size 
equal to the next larger power-of-two.

MCmd
Transfer command. This signal indicates the type of OCP transfer the 
master is requesting. Each non-idle command is either a read or write 
type request, depending on the direction of data flow. Commands are 
encoded as follows.

Table 2 Command Encoding 

The set of allowable commands can be limited using the write_enable, 
read_enable, readex_enable, writenonpost_enable, rdlwrc_enable, 
and broadcast_enable parameters as described in Section 4.9.1 on 
page 59.

MData
Write data. This field carries the write data from the master to the slave. 
The field is configured into the OCP using the mdata parameter and its 
width is configured using the data_wdth parameter. The width is not 
restricted to multiples of 8.

MDataValid
Write data valid. When set to 1, this bit indicates that the data on the 
MData field is valid. Use the datahandshake parameter to configure this 
field into the OCP. 

MRespAccept
Master response accept. The master indicates that it accepts the current 
response from the slave with a value of 1 on the MRespAccept signal. Use 
the respaccept parameter to enable this field into the OCP. 

SCmdAccept
Slave accepts transfer. A value of 1 on the SCmdAccept signal indicates 
that the slave accepts the master’s transfer request. To configure this field 
into the OCP, use the cmdaccept parameter.

MCmd[2:0] Command Mnemonic Request Type

0 0 0 Idle IDLE (none)

0 0 1 Write WR write

0 1 0 Read RD read

0 1 1 ReadEx RDEX read

1 0 0 ReadLinked RDL read

1 0 1 WriteNonPost WRNP write

1 1 0 WriteConditional WRC write

1 1 1 Broadcast BCST write
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SData
This field carries the requested read data from the slave to the master. The 
field is configured into the OCP using the sdata parameter and its width 
is configured using the data_wdth parameter. The width is not restricted 
to multiples of eight.

SDataAccept
Slave accepts write data. The slave indicates that it accepts pipelined write 
data from the master with a value of 1 on SDataAccept. This signal is 
meaningful only when datahandshake is in use. Use the dataaccept 
parameter to configure this field into the OCP.

SResp
Response field from the slave to a transfer request from the master. The 
field is configured into the OCP using the resp parameter. Response 
encoding is as follows.

Table 3 Response Encoding 

The use of responses is explained in Section 4.4 on page 49. FAIL is a non-
error response that indicates a successful transfer and is reserved for a 
response to a WriteConditional command for which the write is not 
performed, as described in Section 4.4 on page 49.

3.1.2 Simple Extensions
Table 4 lists the simple OCP extensions. The extensions add to the OCP 
interface address spaces, byte enables, and additional core-specific 
information for each phase.

Table 4 Simple OCP Extensions 

SResp[1:0] Response Mnemonic

0 0 No response NULL

0 1 Data valid / accept DVA

1 0 Request failed FAIL

1 1 Response error ERR

Name Width Driver Function

MAddrSpace configurable master Address space

MByteEn configurable master Request phase byte enables

MDataByteEn configurable master Datahandshake phase write byte 
enables

MDataInfo configurable master Additional information transferred 
with the write data
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MAddrSpace
This field specifies the address space and is an extension of the MAddr 
field that is used to indicate the address region of a transfer. Examples of 
address regions are the register space versus the regular memory space of 
a slave or the user versus supervisor space for a master. 

The MAddrSpace field is configured into the OCP using the addrspace 
parameter. The width of the MAddrSpace field is configured with the 
addrspace_wdth parameter. While the encoding of the MAddrSpace field 
is core-specific, it is recommended that slaves use 0 to indicate the 
internal register space.

MByteEn
Byte enables. This field indicates which bytes within the OCP word are 
part of the current transfer. See Section 4.4.1 on page 50 for more detail 
on request and datahandshake phase byte enables and their relationship. 
There is one bit in MByteEn for each byte in the OCP word. Setting 
MByteEn[n] to 1 indicates that the byte associated with data wires [(8n + 
7):8n] should be transferred. The MByteEn field is configured into the OCP 
using the byteen parameter and is allowed only if data_wdth is a multiple 
of 8 (that is, the data width is an integer number of bytes).

The allowable patterns on MByteEn can be limited using the 
force_aligned parameter as described on page 60.

MDataByteEn
Write byte enables. This field indicates which bytes within the OCP word 
are part of the current write transfer. See Section 4.4.1 on page 50 for 
more detail on request and datahandshake phase byte enables and their 
relationship. There is one bit in MDataByteEn for each byte in the OCP 
word. Setting MDataByteEn[n] to 1 indicates that the byte associated with 
MData wires [(8n + 7):8n] should be transferred. The MDataByteEn field 
is configured into the OCP using the mdatabyteen parameter. Setting 
mdatabyteen to 1 is only allowed if datahandshake is 1, and only if 
data_wdth is a multiple of 8 (that is, the data width is an integer number 
of bytes). 

The allowable patterns on MDataByteEn can be limited using the 
force_aligned parameter as described on page 60.

MDataInfo
Extra information sent with the write data. The master uses this field to 
send additional information sequenced with the write data. The encoding 
of the information is core-specific. To be interoperable with masters that 

MReqInfo configurable master Additional information transferred 
with the request

SDataInfo configurable slave Additional information transferred 
with the read data

SRespInfo configurable slave Additional information transferred 
with the response

Name Width Driver Function
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do not provide this signal, design slaves to be operable in a normal mode 
when the signal is tied off to its default tie-off value as specified in 
Table 16 on page 31. Sample uses are data byte parity or error correction 
code values. Use the mdatainfo parameter to configure this field into the 
OCP, and the mdatainfo_wdth parameter to configure its width.

This field is divided in two: the low-order bits are associated with each 
data byte, while the high-order bits are associated with the entire write 
data transfer. The number of bits to associate with each data byte is 
configured using the mdatainfobyte_wdth parameter. The low-order 
mdatainfobyte_wdth bits of MDataInfo are associated with the 
MData[7:0] byte, and so on.

Figure 2 MDataInfo Field 

MReqInfo
Extra information sent with the request. The master uses this field to send 
additional information sequenced with the request. The encoding of the 
information is core-specific. To be interoperable with masters that do not 
provide this signal, design slaves to be operable in a normal mode when 
the signal is tied off to its default tie-off value as specified in Table 16 on 
page 31. Sample uses are cacheable storage attributes or other access 
mode information. Use the reqinfo parameter to configure this field into 
the OCP, and the reqinfo_wdth parameter to configure its width.

SDataInfo
Extra information sent with the read data. The slave uses this field to send 
additional information sequenced with the read data. The encoding of the 
information is core-specific. To be interoperable with slaves that do not 
provide this signal, design masters to be operable in a normal mode when 
the signal is tied off to its default tie-off value as specified in Table 16 on 
page 31. Sample uses are data byte parity or error correction code values. 
Use the sdatainfo parameter to configure this field into the OCP, and the 
sdatainfo_wdth parameter to configure its width.

This field is divided into two pieces: the low-order bits are associated with 
each data byte, while the high-order bits are associated with the entire 
read data transfer. The number of bits to associate with each data byte is 

...

mdatainfo_wdth

mdatainfobyte_wdth

Associated with entire
write data transfer

Associated with
MData [15:8]

Associated with
MData [7:0]

Associated with
MData [(8n+7):8n]
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configured using the sdatainfobyte_wdth parameter. The low-order 
sdatainfobyte_wdth bits of SDataInfo are associated with the 
SData[7:0] byte, and so on.

Figure 3 SDataInfo Field 

SRespInfo
Extra information sent with the response. The slave uses this field to send 
additional information sequenced with the response. The encoding of the 
information is core-specific. To be interoperable with slaves that do not 
provide this signal, design masters to be operable in a normal mode when 
the signal is tied off to its default tie-off value as specified in Table 16 on 
page 31. Sample uses are status or error information such as FIFO full or 
empty indications. Use the respinfo parameter to configure this field into 
the OCP, and the respinfo_wdth parameter to configure its width.

3.1.3 Burst Extensions
Table 5 lists the OCP burst extensions. The burst extensions allow the 
grouping of multiple transfers that have a defined address relationship. The 
burst extensions are enabled only when MBurstLength is included in the 
interface, or tied off to a value other than one.

Table 5 OCP Burst Extensions 

Name Width Driver Function

MAtomicLength configurable master Length of atomic burst

MBlockHeight configurable master Height of 2D block burst

MBlockStride configurable master Address offset between 2D block 
rows

MBurstLength configurable master Burst length

MBurstPrecise 1 master Given burst length is precise

MBurstSeq 3 master Address sequence of burst

...

sdatainfo_wdth

sdatainfobyte_wdth

Associated with entire
read data transfer

Associated with
SData [15:8]

Associated with
SData [7:0]

Associated with
SData [(8n+7):8n]
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MAtomicLength
This field indicates the minimum number of transfers within a burst that 
are to be kept together as an atomic unit when interleaving requests from 
different initiators onto a single thread at the target. To configure this field 
into the OCP, use the atomiclength parameter. To configure the width of 
this field, use the atomiclength_wdth parameter. A binary encoding of 
the number of transfers is used. A 0 value is not legal for MAtomicLength.

MBlockHeight
This field indicates the number of rows of data to be transferred in a two-
dimensional block burst (the height of the block of data). A binary 
encoding of the height is used. To configure this field into the OCP, use 
the blockheight parameter. To configure the width of this field, use the 
blockheight_wdth parameter.

MBlockStride
This field indicates the address difference between the first data word in 
each consecutive row in a two-dimensional block burst. The stride value 
is a binary encoded byte address offset and must be aligned to the OCP 
word size (data_wdth). To configure this field into the OCP, use the 
blockstride parameter. To configure the width of this field, use the 
blockstride_wdth parameter.

MBurstLength
For a BLCK burst (see Table 6), this field indicates the number of transfers 
for a row of the burst and stays constant throughout the burst. A BLCK 
burst is always precise. For a precise non-BLCK burst, this field indicates 
the number of transfers for the entire burst and stays constant 
throughout the burst. For imprecise bursts, the value indicates the best 
guess of the number of transfers remaining (including the current 
request), and may change with every request. To configure this field into 
the OCP, use the burstlength parameter. To configure the width of this 
field, use the burstlength_wdth parameter. A binary encoding of the 
number of transfers is used. 0 is not a legal encoding for MBurstLength.

MBurstPrecise
This field indicates whether the precise length of a burst is known at the 
start of the burst or not. When set to 1, MBurstLength indicates the 
precise length of the burst during the first request of the burst. To 

MBurstSingleReq 1 master Burst uses single request/ multiple 
data protocol

MDataLast 1 master Last write data in burst

MDataRowLast 1 master Last write data in row

MReqLast 1 master Last request in burst

MReqRowLast 1 master Last request in row

SRespLast 1 slave Last response in burst

SRespRowLast 1 slave Last response in row

Name Width Driver Function
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configure this field into the OCP, use the burstprecise parameter. If set 
to 0, MBurstLength for each request is a hint of the remaining burst 
length.

MBurstSeq
This field indicates the sequence of addresses for requests in a burst. To 
configure this field into the OCP, use the burstseq parameter. The 
encodings of the MBurstSeq field are shown in Table 6. The definition of 
the address sequences is described in Section 4.6.1 on page 53.

Table 6 MBurstSeq Encoding 

MBurstSingleReq
The burst has a single request with multiple data transfers. This field 
indicates whether the burst has a request per data transfer, or a single 
request for all data transfers. To configure this field into the OCP, use the 
burstsinglereq parameter. When this field is set to 0, there is a one-to-
one association of requests to data transfers; when set to 1, there is a 
single request for all data transfers in the burst.

MDataLast
Last write data in a burst. This field indicates whether the current write 
data transfer is the last in a burst. To configure this field into the OCP, 
use the datalast parameter with datahandshake set to 1. When this 
field is set to 0, more write data transfers are coming for the burst; when 
set to 1, the current write data transfer is the last in the burst.

MDataRowLast
Last write data in a row. This field identifies the last transfer in a row. The 
last data transfer in a burst is always considered the last in a row, and 
BLCK burst sequences also have a last in a row transfer after every 
MBurstLength transfers. To configure this field into the OCP, use the 
datarowlast parameter. If this field is set to 0, additional write data 
transfers can be expected for the current row; when set to 1, the current 
write data transfer is the last in the row.

MBurstSeq[2:0] Burst Sequence Mnemonic

0 0 0 Incrementing INCR

0 0 1 Custom (packed) DFLT1

0 1 0 Wrapping WRAP

0 1 1 Custom (not packed) DFLT2

1 0 0 Exclusive OR XOR

1 0 1 Streaming STRM

1 1 0 Unknown UNKN

1 1 1 2-dimensional Block BLCK
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MReqLast
Last request in a burst. This field indicates whether the current request 
is the last in this burst. To configure this field into the OCP, use the 
reqlast parameter. When this field is set to 0, more requests are coming 
for this burst; when set to 1, the current request is the last in the burst.

MReqRowLast
Last request in a row. This field identifies the last request in a row. The 
last request in a burst is always considered the last in a row, and BLCK 
burst sequences also have a last-in-a-row request after every 
MBurstLength requests. To configure this field into the OCP, use the 
reqrowlast parameter. When this field is set to 0, more requests can be 
expected for the current row; when set to 1, the current request is the last 
in the row.

SRespLast
Last response in a burst. This field indicates whether the current 
response is the last in this burst. To configure this field into the OCP, use 
the resplast parameter. When the field is set to 0, more responses are 
coming for this burst; when set to 1, the current response is the last in 
the burst.

SRespRowLast
Last response in a row. This field identifies the last response in a row. The 
last response in a burst is always considered the last in a row, and BLCK 
burst sequences also have a last in a row response after every 
MBurstLength responses. Use the resprowlast parameter to configure 
this field. When this field is set to 0, more can be expected for the current 
row; when set to 1, the current response is the last in the row.

3.1.4 Tag Extensions
Table 7 lists OCP tag extensions, which add support for tagging OCP transfers 
to enable out-of-order responses and write data commit. The binary encoded 
*TagID signals must each carry a value in the range 0 to (#tags-1) where 
#tags is the value specified by the tags parameter. 

Table 7 OCP Tag Extensions 

Name Width Driver Function

MDataTagID configurable master Ordering tag for write data

MTagID configurable master Ordering tag for request

MTagInOrder 1 master Do not reorder this request

STagID configurable slave Ordering tag for response

STagInOrder 1 slave This response is not reordered
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MDataTagID
Write data tag. This variable-width field provides the tag associated with 
the current write data. The field carries the binary-encoded tag value. 
MDataTagID is required if tags is greater than 1 and the datahandshake 
parameter is 1. The field width is . 

MTagID
Request tag. This variable-width field provides the tag associated with the 
current transfer request. If tags is greater than 1, this field is enabled. 
The field width is .

MTagInOrder
Assertion of this single-bit field indicates that the current request should 
not be reordered with respect to other requests that had this field 
asserted. This field is enabled by the taginorder parameter. Both 
MTagInOrder and STagInOrder are present in the interface, or else neither 
may be present.

STagID
Response tag. This variable-width field provides the tag associated with 
the current transfer response. This field is enabled if tags is greater than 
1, and the resp parameter is set to 1. The field width is .

STagInOrder
Assertion of this single-bit field indicates that the current response is 
associated with an in-order request and was not reordered with respect to 
other requests that had MTagInOrder asserted. This field is enabled if 
both the taginorder and the resp parameters are set to 1.

3.1.5 Thread Extensions
Table 8 shows a list of OCP thread extensions that add support for multi-
threading of the OCP interface. Thread numbering begins at 0 and is 
sequential. The binary encoded *ThreadID must carry a value less than the 
threads parameter.

Table 8 OCP Thread Extensions

Name Width Driver Function

MConnID configurable master Connection identifier

MDataThreadID configurable master Write data thread identifier

MThreadBusy configurable master Master thread busy 

MThreadID configurable master Request thread identifier

SDataThreadBusy configurable slave Slave write data thread busy

SThreadBusy configurable slave Slave request thread busy 

SThreadID configurable slave Response thread identifier

log2 tags( )

log2 tags( )

log2 tags( )



24 Open Core Protocol Specification

OCP-IP Confidential

MConnID
Connection identifier. This variable-width field provides the binary 
encoded connection identifier associated with the current transfer 
request. To configure this field use the connid parameter. The field width 
is configured with the connid_wdth parameter. 

MDataThreadID
Write data thread identifier. This variable-width field provides the thread 
identifier associated with the current write data. The field carries the 
binary-encoded value of the thread identifier. 

MDataThreadID is required if threads is greater than 1 and the 
datahandshake parameter is set to 1. MDataThreadID has the same 
width as MThreadID and SThreadID. 

MThreadBusy
Master thread busy. The master notifies the slave that it cannot accept 
any responses associated with certain threads. The MThreadBusy field is 
a vector (one bit per thread). A value of 1 on any given bit indicates that 
the thread associated with that bit is busy. Bit 0 corresponds to thread 0, 
and so on. The width of the field is set using the threads parameter. It is 
legal to enable a one-bit MThreadBusy interface for a single-threaded 
OCP. To configure this field, use the mthreadbusy parameter. See 
Section 4.3.2.4 on page 44 for a description of the flow control options 
associated with MThreadBusy.

MThreadID
Request thread identifier. This variable-width field provides the thread 
identifier associated with the current transfer request. If threads is 
greater than 1, this field is enabled. The field width is the next whole 
integer of . 

SDataThreadBusy
Slave write data thread busy. The slave notifies the master that it cannot 
accept any new datahandshake phases associated with certain threads. 
The SDataThreadBusy field is a vector, one bit per thread. A value of 1 on 
any given bit indicates that the thread associated with that bit is busy. Bit 
0 corresponds to thread 0, and so on. 

The width of the field is set using the threads parameter. It is legal to 
enable a one-bit SDataThreadBusy interface for a single-threaded OCP. 
To configure this field, use the sdatathreadbusy parameter. See 
Section 4.3.2.4 on page 44 for a description of the flow control options 
associated with SDataThreadBusy.

SThreadID
Response thread identifier. This variable-width field provides the thread 
identifier associated with the current transfer response. This field is 
enabled if threads is greater than 1 and the resp parameter is set to 1. 
The field width is .

SThreadBusy
Slave thread busy. The slave notifies the master that it cannot accept any 
new requests associated with certain threads. The SThreadBusy field is a 
vector, one bit per thread. A value of 1 on any given bit indicates that the 

log2 threads( )

log2 threads( )
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thread associated with that bit is busy. Bit 0 corresponds to thread 0, and 
so on. The width of the field is set using the threads parameter. It is legal 
to enable a one-bit SThreadBusy interface for a single-threaded OCP. To 
configure this field, use the sthreadbusy parameter. See Section 4.3.2.4 
on page 44 for a description of the flow control options associated with 
SThreadBusy.

3.2 Sideband Signals
Sideband signals are OCP signals that are not part of the dataflow phases, 
and so can change asynchronously with the request/response flow but are 
generally synchronous to the rising edge of the OCP clock. Sideband signals 
convey control information such as reset, interrupt, error, and core-specific 
flags. They also exchange control and status information between a core and 
an attached system. All sideband signals are optional except for reset signals. 
Either the MReset_n or the SReset_n signal must be present.

Table 9 lists the OCP sideband extensions.

Table 9 Sideband OCP Signals

Name Width Driver Function

MConnect 2 master Master connection state

MError 1 master Master Error

MFlag configurable master Master flags

MReset_n 1 master Master reset

SConnect 1 slave Slave connection vote

SError 1 slave Slave error

SFlag configurable slave Slave flags

SInterrupt 1 slave Slave interrupt

SReset_n 1 slave Slave reset

SWait 1 slave Slave delays connection change

ConnectCap 1 tie-off Connection capability tie-off

Control configurable system Core control information

ControlBusy 1 core Hold control information

ControlWr 1 system Control information has been written

Status configurable core Core status information 

StatusBusy 1 core Status information is not consistent

StatusRd 1 system Status information has been read
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3.2.1 Connection, Reset, Interrupt, Error, and Core-Specific 
Flag Signals
MConnect

Master connection state. This signal indicates the current connection 
state of the interface. The master changes this state based upon input 
from the slave SConnect signal and the master’s desired connection state, 
but state transitions must respect the slave SWait signal. Connection 
states are encoded as shown in Table 10.

Table 10 Connection State Encoding

The M_WAIT state is transient. When the master is changing the 
connection state between any two of the other states, it must enter 
M_WAIT if the slave is asserting SWait (S_WAIT). The connection status of 
the interface does not change while in M_WAIT. The master can only 
transition to a non-transient connection state once it samples SWait 
negated (S_OK). The MConnect signal is configured by the connection 
parameter and must maintain the value M_CON if the ConnectCap tie-off 
is 0. If ConnectCap is 1, the reset value of MConnect is M_OFF.

SConnect
Slave connection vote. This signal indicates the slave’s willingness to have 
the master in the M_CON state. The slave’s vote is encoded as follows.

Table 11 Slave Connection Vote Encoding

The SConnect signal is configured by the connection parameter and 
must maintain the value S_CON if the ConnectCap tie-off is 0. If 
ConnectCap is 1, the reset value of SConnect is S_DISC.

SWait
Slave delays connection change. This signal allows the slave to force the 
master to transition through the M_WAIT state before changing the 
connection state to M_OFF, M_DISC, or M_CON. This signal is encoded as 
follows:

MConnect[1:0] State Mnemonic Connected?

0 0 Disconnected by master M_OFF No

0 1 Waiting to transition M_WAIT Matches prior state

1 0 Disconnected by slave M_DISC No

1 1 Connected M_CON Yes

SConnect Connection Vote Mnemonic

0 Vote to disconnect S_DISC

1 Vote to connect S_CON
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Table 12 Slave Connection Change Delay Encoding

The SWait signal is configured by the connection parameter and must 
maintain the value S_OK if the ConnectCap tie-off is 0. If ConnectCap is 
1, the reset value of SWait is S_OK.

ConnectCap
Connection capability tie-off. This signal is tied off at component 
instantiation to indicate whether the interface supports the connection 
state machine. Tie ConnectCap to logic 0 on a master or slave if the 
connected slave or master, respectively, does not implement the 
connection protocol. In such case, the interface is always connected (i.e. 
it behaves as if in the M_CON state). If ConnectCap is tied to logic 1, then 
both master and slave must support the connection protocol. The 
ConnectCap tie-off signal is configured by the connection parameter and 
has no default value.

MError
Master error. When the MError signal is set to 1, the master notifies the 
slave of an error condition. The MError field is configured with the merror 
parameter.

MFlag
Master flags. This variable-width set of signals allows the master to 
communicate out-of-band information to the slave. Encoding is 
completely core-specific. 

To configure this field into the OCP, use the mflag parameter. To 
configure the width of this field, use the mflag_wdth parameter. 

MReset_n
Master reset. The MReset_n signal is active low, as shown in Table 13. The 
MReset_n field is enabled by the mreset parameter.

Table 13 MReset Signal

SError
Slave error. With a value of 1 on the SError signal the slave indicates an 
error condition to the master. The SError field is configured with the 
serror parameter.

SWait Function Mnemonic

0 Allow connection status change S_OK

1 Delay connection status change S_WAIT

MReset_n Function

0 Reset Active

1 Reset Inactive
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SFlag
Slave flags. This variable-width set of signals allows the slave to 
communicate out-of-band information to the master. Encoding is 
completely core-specific. 

To configure this field into the OCP, use the sflag parameter. To 
configure the width of this field, use the sflag_wdth parameter. 

SInterrupt
Slave interrupt. The slave may generate an interrupt with a value of 1 on 
the SInterrupt signal. The SInterrupt field is configured with the 
interrupt parameter.

SReset_n
Slave reset. The SReset_n signal is active low, as shown in Table 14. The 
SReset_n field is enabled by the sreset parameter.

Table 14 SReset Signal

3.2.2 Control and Status Signals
The remaining sideband signals are designed for the exchange of control and 
status information between an IP core and the rest of the system. They make 
sense only in this environment, regardless of whether the IP core acts as a 
master or slave across the OCP interface.

Control
Core control information. This variable-width field allows the system to 
drive control information into the IP core. Encoding is core-specific. 

Use the control parameter to configure this field into the OCP. Use the 
control_wdth parameter to configure the width of this field.

ControlBusy
Core control busy. When this signal is set to 1, the core tells the system 
to hold the control field value constant. Use the controlbusy parameter 
to configure this field into the OCP.

ControlWr
Core control event. This signal is set to 1 by the system to indicate that 
control information is written by the system. Use the controlwr 
parameter to configure this field into the OCP.

Status
Core status information. This variable-width field allows the IP core to 
report status information to the system. Encoding is core-specific. 

Use the status parameter to configure this field into the OCP. Use the 
status_wdth parameter to configure the width of this field.

SReset_n Function

0 Reset Active

1 Reset Inactive
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StatusBusy
Core status busy. When this signal is set to 1, the core tells the system to 
disregard the status field because it may be inconsistent. Use the 
statusbusy parameter to configure this field into the OCP.

StatusRd
Core status event. This signal is set to 1 by the system to indicate that 
status information is read by the system. To configure this field into the 
OCP, use the statusrd parameter.

3.3 Test Signals
The test signals add support for scan, clock control, and IEEE 1149.1 (JTAG). 
All test signals are optional.

Table 15 Test OCP Signals 

3.3.1 Scan Interface
The Scanctrl, Scanin, and Scanout signals together form a scan interface into 
a given IP core.

Scanctrl
Scan mode control signals. Use this variable width field to control the scan 
mode of the core. Set scanport to 1 to configure this field into the OCP 
interface. Use the scanctrl_wdth parameter to configure the width of 
this field.

Scanin
Scan data in for a core’s scan chains. Use the scanport parameter, to 
configure this field into the OCP interface and scanport_wdth to control 
its width. 

Name Width Driver Function

Scanctrl configurable system Scan control signals

Scanin configurable system Scan data in

Scanout configurable core Scan data out

ClkByp 1 system Enable clock bypass mode

TestClk 1 system Test clock

TCK 1 system Test clock

TDI 1 system Test data in

TDO 1 core Test data out

TMS 1 system Test mode select

TRST_N 1 system Test reset
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Scanout
Scan data out from the core’s scan chains. Use the scanport parameter 
to configure this field into the OCP interface and scanport_wdth to 
control its width.

3.3.2 Clock Control Interface
The ClkByp and TestClk signals together form the clock control interface into 
a given IP core. This interface is used to control the core’s clocks during scan 
operation.

ClkByp
Enable clock bypass signal. When set to 1, this signal instructs the core 
to bypass the external clock source and use TestClk instead. Use the 
clkctrl_enable parameter to configure this signal into the OCP 
interface.

TestClk
A gated test clock. This clock becomes the source clock when ClkByp is 
asserted during scan operations. Use the clkctrl_enable parameter to 
configure this signal into the OCP interface.

3.3.3 Debug and Test Interface
The TCK, TDI, TDO, TMS, and TRST_N signals together form an IEEE 1149 
debug and test interface for the OCP.

TCK
Test clock as defined by IEEE 1149.1. Use the jtag_enable parameter to 
add this signal to the OCP interface.

TDI
Test data in as defined by IEEE 1149.1. Use the jtag_enable parameter 
to add this signal to the OCP interface.

TDO
Test data out as defined by IEEE 1149.1. Use the jtag_enable parameter 
to add this signal to the OCP interface.

TMS
Test mode select as defined by IEEE 1149.1. Use the jtag_enable 
parameter to add this signal to the OCP interface.

TRST_N
Test logic reset signal. This is an asynchronous active low reset as defined 
by IEEE 1149.1. Use the jtagtrst_enable parameter to add this signal 
to the OCP interface.
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3.4 Signal Configuration
The set of signals making up the OCP interface is configurable to match the 
characteristics of the IP core. Throughout this chapter, configuration 
parameters were mentioned that control the existence and width of various 
OCP fields. Table 16 summarizes the configuration parameters, sorted by 
interface signal group. For each signal, the table also specifies the default 
constant tie-off, which is the inferred value of the signal if it is not configured 
into the OCP interface and if no other constant tie-off is specified.

For the ControlBusy, EnableClk, MRespAccept, SCmdAccept, SDataAccept, 
MThreadBusy, SThreadBusy, SDataThreadBusy, MReset_n, SReset_n, 
SInterrupt, and StatusBusy signals, the default tie-off is also the only legal 
tie-off.

Table 16 OCP Signal Configuration Parameters 

Group Signal
Parameter to add 
signal to interface

Parameter to
control width 

Default 
Tie-off

Basic Clk Required Fixed n/a

EnableClk enableclk Fixed 1

MAddr addr addr_wdth 0

MCmd Required Fixed n/a

MData mdata data_wdth 0

MDataValid datahandshake Fixed n/a

MRespAccept1 respaccept Fixed 1

SCmdAccept cmdaccept Fixed 1

SData1 sdata data_wdth 0

SDataAccept2 dataaccept Fixed 1

SResp resp Fixed n/a

Simple MAddrSpace addrspace addrspace_wdth 0

MByteEn3 byteen data_wdth all 1s

MDataByteEn4 mdatabyteen data_wdth all 1s

MDataInfo mdatainfo mdatainfo_wdth5 0

MReqInfo reqinfo reqinfo_wdth 0

SDataInfo1 sdatainfo sdatainfo_wdth6 0

SRespInfo1 respinfo respinfo_wdth 0
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Burst MAtomicLength7 atomiclength atomiclength_wdth 1

MBlockHeight7,8 blockheight blockheight_wdth9 1

MBlockStride7,8 blockstride blockstride_wdth 0

MBurstLength burstlength burstlength_wdth10 1

MBurstPrecise7, 11 burstprecise Fixed 1

MBurstSeq7 burstseq Fixed INCR

MBurstSingleReq7, 12 burstsinglereq Fixed 0

MDataLast7, 13 datalast Fixed n/a

MDataRowLast7, 8, 13, 14 datarowlast Fixed n/a

MReqLast7 reqlast Fixed n/a

MReqRowLast7, 8, 15 reqrowlast Fixed n/a

SRespLast1, 7 resplast Fixed n/a

SRespRowLast1, 7, 8, 16 resprowlast Fixed n/a

Tag MDataTagID17 tags>1 and datahandshake tags 0

MTagID tags>1 tags 0

MTagInOrder18 taginorder Fixed 0

STagID tags>1 and resp tags 0

STagInOrder19 taginorder and resp Fixed 0

Thread MConnID connid connid_wdth 0

MDataThreadID threads>1 and datahandshake threads 0

MThreadBusy1, 20 mthreadbusy threads 0

MThreadID threads>1 threads 0

SDataThreadBusy21 sdatathreadbusy threads 0

SThreadBusy22 sthreadbusy threads 0

SThreadID threads>1 and resp threads 0

Group Signal
Parameter to add 
signal to interface

Parameter to
control width 

Default 
Tie-off
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Sideband ConnectCap connection Fixed n/a

Control control control_wdth 0

ControlBusy23 controlbusy Fixed 0

ControlWr24 controlwr Fixed n/a

MConnect25 connection 2 M_CON

MError merror Fixed 0

MFlag mflag mflag_wdth 0

MReset_n mreset Fixed 1

SConnect25 connection 1 S_CON

SError serror Fixed 0

SFlag sflag sflag_wdth 0

SInterrupt interrupt Fixed 0

SReset_n sreset Fixed 1

Status status status_wdth 0

StatusBusy26 statusbusy Fixed 0

StatusRd27 statusrd Fixed n/a

SWait25 connection 1 S_OK

Group Signal
Parameter to add 
signal to interface

Parameter to
control width 

Default 
Tie-off
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Test ClkByp clkctrl_enable Fixed n/a

Scanctrl scanport scanctrl_wdth n/a

Scanin scanport scanport_wdth n/a

Scanout scanport scanport_wdth n/a

TCK jtag_enable Fixed n/a

TDI jtag_enable Fixed n/a

TDO jtag_enable Fixed n/a

TestClk clkctrl_enable Fixed n/a

TMS jtag_enable Fixed n/a

TRST_N28 jtagtrst_enable Fixed n/a

1 MRespAccept, MThreadBusy, SData, SDataInfo, SRespInfo, SRespLast, and SRespRowLast may be included only if the resp 
parameter is set to 1. 

2 SDataAccept can be included only if datahandshake is set to 1. 

3  MByteEn has a width of data_wdth/8 and can only be included when either mdata or sdata is set to 1 and data_wdth is 
an integer multiple of 8.

4 MDataByteEn has a width of data_wdth/8 and can only be included when mdata is set to 1, datahandshake is set to 1, and 
data_wdth is an integer multiple of 8.

5 mdatainfo_wdth must be > mdatainfobyte_wdth * data_wdth/8 and can be used only if data_wdth is a multiple 
of 8. mdatainfobyte_wdth specifies the partitioning of MDataInfo into transfer-specific and per-byte fields.

6 sdatainfo_wdth must be > sdatainfobyte_wdth * data_wdth/8 and can be used only if data_wdth is a multiple 
of 8. sdatainfobyte_wdth specifies the partitioning of SDataInfo into transfer-specific and per-byte fields.

7 MAtomicLength, MBlockHeight, MBlockStride, MBurstPrecise, MBurstSeq, MBurstSingleReq, MDataLast, MDataRowLast, 
MReqLast, MReqRowLast, SRespLast, and SRespRowLast may be included in the interface or tied off to non-default values only 
if MBurstLength is included or tied off to a value other than 1.

8 MBlockHeight, MBlockStride, MDataRowLast, MReqRowLast, and SRespRowLast may be included or tied off to non-default 
values only if burstseq_blck_enable is set to 1 and MBurstPrecise is included or tied off to a value of 1.

9 blockheight_wdth can never be 1.

10 burstlength_wdth can never be 1.

11 If no sequences other than WRAP, XOR, or BLCK are enabled, MBurstPrecise must be tied off to 1.

12 If any write-type commands are enabled, MBurstSingleReq can only be included when datahandshake is set to 1. If the only 
enabled burst address sequence is UNKN, MBurstSingleReq cannot be included or tied off to a non-default value.

13 MDataLast and MDataRowLast can be included only if the datahandshake parameter is set to 1.

14 MDataRowLast can only be included if MDataLast is included.

15  MReqRowLast can only be included if MReqLast is included.

16 SRespRowLast can only be included if SRespLast is included.

17 MDataTagID is included if tags is greater than 1 and the datahandshake parameter is set to 1.

18 MTagInOrder can only be included if tags is greater than 1.

19 STagInOrder can only be included if tags is greater than 1.

20 MThreadBusy has a width equal to threads. It may be included for single-threaded OCP interfaces.

21 SDataThreadBusy has a width equal to threads. It may be included for single-threaded OCP interfaces and may only be 
included if datahandshake is 1.

22 SThreadBusy has a width equal to threads. It may be included for single-threaded OCP interfaces.

23 ControlBusy can only be included if both Control and ControlWr exist.

24 ControlWr can only be included if Control exists. 

25 The default tie-off values for MConnect, SConnect and SWait are the only allowed tie-off values.

26 StatusBusy can only be included if Status exists. 

27 StatusRd can only be included if Status exists.

Group Signal
Parameter to add 
signal to interface

Parameter to
control width 

Default 
Tie-off
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3.4.1 Signal Directions
Figure 4 on page 36 summarizes all OCP signals. The direction of some 
signals (for example, MCmd) depends on whether the module acts as a master 
or slave, while the direction of other signals (for example, Control) depends on 
whether the module acts as a system or a core. The combination of these two 
choices provides four possible module configurations as shown in Table 17.

Table 17 Module Configuration Based on Signal Directions 

For example, if a module acts as OCP master and also as system, it is 
designated a system master. In addition to the notion of modules, it is useful 
to introduce an “interface” type. All modules have interfaces. Also, there is a 
“monitor” interface type which observes all OCP signals. The permitted 
connectivity between interface types is shown in Table 18.

Table 18 Interface Types

The Clk, EnableClk, and ConnectCap signals are special in that they are 
supplied by a third (external) entity that is neither of the two modules 
connected through the OCP interface.

28 TRST_N can only be included if jtag_enable is set to 1.

Acts as Core Acts as System

Acts as OCP Master Master System master

Acts as OCP Slave Slave System slave

Type Connects To Cannot Connect To

Master System slave, Slave, Monitor Master, System master

Slave System master, Master, Monitor Slave, System slave

System master Slave, Monitor Master, System Master, System 
slave

System slave Master, Monitor Slave, System slave, System 
master

Monitor Master, System master, Slave, 
System slave 

Monitor
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Figure 4 OCP Signal Summary
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4 Protocol Semantics

This chapter defines the semantics of the OCP protocol by assigning meanings 
to the signal encodings described in the preceding chapter. Figure 5 provides 
a graphic view of the hierarchy of elements that compose the OCP.

Figure 5 Hierarchy of Elements
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4.1 Signal Groups
Some OCP fields are grouped together because they must be active at the 
same time. The data flow signals are divided into three signal groups: request 
signals, response signals, and datahandshake signals. A list of the signals 
that belong to each group is shown in Table 19. 

Table 19 OCP Signal Groups

Group Signal Condition

Request MAddr always

MAddrSpace always

MAtomicLength always

MBlockHeight always

MBlockStride always

MBurstLength always

MBurstPrecise always

MBurstSeq always

MBurstSingleReq always

MByteEn always

MCmd always

MConnID always

MData* datahandshake = 0

MDataInfo* datahandshake = 0

MReqInfo always

MReqLast always

MReqRowLast always

MTagID always

MTagInOrder always

MThreadID always
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4.2 Combinational Dependencies
It is legal for some signal or signal group outputs to be derived from inputs 
without an intervening latch point, that is, combinationally. To avoid 
combinational loops, other outputs cannot be derived in this manner. 
Figure 6 describes a partial order of combinational dependency. For any 
arrow shown, the signal or signal group can be derived combinationally from 
the signal at the point of origin of the arrow or another signal earlier in the 
dependency chain. No other combinational dependencies are allowed.

MThreadBusy, SDataThreadBusy, and SThreadBusy each appear twice in 
Figure 6. The two appearances of each signal are mutually exclusive based 
upon the setting of the mthreadbusy_pipelined, 
sdatathreadbusy_pipelined, and sthreadbusy_pipelined parameters. 
Refer to Section 4.3.2.4 on page 44 for more information about these 
parameters.

Response SData always

SDataInfo always

SResp always

SRespInfo always

SRespLast always

SRespRowLast always

STagID always

STagInOrder always

SThreadID always

Datahandshake MData* datahandshake = 1

MDataByteEn always

MDataInfo* datahandshake = 1

MDataLast always

MDataRowLast always

MDataTagID always

MDataThreadID always

MDataValid always

* MData and MDataInfo belong to the request group, unless the 
datahandshake configuration parameter is enabled. In that case they belong 
to the datahandshake group.

Group Signal Condition
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Figure 6 Legal Combinational Dependencies Between Signals and Signal Groups 
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4.3.2 Dataflow Signals
Signals in a signal group must all be valid at the same time. 

• The request group is valid whenever a command other than Idle is 
presented on the MCmd field. 

• The response group is valid whenever a response other than Null is 
presented on the SResp field. 

• The datahandshake group is valid whenever a 1 is presented on the 
MDataValid field.

The accept signal associated with a signal group is valid only when that group 
is valid.

• The SCmdAccept signal is valid whenever a command other than Idle is 
presented on the MCmd field.

• The MRespAccept signal is valid whenever a response other than Null is 
presented on the SResp field.

• The SDataAccept signal is valid whenever a 1 is presented on the 
MDataValid field.

The signal groups map on a one-to-one basis to protocol phases. All signals 
in the group must be held steady from the beginning of a protocol phase until 
the end of that phase. Outside of a protocol phase, all signals in the 
corresponding group (except for the signal that defines the beginning of the 
phase) are “don’t care.” 

In addition, the MData and MDataInfo fields are a “don’t care” during read-
type requests, and the SData and SDataInfo fields are a “don’t care” for 
responses to write-type requests. Non-enabled data bytes in MData and bits 
in MDataInfo as well as non-enabled bytes in SData and bits in SDataInfo are 
a “don’t care.” The MDataByteEn field is “don’t care” during read-type 
transfers. If MDataByteEn is present, the MByteEn field is “don’t care” during 
write-type transfers. MTagID is a “don’t care” if MTagInOrder is asserted and 
MDataTagID is a “don’t care” for the corresponding datahandshake phase. 
Similarly, STagID is a “don’t care” if STagInOrder is asserted.

• A request phase begins whenever the request group becomes active. It 
ends when the SCmdAccept signal is sampled by the rising edge of the 
OCP clock as 1 during a request phase.

• A response phase begins whenever the response group becomes active. It 
ends when the MRespAccept signal is sampled by the rising edge of the 
OCP clock as 1 during a response phase. 

If MRespAccept is not configured into the OCP interface (respaccept = 0) 
then MRespAccept is assumed to be on; that is the response phase is 
exactly one cycle long.

• A datahandshake phase begins whenever the datahandshake signal 
group becomes active. It ends when the SDataAccept signal is sampled by 
the rising edge of the OCP clock as 1 during a datahandshake phase.
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For all phases, it is legal to assert the corresponding accept signal in the cycle 
that the phase begins, allowing the phase to complete in a single cycle.

4.3.2.1 Phases in a Transfer
An OCP transfer consists of several phases, as shown in Table 20. Every 
transfer has a request phase. Read-type requests always have a response 
phase. For write-type requests, the OCP can be configured with or without 
responses or datahandshake. Without a response, a write-type request 
completes upon completion of the request phase (posted write model).

Table 20 Phases in each Transfer for MBurstSinqleReq set to 0 

Single request, multiple data (SRMD) bursts, described in Section 4.6.5 on 
page 55, have a single request phase and multiple data transfer phases, as 
shown in Table 21.

Table 21 Phases in a Transaction for MBurstSinqleReq set to 1 

MCmd Phases Condition

Read, ReadEx, 
ReadLinked

Request, response always

Write, Broadcast Request datahandshake = 0
writeresp_enable = 0

Write, Broadcast Request, response datahandshake = 0
writeresp_enable = 1

WriteNonPost, 
WriteConditional

Request, response datahandshake = 0

Write, Broadcast Request, datahandshake datahandshake = 1
writeresp_enable = 0

Write, Broadcast Request, datahandshake, response datahandshake = 1
writeresp_enable = 1

WriteNonPost, 
WriteConditional

Request, datahandshake, response datahandshake = 1

MCmd Phases Condition

Read Request, H*L* response

* H refers to the burst height (MBlockHeight), and is 1 for all burst sequences other than BLCK.

always

Write, Broadcast Request, H*L† datahandshake

† L refers to the burst length (MBurstLength).

datahandshake = 1
writeresp_enable = 0

Write, Broadcast Request, H*L† datahandshake, response datahandshake = 1
writeresp_enable = 1

WriteNonPost Request, H*L† datahandshake, response datahandshake = 1
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4.3.2.2 Phase Ordering Within a Transfer
The OCP is causal: within each transfer a request phase must precede the 
associated datahandshake phase which in turn, must precede the associated 
response phase. The specific constraints are:

• A datahandshake phase cannot begin before the associated request phase 
begins, but can begin in the same OCP clock cycle.

• A datahandshake phase cannot end before the associated request phase 
ends, but can end in the same OCP clock cycle.

• A response phase cannot begin before the associated request phase 
begins, but can begin in the same OCP clock cycle.

• A response phase cannot end before the associated request phase ends, 
but can end in the same OCP clock cycle.

• If there is a datahandshake phase and a response phase, the response 
phase cannot begin before the associated datahandshake phase (or last 
datahandshake phase for single request, multiple data bursts) begins, but 
can begin in the same OCP clock cycle.

• If there is a datahandshake phase and a response phase, the response 
phase cannot end before the associated datahandshake phase (or last 
datahandshake phase for single request, multiple data bursts) ends, but 
can end in the same OCP clock cycle.

4.3.2.3 Phase Ordering Between Transfers
If tags are not in use, the ordering of transfers is determined by the ordering 
of their request phases. Also, the following rules apply.

• Since two phases of the same type belonging to different transfers both 
use the same signal wires, the phase of a subsequent transfer cannot 
begin before the phase of the previous transfer has ended. If the first 
phase ends in cycle x, the second phase can begin in cycle x+1.

• The ordering of datahandshake phases must follow the order set by the 
request phases including multiple datahandshake phases for single 
request, multiple data (SRMD) bursts.

• The ordering of response phases must follow the order set by the request 
phases including multiple response phases for SRMD bursts.

• For SRMD bursts, a request or response phase is shared between multiple 
transfers. Each individual transfer must obey the ordering rules described 
in Section 4.3.2.2, even when a phase is shared with another transfer.

• Where no phase ordering is specified, by the previous rules, the effect of 
two transfers that are addressing the same location (as specified by 
MAddr, MAddrSpace, and MByteEn [or MDataByteEn, if applicable]) must 
be the same as if the two transfers were executed in the same order but 
without any phase overlap. This ensures that read/write hazards yield 
predictable results. 
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For example, on an OCP interface with datahandshake enabled, a read 
following a write to the same location cannot start its response phase until 
the write has started its datahandshake phase, otherwise the latest write 
data cannot be returned for the read.

If tags are in use, the preceding rules are partially relaxed. Refer to 
Section 4.7.1 on page 57 for a more detailed explanation.

4.3.2.4 Ungrouped Signals
Signals not covered in the description of signal groups and phases are 
MThreadBusy, SDataThreadBusy, and SThreadBusy. Without further 
protocol restriction, the cycle timing of the transition of each bit that makes 
up each of these three fields is not specified relative to the other dataflow 
signals. This means that there is no specific time for an OCP master or slave 
to drive these signals, nor a specific time for the signals to have the desired 
flow-control effect. Without further restriction, MThreadBusy, SDataTh-
readBusy, and SThreadBusy can only be treated as a hint. 

For stricter semantics use the protocol configuration parameters 
mthreadbusy_exact, sdatathreadbusy_exact, and sthreadbusy_exact. 
These parameters can be set to 1 only when the corresponding signal has 
been enabled.

The parameters mthreadbusy_pipelined, sdatathreadbusy_pipelined, 
and sthreadbusy_pipelined can be used to set the relative protocol timing 
of the MThreadBusy, SDataThreadBusy, and SThreadBusy signals with 
respect to their phases. The *_pipelined parameters1 can only be enabled 
when the corresponding *_exact parameter is enabled. 

The *_exact parameters define strict protocol semantics for the 
corresponding phase. The receiver of the phase identifies (through the 
corresponding ThreadBusy signals) to the sender of the phase which threads 
can accept an asserted phase. The sender will not assert a phase on a busy 
thread, and the receiver accepts any phases asserted on threads that are not 
busy. To avoid ambiguity, the corresponding phase Accept signal may not be 
present on the interface, and is considered tied off to 1. The resulting phase 
has exact flow control and is non-blocking. See Section 4.9.1.5 on page 61 for 
configuration restrictions associated with ThreadBusy-related parameters.

The *_pipelined parameters control the cycle relationship between the 
ThreadBusy signal and the corresponding phase assertion. When the 
*_pipelined parameter is disabled (the default), the ThreadBusy signal 
defines the flow control for the current cycle, so phase assertion depends 
upon that cycle’s ThreadBusy values. This mode corresponds to the timing 
arcs in Figure 6 where the ThreadBusy generation appears at the beginning 
of the OCP cycle. When a *_pipelined parameter is enabled, the ThreadBusy 
signal defines the flow control for the next cycle enabling fully sequential 
interface behavior, where non-blocking flow control can be accomplished 
without combinational paths crossing the interface twice in a single cycle. 

1 The notation *_pipelined means the set of all parameter names ending in _pipelined.
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Combinational paths may still be present to enable the phase receiver to 
consider interface activity in the current cycle before signaling the 
ThreadBusy signal that affects the next cycle. This corresponds to the timing 
arcs in Figure 6 where ThreadBusy appears at the end of the OCP cycle. When 
a _pipelined parameter is enabled, exact flow control is not possible for the 
first cycle after reset is de-asserted, since the associated ThreadBusy would 
have to be provided while reset was asserted. When sthreadbusy_pipelined 
is enabled the master may not assert the request phase in the first cycle after 
reset.

The effect of these parameters is as follows:

• If mthreadbusy_exact is enabled, mthreadbusy_pipelined is disabled, 
and the master cannot accept a response on a thread, it must set the 
MThreadBusy bit for that thread to 1 in that cycle. The slave must not 
present a response on a thread when the corresponding MThreadBusy bit 
is set to 1. Any response presented by the slave on a thread that is not 
busy is accepted by the master in that cycle.

• If mthreadbusy_exact and mthreadbusy_pipelined are enabled and 
the master cannot accept a response on a thread in the next cycle, it must 
set the MThreadBusy bit for that thread to 1 in the current cycle. If an 
MThreadBusy bit was set to 1 in the prior cycle, the slave cannot present 
a response on a thread in the current cycle. Any response presented by 
the slave on a thread that was not busy in the prior cycle is accepted by 
the master in that cycle.

• If sdatathreadbusy_exact is enabled, sdatathreadbusy_piplelined 
is disabled, and the slave cannot accept a datahandshake phase on a 
thread, the slave must set the SDataThreadBusy bit for that thread to 1 
in that cycle. The master must not present a datahandshake phase on a 
thread when the corresponding SDataThreadBusy bit is set to 1. Any 
datahandshake phase presented by the master on a thread that is not 
busy is accepted by the slave in that cycle.

• If sdatathreadbusy_exact and sdatathreadbusy_piplelined are 
enabled and the slave cannot accept a datahandshake phase on a thread 
in the next cycle, the slave must set the SDataThreadBusy bit for that 
thread to 1 in the current cycle. If an SDataThreadBusy bit was set to 1 
in the prior cycle, the master cannot present a datahandshake on the 
corresponding thread in the current cycle. Any datahandshake presented 
by the master on a thread that was not busy in the prior cycle is accepted 
by the slave in that cycle.

• If sthreadbusy_exact is enabled, sthreadbusy_piplelined is 
disabled, and the slave cannot accept a command on a thread, the slave 
must set the SThreadBusy bit for that thread to 1 in that cycle. The 
master must not present a request on a thread when the corresponding 
SThreadBusy bit is set to 1. Any request presented by the master on a 
thread that is not busy is accepted by the slave in that cycle.

• If sthreadbusy_exact and sthreadbusy_piplelined are enabled and 
the slave cannot accept a request on a thread in the next cycle, the slave 
must set the SThreadBusy bit for that thread to 1 in the current cycle. If 
an SThreadBusy bit was set to 1 in the prior cycle, the master cannot 
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present a request on the corresponding thread in the current cycle. Any 
request presented by the master on a thread that was not busy in the prior 
cycle is accepted by the slave in that cycle.

4.3.3 Sideband and Test Signals

4.3.3.1 Reset
The OCP interface provides an interface reset signal for each master and 
slave. At least one of these signals must be present. If both signals are 
present, the composite reset state of the interface is derived as the logical AND 
of the two signals (that is, the interface is in reset as long as one of the two 
resets is asserted). 

Treat OCP reset signals as fully synchronous to the OCP clock, where the 
receiver samples the incoming reset using the rising edge of the clock and 
deassertion of the reset meets the receiver’s timing requirements with respect 
to the clock. An exception to this rule exists when the assertion edge of an 
OCP reset signal is asynchronous to the OCP clock. This behavior handles the 
practice of forcing all reset signals to be combinationally asserted for power-
on reset or other hardware reset conditions without waiting for a clock edge.

Once a reset signal is sampled asserted by the rising edge of the OCP clock, 
all incomplete transactions, transfers and phases are terminated and both 
master and slave must transition to a state where there are no pending OCP 
requests or responses. When a reset signal is asserted asynchronously, there 
may be ambiguity about transactions that completed, or were aborted due to 
timing differences between the arrival of the OCP reset and the OCP clock. 

For systems requiring precision use synchronous reset assertion, or only 
apply reset asynchronously if the interface is either quiescent or hung. 
MReset_n and SReset_n must be asserted for at least 16 cycles of the OCP 
clock to ensure that the master and slave reach a consistent internal state. 
When one or both of the reset signals are asserted in a given cycle, all other 
OCP signals must be ignored in that cycle. The master and slave must each 
be able to reach their reset state regardless of the values presented on the 
OCP signals. If the master or slave require more than 16 cycles of reset 
assertion, the requirement must be documented in the IP core specifications. 

At the clock edge that all reset signals present are sampled deasserted, all 
OCP interface signals must be valid. In particular, it is legal for the master to 
begin its first request phase in the same clock cycle that reset is deasserted.

4.3.3.2 Connection Signals
The OCP interface offers an optional connection protocol that enables the 
master to control the connection state of the interface based upon the input 
of both master and slave, which can be used to implement robust schemes for 
power management. The protocol makes a clear difference between an OCP 
disconnected state resulting solely from a slave vote (M_DISC state) versus 
one resulting from a master vote independently from the slave side vote 
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(M_OFF state). It has a single connected state (M_CON) and a transient state 
(M_WAIT) that allows the slave to control how quickly the master may 
transition from one stable state to another.

The connection protocol is implemented using fully synchronous signals 
sampled by the rising edge of the OCP clock and no combinational paths are 
allowed between the connection signals. Since any transitions between the 
stable connection states requires that the interface be quiescent, the interface 
reset is not needed explicitly by the connection protocol and connection state 
transitions may occur independently from the reset state of the interface. 
Neither data flow nor sideband communication (other than the connection 
signals) is allowed in a disconnected state. However, the connection signals 
(MConnect, SConnect and SWait) are always valid to enable proper operation 
of the connection protocol. Since sideband communication is only reliable in 
the connected state (M_CON), the 16 cycle reset assertion requirement can 
only be reliably met in the connected state.

MConnect[1:0] provides the OCP socket connection state and is driven by the 
master. The master must ensure a minimum duration of 2 cycles in a stable 
state (M_CON, M_OFF or M_DISC) to permit the slave to sample a new stable 
state and then assert SWait (to S_WAIT) to influence the next potential 
connection state transition. This is a side effect of the timing requirements of 
the connection protocol. MConnect[1:0] does not convey the master’s vote on 
the OCP connection state. This vote information is not explicitly visible at the 
interface. The four valid connection states follow.

• The M_OFF state is a stable state where the interface is disconnected due 
to the master’s vote, independently from any concurrent vote from the 
slave. It is likely required that the interface reach the M_OFF state before 
performing specific power reduction techniques such as powering down 
the master.

• The M_DISC state is a stable state where the interface is disconnected 
resulting solely from the slave’s vote on SConnect. Since the master is 
voting for connection, but prevented by the slave, the master may 
implement an alternate behavior for upstream traffic intended for the 
disconnected slave. This alternate behavior is out of the scope of the 
connection protocol, but may be addressed in a future 
extension.Transitions to M_DISC are only allowed after the master has 
sampled the slave’s vote to disconnect (SConnect is S_DISC).

• The M_CON state is a stable state where the interface is fully connected. 
It is the only state in which the master is allowed to begin any 
transactions, and the master may not leave M_CON unless all 
transactions are complete. Transitions to M_CON are only allowed after 
the master has sampled the slave’s vote for a connection (SConnect is 
S_CON). The master may not present the first transaction on the interface 
until the cycle after transitioning to M_CON.

• The M_WAIT state is a transient state where the master is indicating to 
the slave that it is in the process of changing the connection state. The 
master can change between stable connection states without entering 
M_WAIT only if the SWait signal is negated. M_WAIT is disconnected for 
dataflow communication but sideband communication is allowed in 
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M_WAIT only if the prior state was M_CON. The master and slave must 
cooperate to ensure that all sideband communication is complete before 
exiting M_WAIT for a disconnected state.

SConnect provides the slave’s vote on the OCP connection state. The slave 
may change its vote at any time, but must be ready to support the connected 
state (M_CON) when driving SConnect to S_CON.

SWait allows the slave to control how the master transitions between the 
stable connection states. By asserting SWait (S_WAIT) in a stable state, the 
slave forces the master to transition through the M_WAIT state and the 
master may not leave M_WAIT until it has sampled SWait negated (S_OK). The 
slave must assert SWait in situations where the master could otherwise 
transition from M_CON to a disconnected state without allowing the slave to 
become quiescent. SWait can be tied-off to logic 0 (S_OK) in case the slave can 
accept immediate transitions by the master between the stable connection 
states.

4.3.3.3 Interrupt, Error, and Core Flags
There is no specific timing associated with SInterrupt, SError, MFlag, MError, 
and SFlag. The timing of these signals is core-specific.

4.3.3.4 Status and Control
The following rules assure that control and status information can be 
exchanged across the OCP without any combinational paths from inputs to 
outputs and at the pace of a slow core.

• Control must be held steady for a full cycle after the cycle in which it has 
transitioned, which means it cannot transition more frequently than every 
other cycle. If ControlBusy was sampled active at the end of the previous 
cycle, Control can not transition in the current cycle. In addition, Control 
must be held steady for the first two cycles after reset is deasserted.

• If Control transitions in a cycle, ControlWr (if present) must be driven 
active for that cycle. ControlWr following the rules for Control, cannot be 
asserted in two consecutive cycles.

• ControlBusy allows a core to force the system to hold Control steady. 
ControlBusy may only start to be asserted immediately after reset, or in 
the cycle after ControlWr is asserted, but can be left asserted for any 
number of cycles.

• While StatusBusy is active, Status is a “don’t care”. StatusBusy enables a 
core to prevent the system from reading the current status information. 
While StatusBusy is active the core may not read Status. StatusBusy can 
be asserted at any time and be left asserted for any number of cycles.

• StatusRd is active for a single cycle every time the status register is read 
by the system. If StatusRd was asserted in the previous cycle, it must not 
be asserted in the current cycle, so it cannot transition more frequently 
than every other cycle.
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4.3.3.5 Test Signals
Scanin and Scanout are “don’t care” while Scanctrl is inactive (but the 
encoding of inactive for Scanctrl is core-specific).

TestClk is “don’t care” while ClkByp is 0.

The timing of TRST_N, TCK, TMS, TDI, and TDO is specified in the IEEE 1149 
standard.

4.4 Transfer Effects
A successful transfer is one that completes without error. For write-type 
requests without responses, there is no in-band error indication. For all other 
requests, a non-ERR response (that is, a DVA or FAIL response) indicates a 
successful transfer. The FAIL response is legal only for WriteConditional 
commands1. This section defines the effect that a successful transfer has on 
a slave. The request acts on the addressed location, where the term address 
refers to the combination of MAddr, MAddrSpace, and MByteEn (or 
MDataByteEn, if applicable). Two addresses are said to match if they are 
identical in all components. Two addresses are said to conflict, if the mutual 
exclusion (lock or monitor) logic is built to alias the two addresses into the 
same mutual exclusion unit. The transfer effects of each command are:

Idle
None.

Read
Returns the latest value of the addressed location on the SData field.

ReadEx
Returns the latest value of the addressed location on the SData field. Sets 
a lock for the initiating thread on that location. The next request on the 
thread that issued a ReadEx must be a Write or WriteNonPost to the 
matching address. Requests from other threads to a conflicting address 
that is locked are not committed until the lock is released. If the ReadEx 
request returns an ERR response, it is slave-specific whether the lock is 
actually set or not. Refer to Section 4.4.3 on page 51 for details.

ReadLinked
Returns the latest value of the addressed location on the SData field. Sets 
a reservation in a monitor for the corresponding thread on at least that 
location. Requests of any type from any thread to a conflicting address 
that is reserved are not blocked from proceeding, but may clear the 
reservation.

Write/WriteNonPost
Places the value on the MData field in the addressed location. Unlocks 
access to the matched address if locked by a ReadEx issued on the same 
initiating thread.Clears the reservations on any conflicting addresses set 
by other threads.

1 For all commands except those following a posted write model, a DVA response also indicates 
that the transfer is committed.
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WriteConditional
If a reservation is set for the matching address and for the corresponding 
thread, the write is performed as it would be for a Write or WriteNonPost. 
Simultaneously, the reservation is cleared for all threads on any 
conflicting address. If no reservation is set for the corresponding thread, 
the write is not performed, a FAIL response is returned, and no 
reservations are cleared.

Broadcast
Places the value on the MData field in the addressed location that may 
map to more than one slave in a system-dependent way. Broadcast clears 
the reservations on any conflicting addresses set by other threads.

If a transfer is unsuccessful, the effect of the transfer is unspecified. Higher-
level protocols must determine what happened and handle any clean-up.

The synchronization commands ReadEx / Write, ReadEx / WriteNonPost, 
and ReadLinked / WriteConditional have special restrictions with regard to 
data width conversion and partial words. In systems where these commands 
are sent through a bridge or interconnect that performs wide-to-narrow data 
width conversion between two OCP interfaces, the initiator must issue only 
commands within the subset of partial words that can be expressed as a 
single word of the narrow OCP interface. For maximum portability, single-
byte synchronization operations are recommended.

4.4.1 Partial Word Transfers
An OCP interface may be configured to include partial word transfers by using 
either the MByteEn field, or the MDataByteEn field, or both. 

• If neither field is present, then only whole word transfers are possible. 

• If only MByteEn is present, then the partial word is specified by this field 
for both read type transfers and write type transfers as part of the request 
phase. 

• If only MDataByteEn is present, then the partial word is specified by this 
field for write type transfers as part of the datahandshake phase, and 
partial word reads are not supported. 

• If both MByteEn and MDataByteEn are present, then MByteEn specifies 
partial words for read transfers as part of the request phase, and 
MDataByteEn specifies partial words for write transfers as part of the 
datahandshake phase.

It is legal to use a request with all byte enables deasserted. Such requests 
must follow all the protocol rules, except that they are treated as no-ops by 
the slave: the response phase signals SData and SDataInfo are “don’t care” 
for read-type commands, and nothing is written for write-type commands.
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4.4.2 Posting Semantics
Table 22 below summarizes the posting semantics for write-type commands. 
WRNP and WRC are always non-posted; a DVA response indicates that the 
write was committed and an ERR response indicates that the write was not 
committed (an error occurred along the write path).

WR and BCST commands may follow a posted or non-posted model. If the 
OCP interface is configured to not send a completion response 
(writeresp_enable is set to 0), the write is posted upon command 
acceptance and is considered to be posted early. When writeresp_enable is 
set to 1, the system designer decide where along the write path the posting 
point is. The completion response (either DVA or ERR) is then generated from 
the posting point. The non-posted model has the same semantics as WRNP.

Table 22 Write Posting Semantics

4.4.3 Transaction Completion, Transaction Commitment
It is useful to distinguish between “commitment” of a transaction and the 
“completion” of a transaction. A transaction is “committed” when the 
transaction finishes or completes at the final target. 

In cases where the completion response is sent by the slave or target after 
commitment, the completion response is a guarantee of transaction 
commitment. With a posted write model, however, the posted write 
completion response may be received at the master before the write 
commitment.

Thus, the OCP completion response implies commitment for all transactions 
except writes with a posted write model (e.g., WR or BCST with early posting). 
For posted writes, there is no relationship between commitment and 
completion.

4.5 Endianness
An OCP interface by itself is inherently endian-neutral. Data widths must 
match between master and slave, addressing is on an OCP word granularity, 
and byte enables are tied to byte lanes (data bits) without tying the byte lanes 
to specific byte addresses.

The issue of endianness arises in the context of multiple OCP interfaces, 
where the data widths of the initiator of a request and the final target of that 
request do not match. Examples are a bridge or a more general interconnect 
used to connect OCP-based cores.

Write Command
writeresp_enable

0 1

WR, BCST Posted early Posted or Non-posted

WRNP, WRC Non-posted Non-posted
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When the OCP interfaces differ in data width, the interconnect must associate 
an endianness with each transfer. It does so by associating byte lanes and 
byte enables of the wider OCP with least-significant word address bits of the 
narrower OCP. Packing rules, described in Section 4.6.1.2 on page 54 must 
also be obeyed for bursts.

OCP interfaces can be designated as little, big, both, or neutral with respect 
to endianness. This is specified using the protocol parameter endian 
described in Section 4.9.1.6 on page 62. A core that is designated as both 
typically represents a device that can change endianness based upon either 
an internal configuration register or an external input. A core that is 
designated as neutral typically represents a device that has no inherent 
endianness. This indicates that either the association of an endianness is 
arbitrary (as with a memory, which traditionally has no inherent endianness) 
or that the device only works with full-word quantities (when byteen and 
mdatabyteen are set to 0).

When all cores have the same endianness, an interconnect should match the 
endianness of the attached cores. The details of any conversion between cores 
of different endianness is implementation-specific.

4.6 Burst Definition
A burst is a set of transfers that are linked together into a transaction having 
a defined address sequence and number of transfers. There are three general 
categories of bursts:

Imprecise bursts
Request information is given for each transfer. Length information may 
change during the burst.

Precise bursts
Request information is given for each transfer, but length information is 
constant throughout the burst.

Single request / multiple data bursts (also known as packets)
Also a precise burst, but request information is given only once for the 
entire burst.

To express bursts on the OCP interface, at least the address sequence and 
length of the burst must be communicated, either directly using the 
MBurstSeq and MBurstLength signals, or indirectly through an explicit 
constant tie-off as described in Section 4.9.5.1 on page 66.

A single (non-burst) request on an OCP interface with burst support is 
encoded as a request with any legal burst address sequence and a burst 
length of 1.

The ReadEx, ReadLinked, and WriteConditional commands can not be used 
as part of a burst. The unlocking Write or WriteNonPost command associated 
with a ReadEx command also can not be used as part of a burst.
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4.6.1 Burst Address Sequences
The relationship of the MBurstSeq encodings and corresponding address 
sequences are shown in Table 23. The table also indicates whether a burst 
sequence type is packing or not, a concept discussed on page 54.

Table 23 Burst Address Sequences

The address sequence for two-dimensional block bursts is as follows. The 
address sequence begins at the provided address and proceeds through a set 
of MBlockHeight subsequences, each of which follows the normal INCR 
address sequence for MBurstLength transfers. The starting address for each 
following subsequence is the starting address of the prior subsequence plus 
MBlockStride.

The address sequence for exclusive OR bursts is as follows. Let BASE be the 
lowest byte address in the burst, which must be aligned with the total burst 
size. Let FIRST_OFFSET be the byte offset (from BASE) of the first transfer in 
the burst. Let CURRENT_COUNT be the count of the current transfer in the 
burst, starting at 0. Let WORD_SHIFT be the logarithm base-two of the OCP 
word size in bytes. Then the current address of the transfer is BASE | 
(FIRST_OFFSET ^ (CURRENT_COUNT << WORD_SHIFT)).

The burst address sequence UNKN is used if the address sequence is not 
statically known for the burst. Single request/multiple data bursts (described 
on page 55) with a burst address sequence of UNKN are illegal. In contrast, 
the DFLT1 and DFLT2 address sequences are known, but are core or system 
specific.

The burst address sequences BLCK, WRAP, and XOR can only be used for 
precise bursts. Additionally, the burst sequences WRAP and XOR can only 
have a power-of-two burst length and a data width that is a power-of-two 
number of bytes.

Mnemonic Name Address Sequence Packing

BLCK 2D block see below for definition yes

DFLT1 custom (packed) user-specified yes

DFLT2 custom (not packed) user-specified no

INCR incrementing incremented by OCP word size 

each transfer*

* Bursts must no wrap around the OCP address size.

yes

STRM streaming constant each transfer no

UNKN unknown none specified implementation 
specific

WRAP wrapping like INCR, except wrap at 
address boundary aligned with
MBurstLength * OCP word size

yes

XOR exclusive OR see below for definition yes
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Not all masters and slaves need to support all burst sequences. A separate 
protocol parameter described in Section 4.9.1.2 on page 59 is provided for 
each burst sequence to indicate support for that burst sequence.

4.6.1.1 Byte Enable Restrictions
Burst address sequences STRM and DFLT2 must have at least one byte 
enable asserted for each transfer in the burst. Bursts with the STRM address 
sequence must have the same byte enable pattern for each transfer in the 
burst.

4.6.1.2 Packing
Packing allows the system to make use of the burst attributes to improve the 
overall data transfer efficiency in the face of multiple OCP interfaces of 
different data widths. For example, if a bridge is translating a narrow OCP to 
a wide OCP, it can aggregate (or pack) the incoming narrow transfers into a 
smaller number of outgoing wide transfers. Burst address sequences are 
classified as either packing or not packing.

For burst address sequences that are packing, the conversion between 
different OCP data widths is achieved through aggregation or splitting. 
Narrow OCP words are collected together to form a wide OCP word. A wide 
OCP word is split into several narrow OCP words. The byte-specific portion of 
MDataInfo and SDataInfo is aggregated or split with the data. The transfer-
specific portion of MDataInfo and SDataInfo is unaffected. The packing and 
unpacking order depends on endianness as described on page 51.

For burst address sequences that are not packing, conversion between 
different OCP data widths is achieved using padding and stripping. A narrow 
OCP word is padded to form a wide OCP word with only the relevant byte 
enables turned on. A wide OCP word is stripped to form a narrow OCP word. 
The byte-specific portion of MDataInfo and SDataInfo is zero-padded or 
stripped with the data. The transfer-specific portion of MDataInfo and 
SDataInfo is unaffected. Width conversion can be performed reliably only if 
the wide OCP interface has byte enables associated with it. For wide to narrow 
conversion the byte enables are restricted to a subset that can be expressed 
within a single word of the narrow OCP interface.

Since the address sequence of DFLT1 is user-specified, the behavior of DFLT1 
bursts through data width conversion is implementation-specific.

4.6.2 Burst Length, Precise and Imprecise Bursts
The MBurstLength field indicates the number of transfers in the burst.

Precise bursts (MBurstPrecise set to 1) 
MBurstLength must be held constant throughout the burst, so the exact 
burst length can be obtained from the first transfer. A precise burst is 
completed by the transfer of the correct number of OCP words. Precise 
bursts are recommended over imprecise bursts because they allow for 
increased hardware optimization.
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Imprecise bursts (MBurstPrecise set to 0) 
MBurstLength can change throughout the burst and indicates the current 
best guess of the number of transfers left in the burst (including the 
current one). An imprecise burst is completed by an MBurstLength of 1.

4.6.3 Constant Fields in Bursts
MCmd, MAddrSpace, MConnID, MBurstPrecise, MBurstSingleReq, 
MBurstSeq, MAtomicLength, MBlockHeight, MBlockStride, and MReqInfo 
must all be held steady by the master for every transfer in a burst, regardless 
of whether the burst is precise or imprecise. If possible, slaves should hold 
SRespInfo steady for every transfer in a burst.

4.6.4 Atomicity
When interleaving requests from different initiators on the way to or at the 
target, the master uses MAtomicLength to indicate the number of OCP words 
within a burst that must be kept together as an atomic quantity. If MAtomi-
cLength is greater than the actual length of the burst, the atomicity 
requirement ends with the end of the burst. Specifying atomicity 
requirements explicitly is especially useful when multiple OCP interfaces are 
involved that have different data widths. 

For master cores, it is best to make the atomic size as small as required and, 
if possible, to keep the groups of atomic words address-aligned with the group 
size.

4.6.5 Single Request / Multiple Data Bursts (Packets)
MBurstSingleReq specifies whether a burst can be communicated using a 
single request / multiple data protocol. When MBurstSingleReq is 0, each 
request has a single data word associated with it. When MBurstSingleReq is 
1, each request may have multiple data words associated with it, according to 
the values of MBurstLength and MBlockHeight. MBurstSingleReq may be set 
to 1 only if MBurstPrecise is set to 1. In addition, if any write-type commands 
are enabled, datahandshake must be set to 1. 

When MBurstSingleReq is set to 1, write type transfers have MBurstLength * 
height datahandshake phases per request1; while read-type transfers have 
MBurstLength * height response phases per request as shown in Table 21 on 
page 42. The height is MBlockHeight for BLCK address sequences, and 1 for 
all others.

For write type transfers when MBurstSingleReq is set to 1 and the 
MDataByteEn field is present, that field in each data transfer phase specifies 
the partial word pattern for the phase. When MBurstSingleReq is set to 1 and 
the MDataByteEn field is not present, the MByteEn pattern of the request 
phase applies to all data transfer phases. 

1 Additionally, there is a single response phase for WRNP write type while the WR and BCST types 
have this phase only if writeresp_enable is set to 1. Note that WRC write type is not allowed 
in a burst.
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For read type transfers when MBurstSingleReq is set to 1, the MByteEn field 
specifies the byte enable pattern that is applied to all data transfers in the 
burst.

4.6.6 MReqLast, MDataLast, SRespLast
Optional signals MReqLast, MDataLast, and SRespLast provide redundant 
information that indicates the last request, datahandshake, and response 
phase in a burst, respectively. These signals are provided as a convenience to 
the recipient of the signal. To avoid separate counting mechanisms to track 
bursts, cores that have the information available internally are encouraged to 
provide it at the OCP interface.

MReqLast is 0 for all request phases in a burst except the last one. MReqLast 
is 1 for the last request phase in a burst, for single request / multiple data 
bursts, and for single requests.

MDataLast is 0 for all datahandshake phases in a burst except the last one. 
MDataLast is 1 for the last datahandshake phase in a burst and for the only 
datahandshake phase of a single request.

SRespLast is 0 for all response phases in a burst except the last one. 
SRespLast is 1 for the last response phase in a burst, for the response to a 
write-type single request / multiple data burst, and for the response to a 
single request.

4.6.7 MReqRowLast, MDataRowLast, SRespRowLast
For the BLCK burst address sequence, the optional signals MReqRowLast, 
MDataRowLast, and SRespRowLast identify the last request, datahandshake, 
and response phase in a row. The last phase in a burst is always considered 
the last phase in a row, and BLCK burst sequences reach the end of a row 
every MBurstLength phases (at the end of each INCR sub-sequence, see page 
68). To avoid separate counting mechanisms needed to track BLCK burst 
sequences, cores that have the end of row information available should 
provide it at the OCP interface.

For all request phases in a non-BLCK burst except the last one, MReqRowLast 
is 0. MReqRowLast is 0 for every request phase in a BLCK burst sequence that 
is not an integer multiple of MBurstLength. MReqRowLast is 1 for: 

• The last request phase in a burst including:

− The only request phase in a single request/multiple data burst

− The only request phase in a single word request

• Every request phase in a BLCK burst sequence that is an integer multiple 
of MBurstLength

For all datahandshake phases in a non-BLCK burst except the last one, 
MDataRowLast is 0. MDataRowLast is 0 for every datahandshake phase in a 
BLCK burst sequence that is not an integer multiple of MBurstLength. 
MDataRowLast is 1 for: 



Protocol Semantics 57

OCP-IP Confidential

• The last datahandshake phase in a burst including the only 
datahandshake phase of a single word request

• Every datahandshake phase in a BLCK burst sequence that is an integer 
multiple of MBurstLength

For all response phases in a non-BLCK burst except the last one, 
SRespRowLast is 0. SRespRowLast is 0 for every response phase in a BLCK 
burst sequence that is not an integer multiple of MBurstLength. 
SRespRowLast is 1 for: 

• The last response phase in a burst including:

− The only response phase in a write-type single request/multiple data 
burst

− The only response phase in a single word request

• Every response phase in a BLCK burst sequence that is an integer 
multiple of MBurstLength

4.7 Tags
Tags allow out-of-order return of responses and out-of-order commit of write 
data. 

A master drives a tag on MTagID during the request phase. The value of the 
tag is determined by the master and may or may not convey meaning beyond 
ordering to the slave. For write transactions with data handshake enabled, 
the master repeats the same tag on MDataTagID during the datahandshake 
phase. For read transactions and writes with responses the slave returns the 
tag of the corresponding request on STagID while supplying the response. The 
same tag must be used for an entire transaction.

4.7.1 Ordering Restrictions
The sequence of requests by the master determines the initial ordering of 
tagged transactions. For tagged write transactions with datahandshake 
enabled, the datahandshake phase must observe the same order as the 
request phase. The master cannot interleave requests or datahandshake 
phases from different tags belonging to the same thread within a transaction.

Tag values can be re-used for multiple outstanding transactions. Slaves are 
responsible for committing write data and sending responses for multiple 
transactions that have the same tag, in order.

Responses that are part of the same transaction must stay together, up to the 
tag_interleave_size (see Section 4.9.1.7 on page 62). Beyond the 
tag_interleave_size, responses with different tags can be interleaved. This 
allows for blocks of responses corresponding to tag_interleave_size from 
one burst to be interleaved with blocks of responses from other bursts.
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Responses with different tags can be returned in any order for all commands 
that have responses. Responses with the same tag must remain in order with 
respect to one another. Responses to requests that are issued with 
MTagInOrder asserted are also never reordered with respect to one another. 
The value returned on STagInOrder with the slave’s response must match the 
value provided on MTagInOrder with the master’s request. 

Commitment of transactions with overlapping addresses (as determined by 
MAddrSpace, MAddr, MByteEn [or MDataByteEn, if applicable]) on different 
(or the same) tags within a thread is always in order. Note, however, that the 
completion responses for such transactions with different tag ids may be 
reordered.

4.8 Threads and Connections
When using multiple threads, it is possible to support concurrent activity, 
and out-of-order completion of transfers. All transfers within a given thread 
must either remain strictly ordered or follow the tag ordering rules, but there 
are no ordering rules for transfers that are in different threads. Mapping of 
individual requests and responses to threads is handled through the 
MThreadID and SThreadID fields respectively. If datahandshake has been 
enabled when multiple threads are present, there must also be an MDataTh-
readID field to annotate the datahandshake phase. If datahandshake is set to 
1 and the datahandshake phase has blocking flow control (as described on 
page 61), the order of datahandshake phases must follow the order of request 
phases across all threads. If the datahandshake phase has no flow control or 
non-blocking flow control, the request order and datahandshake order are 
independent across threads.

The use of thread IDs allows two entities that are communicating over an OCP 
interface to assign transfers to particular threads. If one of the communi-
cating entities is itself a bridge to another OCP interface, the information 
about which transfers are part of which thread must be maintained by the 
bridge, but the actual assignment of thread IDs is done on a per-OCP-
interface basis. There is no way for a slave on the far side of a bridge to extract 
the original thread ID unless the slave design comprehends the character-
istics of the bridge. 

Use connections whenever source thread information about a request must 
be sent end-to-end from master to slave. Any bridges in the path between the 
end-to-end partners preserve the connection ID, even as thread IDs are re-
assigned on each OCP interface in the path. The MConnID field transfers the 
connection ID during the request phase. Since this establishes the mapping 
onto a thread ID, the other phases do not require a connection ID but are 
unambiguous with only a thread ID.

The SThreadBusy, SDataThreadbusy, and MThreadBusy signals are used to 
indicate that a particular thread is busy. The protocol parameters 
sthreadbusy_exact, sdatathreadbusy_exact, and mthreadbusy_exact 
can be used to force precise semantics for these signals and assure that a 
multi-threaded OCP interface never blocks. For more information, see 
Section 4.3.2.4 on page 44.
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4.9 OCP Configuration
This section describes configuration options that control interface 
capabilities.

4.9.1 Protocol Options

4.9.1.1 Optional Commands
Not all devices support all commands. Each command in Table 24 has an 
enabling parameter to indicate if that command is supported.

Table 24 Command Enabling Parameters 

The following conditions apply to command support:

• A master with one of these options set to 0 must not generate the 
corresponding command.

• A slave with one of these options set to 0 cannot service the corresponding 
command.

• At least one of the command enables must be set to 1.

• If any read-type command is enabled, or if WRNP is enabled, or if 
writeresp_enable is set to 1, resp must be set to 1.

• If readex_enable is set to 1, write_enable or writenonpost_enable 
must be set to 1.

4.9.1.2 Optional Burst Sequences
Not all masters and slaves need to support all burst address sequences. Table 
25 lists the parameter for each burst sequence. A master with the parameter 
set to 1 may generate the corresponding burst sequence. A slave with the 
parameter set to 1 can service the corresponding burst sequence. If 
MBurstSeq is disabled and tied off to a constant value, the corresponding 
burst sequence parameter must be enabled and all others disabled. If 
MBurstSeq is enabled at least one of the burst sequence parameters must be 
enabled.

Command Parameter

Broadcast broadcast_enable

Read read_enable

ReadEx readex_enable

ReadLinked and 
WriteConditional

rdlwrc_enable

Write write_enable

WriteNonPost writenonpost_enable
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Table 25 Burst Sequence Parameters

The BLCK burst sequence can only be enabled if both MBlockHeight and 
MBlockStride are included in the interface or tied off to non-default values. 
For additional burst information, see Section 4.6 on page 52.

4.9.1.3 Byte Enable Patterns
Not all devices support all allowable byte enable patterns. A force_aligned 
parameter limits byte enable patterns on MByteEn and MDataByteEn to be 
power-of-two in size and aligned to that size. The byte enable pattern of all 0s 
is explicitly included in the legal force aligned patterns.

• A master with this option set to 1 must not generate any byte enable 
patterns that are not force aligned. 

• A slave with this option set to 1 cannot handle any byte enable patterns 
that are not force aligned.

force_aligned can be set to 1 only if data_wdth is set to a power-of-two 
value.

4.9.1.4 Burst Alignment
The burst_aligned parameter provides information about the length and 
alignment of INCR bursts issued by a master and can be used to optimize the 
system. Setting burst_aligned to 1 requires all INCR bursts to: 

• Have an exact power-of-two number of transfers 

• Have their starting address aligned with their total burst size

• Be issued as precise bursts. 

The burst_aligned parameter does not apply to the INCR subsequences 
within BLCK burst sequences.

Burst Sequence Parameter

BLCK burstseq_blck_enable

DFLT1 burstseq_dflt1_enable

DFLT2 burstseq_dflt2_enable

INCR burstseq_incr_enable

STRM burstseq_strm_enable

UNKN burstseq_unkn_enable

WRAP burstseq_wrap_enable

XOR burstseq_xor_enable
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4.9.1.5 Flow Control Options
To permit the SThreadBusy and MThreadBusy signals to guarantee a non-
blocking, multi-threaded OCP interface, the sthreadbusy_exact and 
mthreadbusy_exact parameters require strict semantics. See 
Section 4.3.2.4 on page 44 for a definition of these parameters. Table 26 
describes the legal combinations of phase handshake signals.

Table 26 Request Phase Without Datahandshake

When datahandshake is set to 1, the preceding rules for cmdaccept, 
sthreadbusy, and sthreadbusy_exact also apply to dataaccept, sdatath-
readbusy, and sdatathreadbusy_exact. In addition, blocking and non-
blocking flow control must not be mixed for the request and datahandshake 
phase. A phase using no flow control can be mixed with phases using either 
blocking or non-blocking type flow control. The legal combinations are shown 
in Table 27.

Table 27 Request Phase with Datahandshake 

1 Only legal if reqdata_together is set to 0.
2 Only legal if reqdata_together is set to 0. In addition the master must not assert the datahandshake phase until after 

the associated request phase has been accepted.
3 Only legal if sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set to the same value.

The preceding rules for the request phase using cmdaccept, sthreadbusy, 
and sthreadbusy_exact also apply to the response phase for respaccept, 
mthreadbusy, and mthreadbusy_exact.

cmdaccept sthreadbusy sthreadbusy_exact Explanation

0 0 0 Legal: no flow control

0 0 1 Illegal: sthreadbusy_exact must be 
0 when sthreadbusy is 0

0 1 0 Illegal: no real flow control

0 1 1 Legal: non-blocking flow control

1 0 0 Legal: blocking flow control

1 0 1 Illegal: sthreadbusy_exact must be 
0 when sthreadbusy is 0

1 1 0 Legal: blocking flow control with 
hints

1 1 1 Illegal: since SCmdAccept is 
present flow control cannot be 
exact

Datahandshake Phase Flow Control

None Blocking Non-blocking

Request Phase
Flow Control 

None Legal Legal1 Legal

Blocking Legal2 Legal Illegal

Non-blocking Legal Illegal Legal3
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4.9.1.6 Endianness
The endian parameter specifies the endianness of a core. The behavior of 
each endianness choice is summarized in Table 28.

Table 28 Endianness 

As far as OCP is concerned, little endian means that lower addresses are 
associated with lower numbered data bits (byte lanes), while big endian 
means that higher addresses are associated with lower numbered data bits 
(byte lanes). This becomes significant when packing is concerned (see 
Section 4.6.1.2 on page 54). In addition, for non-power-of-2 data widths, tie-
off padding is always added at the most significant end of the OCP word. See 
Section 4.5 on page 51 for additional information.

4.9.1.7 Burst Interleaving with Tags
When tags > 1, the tag_interleave_size parameter limits the interleaving 
permitted for responses with burst sequences. The parameter indicates the 
size of a power-of-two, aligned data block (in OCP words) within which there 
can be no interleaving of responses from packing bursts with different tags. 

tag_interleave_size = 0
No interleaving of responses between any burst sequence responses with 
different tags is permitted. 

tag_interleave_size = 1
Interleaving is permitted at OCP word granularity and is unrestricted.

tag_interleave_size > 1
Interleaving of non-packing burst sequence responses is not limited by 
tag_interleave_size. Interleaving of packing burst responses is 
allowed whenever the next response would cross the data block boundary, 
regardless of whether a full data block of responses has been returned.

Restricting interleaving opportunities for packing burst responses reduces 
the storage required for width conversion when multiple tags are present. For 
slaves, enabling the parameter restricts the aligned boundary within which 
the slave interleaves responses with different tags. For masters, the 
parameter gives the minimum aligned boundary at which the master can 
tolerate interleaving of responses with different tags.

Endianness Description

little core is little-endian

big core is big-endian

both core can be either big or little endian, depending on its static or 
dynamic configuration (e.g. CPUs)

neutral core has no inherent endianness (e.g. memories, cores that deal 
only in OCP words)
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4.9.2 Phase Options
The datahandshake parameter allows write data to have a handshake 
interface separate from the request group.

Datahandshake
If datahandshake is set to 1, the MDataValid and optionally the SDataAccept 
signals are added to the OCP interface, a separate datahandshake phase is 
added, and the MData and MDataInfo fields are moved from the request group 
to the datahandshake group. Datahandshake can be set to 1 only if at least 
one write-type command is enabled.

Request and Data Together
While datahandshake is required for OCP interfaces that are capable of 
communicating single request / multiple data bursts, a fully separated 
datahandshake may be overkill for some cores. The parameter 
reqdata_together is used to specify that the request and datahandshake 
phases of the first transfer in a single request, multiple data (SRMD) write-
type burst begin and end together. 

A master with reqdata_together set to 1 must present the request and first 
write data word in the same cycle and can expect that the slave will accept 
them together. If sthreadbusy_exact and sdatathreadbusy_exact are both set 
to 1 and sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set 
to 0, then a request and first write data can be presented only when both 
SThreadBusy and SDataThreadBusy for the corresponding thread are 0 on 
that cycle. If sthreadbusy_exact and sdatathreadbusy_exact are both set to 1 
and sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set to 1, 
then a request and first write data can be presented only on cycle i when both 
SThreadBusy and SDataThreadBusy for the corresponding thread are 0 
during the prior cycle, i.e., cycle (i-1).

A slave with reqdata_together set to 1 must accept the request and first write 
data word in the same cycle and can expect that they will be presented 
together.

The parameter reqdata_together can only be set to 1 if burstsinglereq is 
set to 1, or burstsinglereq is set to 0 and MBurstSingleReq is tied off to 1.

If both reqdata_together and burstsinglereq are set to 1, the master 
must present the request and associated write data word together for each 
transfer in any multiple request / multiple data writes it issues. The slave 
must accept both request and write data together for all such transfers.

Write Responses
• Writes which follow a non-posted model, i.e., WRNP and WRC, always 

have a write response. For this case, resp must be set to 1.

• For writes which follow a posted model, i.e., WR and BCST: if responses 
are not enabled on writes (writeresp_enable set to 0), then they 
complete on command acceptance.
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4.9.3 Signal Options
The configuration parameters described in Section 3.4 on page 31, not only 
configure the corresponding signal into the OCP interface, but also enable the 
function. For example, if the burstseq and burstlength parameters are 
enabled the MBurstSeq and MBurstLength fields are added and the interface 
also supports burst extensions as described in Section 4.6 on page 52.

4.9.4 Minimum Implementation
A minimal OCP implementation must support at least the basic OCP dataflow 
signals. OCP-interoperable masters and slaves must support the command 
type Idle and at least one other command type.

If the SResp field is present in the OCP interface, OCP-interoperable masters 
and slaves must support response types NULL and DVA. The ERR response 
type is optional and should only be included if the OCP-interoperable slave 
has the ability to report errors. All OCP masters must be able to accept the 
ERR response. If rdlwrc_enable is set to 1, the FAIL response type must be 
supported by OCP masters and slaves.

4.9.5 OCP Interface Interoperability
Two devices connected together each have their own OCP configuration. The 
two interfaces are only interoperable (allowing the two devices to be connected 
together and communicate using the OCP protocol semantics) if they are 
interoperable at the core, protocol, phase, and signal levels.

1. At the core level: 

• One interface must act as master and the other as slave. 

• If system signals are present, one interface must act as core and the 
other as system. 

2. At the protocol level, the following conditions determine interface 
interoperability:

• If the slave has read_enable set to 0, the master must have 
read_enable set to 0, or it must not issue Read commands.

• If the slave has readex_enable set to 0, the master must have 
readex_enable set to 0, or it must not issue ReadEx commands.

• If the slave has rdlwrc_enable set to 0, the master must have 
rdlwrc_enable set to 0, or it must not issue either ReadLinked or 
WriteConditional commands.

• If the slave has write_enable set to 0, the master must have 
write_enable set to 0, or it must not issue Write commands.

• If the slave has writenonpost_enable set to 0, the master must have 
writenonpost_enable set to 0, or it must not issue WriteNonPost 
commands.



Protocol Semantics 65

OCP-IP Confidential

• If the slave has broadcast_enable set to 0, the master must have 
broadcast_enable set to 0, or it must not issue Broadcast 
commands.

• If the slave has burstseq_blck_enable set to 0, the master must 
have burstseq_blck_enable set to 0, or it must not issue BLCK 
bursts.

• If the slave has burstseq_incr_enable set to 0, the master must 
have burstseq_incr_enable set to 0, or it must not issue INCR 
bursts.

• If the slave has burstseq_strm_enable set to 0, the master must 
have burstseq_strm_enable set to 0, or it must not issue STRM 
bursts.

• If the slave has burstseq_dflt1_enable set to 0, the master must 
have burstseq_dflt1_enable set to 0, or it must not issue DFLT1 
bursts.

• If the slave has burstseq_dflt2_enable set to 0, the master must 
have burstseq_dflt2_enable set to 0, or it must not issue DFLT2 
bursts.

• If the slave has burstseq_wrap_enable set to 0, the master must 
have burstseq_wrap_enable set to 0, or it must not issue WRAP 
bursts.

• If the slave has burstseq_xor_enable set to 0, the master must have 
burstseq_xor_enable set to 0, or it must not issue XOR bursts.

• If the slave has burstseq_unkn_enable set to 0, the master must 
have burstseq_unkn_enable set to 0, or it must not issue UNKN 
bursts.

• If the slave has force_aligned, the master has force_aligned or it 
must limit itself to aligned byte enable patterns.

• Configuration of the mdatabyteen parameter is identical between 
master and slave.

• If the slave has burst_aligned, the master has burst_aligned or it 
must limit itself to issue all INCR bursts using burst_aligned rules.

• If the interface includes SThreadBusy, the sthreadbusy_exact and 
sthreadbusy_pipelined parameters are identical between master 
and slave.

• If the interface includes MThreadBusy, the mthreadbusy_exact and 
mthreadbusy_pipelined parameter are identical between master 
and slave.

• If the interface includes SDataThreadBusy, the 
sdatathreadbusy_exact and sdatathreadbusy_pipelined 
parameters are identical between master and slave.
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• All combinations of the endian parameter between master and slave 
are interoperable as far as the OCP interface is concerned. There may 
be core-specific issues if the endianness is mismatched.

• If tags > 1, the master’s tag_interleave_size is smaller than or 
equal to the slave’s tag_interleave_size.

3. At the phase level the two interfaces are interoperable if:

• Configuration of the datahandshake parameter is identical between 
master and slave.

• Configuration of the writeresp_enable parameter is identical 
between master and slave. Otherwise, the master only issues the write 
commands WriteNonPost and WriteConditional.

• Configuration of the reqdata_together parameter is identical 
between master and slave.

4. At the signal level, two interfaces are interoperable if:

• data_wdth is identical for master and slave, or if one or both 
data_wdth configurations are not a power-of-two, if that data_wdth 
rounded up to the next power-of-two is identical for master and slave.

• The master and slave both have mreset or sreset set to 1.

• If the master has mreset set to 1, the slave has mreset set to 1.

• If the slave has sreset set to 1, the master has sreset set to 1.

• The value of connection is identical for master and slave, or if 
ConnectCap is tied off to logic 0 on the side with connection set to 1.

• Both master and slave have tags set to >1 or if only one core’s tags 
parameter is set to 1, the other core behaves as though MTagInOrder 
were asserted for every request.

• The tie-off rules, described in the next section are observed for any 
mismatch at the signal level for fields other than MData and SData.

4.9.5.1 Signal Mismatch Tie-off Rules
There are two types of signal mismatches: both interfaces may have 
configured the signal, but to different widths or only one interface may have 
configured the signal.

Width mismatch for all fields other than MData and SData is handled through 
a set of signal tie-off rules. The rules state whether a master and slave that 
are mismatched in a particular field width configuration are interoperable, 
and if so how to connect them by tying off the mismatched signals.

If there is a width mismatch between master and slave for a particular signal 
configuration the following rules apply:
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• If there are more outputs than inputs (the driver of the field has a wider 
configuration than the receiver of the field) the low-order output bits are 
connected to the input bits, and the high-order output bits are lost. The 
interfaces are interoperable if the sender of the field explicitly limits itself 
to encodings that only make use of the bits that are within the 
configuration of the receiver of the field.

• If there are more inputs than outputs (the driver of field has a narrower 
configuration than the receiver of the field) the low-order input bits are 
connected to the output bits, and the high-order input bits are tied to 
logical 0. The interfaces are always interoperable, but only a portion of the 
legal encodings are used on that field.

If one of the cores has a signal configured and the other does not, the following 
rules apply:

• If the core that would be the driver of the field does not have the field 
configured, the input is tied off to the constant specified in the driving 
core’s configuration, or if no constant tie-off is specified, to the default tie-
off constant (see Table 16 on page 31). The interfaces are interoperable if 
the encodings supported by the receiver’s configuration of the field 
include the tie-off constant.

• If the core that would be the receiver of the field does not have the field 
configured, the output is lost. The receiver of the signal must behave as 
though in every phase it were receiving the tie-off constant specified in its 
configuration, or lacking a constant tie-off, the default tie-off constant (see 
Table 16 on page 31). The interfaces are interoperable if the driver of the 
signal can limit itself to only driving the tie-off constant of the receiver.

• If only one core has the EnableClk signal configured, the interfaces are 
interoperable only when the EnableClk signal is asserted, matching the 
tie-off value of the core that has enableclk=0.

If neither core has a signal configured, the interfaces are interoperable if both 
cores have the same tie-off constant, where the tie-off constant is either 
explicitly specified, or if no constant tie-off is specified explicitly, is the default 
tie-off (see Table 16 on page 31).

While the tie-off rules allow two mismatched cores to be connected, this may 
not be enough to guarantee meaningful communication, especially when 
core-specific encodings are used for signals such as MReqInfo.

As the previous rules suggest, specifying core specific tie-off constants that 
are different than the default tie-offs for a signal (see Table 16 on page 31) 
makes it less likely that the core will be interoperable with other cores.

4.9.6 Configuration Parameter Defaults
To assure OCP interface interoperability between a master and a slave 
requires complete knowledge of the OCP interface configuration of both 
master and slave. This is achieved by a combination of (a) requiring some 
parameters to be explicitly specified for each core, and (b) defining defaults 
that are used when a parameter is not explicitly specified for a core.



68 Open Core Protocol Specification

OCP-IP Confidential

Table 29 lists all configuration parameters. For parameters that do not need 
to be specified, a default value is listed, which is used whenever an explicit 
parameter value is not specified. Certain parameters are always required in 
certain configurations, and for these no default is specified.

Table 29 Configuration Parameter Defaults 

Type Parameter Default

Protocol broadcast_enable 0

burst_aligned 0

burstseq_blck_enable 0

burstseq_dflt1_enable 0

burstseq_dflt2_enable 0

burstseq_incr_enable 1

burstseq_strm_enable 0

burstseq_unkn_enable 0

burstseq_wrap_enable 0

burstseq_xor_enable 0

endian little

force_aligned 0

mthreadbusy_exact 0

rdlwrc_enable 0

read_enable 1

readex_enable 0

sdatathreadbusy_exact 0

sthreadbusy_exact 0

tag_interleave_size 1

write_enable 1

writenonpost_enable 0

Phase datahandshake 0

reqdata_together 0

writeresp_enable 0
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Signal
(Dataflow)

addr 1

addr_wdth No default - must be explicitly specified if 
addr is set to 1

addrspace 0

addrspace_wdth No default - must be explicitly specified if 
addrspace is set to 1

atomiclength 0

atomiclength_wdth No default - must be explicitly specified if 
atomiclength is set to 1

blockheight 0

blockheight_wdth No default - must be explicitly specified if 
blockheight is set to 1

blockstride 0

blockstride_wdth No default - must be explicitly specified if 
blockstride is set to 1

burstlength 0

burstlength_wdth No default - must be explicitly specified if 
burstlength is set to 1

burstprecise 0

burstseq 0

burstsinglereq 0

byteen 0

cmdaccept 1

connid 0

connid_wdth No default - must be explicitly specified if 
connid is set to 1

dataaccept 0

datalast 0

datrowalast 0

data_wdth No default - must be explicitly specified if 
mdata or sdata is set to 1

enableclk 0

mdata 1

mdatabyteen 0

mdatainfo 0

Type Parameter Default



Signal
(Dataflow) 

mdatainfo_wdth No default - must be explicitly specified if 
mdatainfo is set to 1 

mdatainfobyte_wdth

mthreadbusy 0

mthreadbusy_pipelined 0

reqinfo 0

reqinfo_wdth No default - must be explicitly specified if 
reqinfo is set to 1

reqlast 0

reqrowlast 0

resp 1

respaccept 0

respinfo 0

respinfo_wdth No default - must be explicitly specified if 
respinfo is set to 1

resplast 0

resprowlast 0

sdata 1

sdatainfo 0

sdatainfo_wdth No default - must be explicitly specified if 
sdatainfo is set to 1

sdatainfobyte_wdth

sdatathreadbusy 0

sdatathreadbusy_pipelined 0

sthreadbusy 0

sthreadbusy_pipelined 0

tags 1

taginorder 0

threads 1

Type Parameter Default
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Signal
(Sideband)

connection 0

control 0

controlbusy 0

control_wdth No default—must be explicitly specified if 
control is set to 1

controlwr 0

interrupt 0

merror 0

mflag 0

mflag_wdth No default—must be explicitly specified if 
mflag is set to 1

mreset No default—must be explicitly specified

serror 0

sflag 0

sflag_wdth No default - must be explicitly specified if 
sflag is set to 1

sreset No default - must be explicitly specified

status 0

statusbusy 0

statusrd 0

status_wdth No default - must be explicitly specified if 
status is set to 1

Signal
(Test)

clkctrl_enable 0

jtag_enable 0

jtagtrst_enable 0

scanctrl_wdth 0

scanport 0

scanport_wdth No default - must be explicitly specified if 
scanport is set to 1

Type Parameter Default
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5 OCP Coherence Extensions: 
Theory of Operation

There is an increasing need for SoC architectures to be built with masters 
which have caches. When shared memory locations are cached, there is a 
need for cache coherence.

The OCP Coherence Extensions are a parameterizable set of commands and 
signals that enable a SoC designer to build a wide variety of cache coherent 
architectures. The main features of the extensions are:

• OCP 3.0 with coherence extensions maintains full backward compatibility 
with OCP 2.2, making it possible to mix OCP 2.2 masters and slaves (that 
are by definition non-coherent) with coherent masters and slaves.

• Ability to build a wide range of cache-coherent architectures, from fully 
snoop-based to fully directory-based. Example architectures are 
presented in Chapter 13, beginning on page 255.

• The extensions support protocols based on MSI (and SI), MESI, and 
MOESI cache state combinations. Further, it is not necessary that all 
agents in a coherence domain enable the same set of cache states. Thus, 
a directory agent, for example, could be based on MSI while each of the 
other caching agents could be based on MSI or MESI.

• Includes support for coherence-aware masters.

• The extensions only support invalidation based protocols because of their 
preponderance over update based protocols. Within the gamut of 
invalidation based protocols, the extensions permit the use of either 
three-hop protocols or four-hop protocols. The Coherence Extensions are 
flexible, and permit protocol optimizations based on specific system 
requirements.
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• Multiple coherence domains may coexist in a single architecture. 
However, only one cache line size is permitted in each coherence domain, 
and a coherence domain cannot share its coherence address space with 
any other coherence domain.

Note that an OCP coherent system permits the existence of “subsystem 
coherence,” where a subsystem will maintain its own coherence framework 
and can act as a single OCP coherent agent to the system at the next hierar-
chical level. In fact, the subsystem coherence framework at the lower level 
could itself be composed of OCP agents. Hierarchical coherent subsystems 
are built in this manner. 

5.1 Cache Coherence
A generally accepted definition of cache coherence1, which is used in this 
specification, requires the following two conditions to be satisfied:

• A write must eventually be made visible to all master entities. This is 
accomplished in invalidate protocols by ensuring that a write is 
considered complete only after all the cached copies other than the one 
which is updated are invalidated.

• Writes to the same location must appear to be seen in the same order by 
all masters. Two conditions which ensure this are:

• Writes to the same location by multiple masters are serialized, i.e., all 
masters see such writes in the same order. This can be accomplished 
by requiring that all invalidate operations for a location arise from a 
single point in the coherent slave and that the interconnect preserves 
the ordering of messages between two entities.

• A read following a write to the same memory location is returned only 
after the write has completed. 

5.2 Local View vs. System View
OCP 2.x is a point-to-point interface with one end being the master and the 
other end the slave. Thus all requests from the master agent are directed to 
the slave agent and all responses from the slave agent are directed to the 
master agent. Even when multiple agents are used in a system and a master 
agent needs to communicate with multiple slaves, the master agent acts as 
though it were communicating only with its slave (i.e., the slave agent in a 
single master–single slave configuration). This abstraction is made possible 
by a “bridge” or “interconnection” agent that acts as a slave agent for this 
master (and other masters). It also acts as a single master when a slave agent 
has to communicate with multiple masters in a system. Thus, the master and 
the slave agents do not need to carry explicit identifiers. Each master or slave 
agent maintains a “local” view even when it is part of a multi-agent system. 

1 See, for example, S. Adve and K. Gharachorloo, “Shared Memory Consistency Models: A Tutorial,” IEEE Computer, 
vol. 29, no. 12, pp. 66-76, December 1996.
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Only the bridge or interconnect agent maintains a “system” view. This is a 
very convenient abstraction in SoC architectures that are loosely coupled with 
agents that are really hard or soft IPs.

With OCP 3.0 and the introduction of cache coherence, the “local” view is 
maintained for all master agents and all non-coherent slave agents. Only the 
home agent (introduced on page 79), which is a slave coherent agent, and the 
bridge agent need to maintain the “system view” abstraction. In this context, 
the “system view” refers to the explicit encoding of the master, slave, and 
forwarding agent identifiers (IDs) and the encoding of the address regions on 
an agent’s interface.

5.3 Coherent System Transactions
The notions of master, slave, and bridge entities are inherited from previous 
versions of the Open Core Protocol Specification. The master entity initiates 
requests and receives responses on its OCP port. The slave entity receives 
requests and generates responses on its OCP port. The bridge entity, if 
present, has one or more master and one or more slave ports. 

In a coherent system, the slave may not be able to satisfy the response to a 
request directly since the latest copy of the requested address may reside in 
the coherent cache of another master and may not reside at its “home” 
memory. The coherence mechanism ensures that the latest copy is returned 
to the requester. It does this by “snooping” the set of coherent caches which 
has the latest data for this address, possibly updating the cache states, and 
finally returning the latest data to the original master. It can be inferred from 
this short background that a more sophisticated description of master/slave 
entities, ports, and address regions is needed for OCP to support cache 
coherence. The relevant definitions follow. (The reader is referred to standard 
text books and tutorials on cache coherence for a complete treatment.)

For convenience, the set of commands supported by OCP Rev. 2.2 are called 
legacy commands. The new set of commands introduced for the coherence 
extensions are called coherent commands.

5.3.1 Cache Line and Cache States
A cache line is the granularity of the data which participates in cache 
coherence. The cache line is byte addressable, has a power-of-two data size, 
and its address is always aligned to its line size. The current version of the 
OCP specification requires that all entities in the coherence domain have the 
same cache line size. It is expected that succeeding versions of the specifi-
cation will relax this requirement. The first refinement will allow a different 
cache line size at each level of a hierarchical cache coherent system. 
Subsequent refinements will permit multiple cache line sizes in a coherence 
domain at the same level of the hierarchy. In such cases, the cache line sizes 
will be power-of-two multiples of the base size.
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Note that if a master with coherent cache supports the critical word first 
feature, addresses of commands from the master may not be aligned to 
multiple of the cache line size, but the cache line boundaries should be 
aligned to the multiple of the cache line size by using WRAP or XOR burst 
address sequences.

A cache line in a master’s coherent cache is always in one of several known 
states; the set of available states are summarized in Table 30. Some states 
are required and some are optional depending on the type of coherence 
protocol chosen.

Table 30 Cache Line State Definitions

5.3.2 Three Hop and Four Hop Protocols
The coherence extensions permit the implementation of both four hop and 
three hop protocols.

Four hop protocols are simpler to implement and are so called because the 
transfer of a cache line to a requester takes up to four protocol steps:

1. master’s request to coherent slave;

2. slave’s probe of other masters (which have coherent caches);

3. responses from masters, with one of them possibly providing the latest 
copy of the cache line to the slave; and, 

4. the transfer of data from the slave to the requesting master.

Name Mnemonic Description OCP 
Compliance

Invalid I Cache line not present in caching 
entity.

Required

Shared S Cache line is read only. Required

Modified M Cache line owned exclusively by 
caching entity and modified by it.
Memory copy is stale.
All other caching entities have this 
line in I state.

Required1

1. Instruction caches typically do not require this state. 

Exclusive E Cache line is exclusively owned.
Memory copy matches value.
All other caching entities have this 
line in I state.

Optional

Owned O This entity has latest copy.
Memory copy is stale.
Other caching agents may have 
(latest) copy.

Optional
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Three hop protocols have better latency characteristics, but are more 
complicated to implement than four-hop protocols since they give rise to 
additional race conditions, deadlock, and starvation scenarios. The transfer 
of a modified cache line to a requester takes three protocol steps: 

1. master’s request to coherent slave;

2. slave’s probe of other masters (which have coherent caches); and,

3. response from a master which has a cache line in the modified state 
directly to the requester (and a possible writeback of this data to the slave) 
with concurrent responses from all masters to the slave.

5.4 Address Space
The entire address space is partitioned into two non-overlapping parts: the 
coherent address space and the non-coherent address space. Each space 
is composed of regions which may be non-contiguous. The size of a region is 
implementation specific.

The coherent address space is kept coherent by OCP-based cache coherence 
protocols. Each access to this space is permitted only at cache line granularity 
(with optional byte enables). A read operation into this space always results 
in the latest completed write being read. A completed write to this space 
always results in this value being visible to all masters. Section 6.2.3.2 gives 
the semantics of the various types of reads and writes to this space. This 
space is typically accessed by coherent and coherence-aware masters (both 
cached and non-cached).

Coherent addresses are cacheable by coherent masters. If an address is 
cached, then the cache is coherent, i.e., it participates in cache coherence 
through the intervention port (see Section 5.5 on page 77). A coherence-aware 
master does not require a cache.

The non-coherent address space is not kept coherent by the OCP-based cache 
coherence protocol. Accesses to this space are at the OCP word granularity 
(with optional byte enables). Reads and writes to this space follow the 
semantics of legacy reads and writes. 

Non-coherent addresses may be cached by a master. Such a cache does not 
participate in cache coherence and is not kept coherent by OCP.

5.5 Entities and Ports
A master with a coherent cache issues read and write commands that have 
different semantics from the read and write commands detailed in the Open 
Core Protocol Specification, Release 2.2. For example, such a master might 
issue a read with intent to modify the requested line (i.e., acquiring the latest 
copy, writing to it, and retaining it in its cache), a read only request, and a 
write back of a modified or dirty line when that line needs to be evicted from 
the cache. A master with a coherent cache is called a coherent master and 
issues requests on the main port of the OCP interface. The full set of main 
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port commands and encodings are explained in Section 5.6. Legacy requests 
which are targeted to non-coherent address space are issued on the main 
port.

The coherent master also needs to satisfy requests from other coherent 
masters to “snoop” its cache lines and possibly respond either with the latest 
copy of the cache line or by giving up its ownership of the cache line. In OCP 
3.0, these requests to the master and the corresponding responses are 
handled via the intervention port. The full set of intervention port 
commands are explained in Section 6.3.3.1 on page 115. A CPU is a typical 
example of an entity which would be an OCP coherent master. Section 5.9 
presents an abstract model that illustrates the interaction between the main 
port and the intervention port, and between the coherent master and coherent 
slave.

A coherence-aware master does not have a coherent cache. For example, a 
DMA engine could be implemented as a coherence-aware master. A 
coherence-aware master has a main port but does not have an intervention 
port. 

A coherence-aware master uses legacy commands. If the associated address 
is in the coherent region, then the coherent slave performs the appropriate 
actions depending on the request and the state of the associated cache line 
(as seen by the home agent), e.g., a coherent read returns the latest value 
written. (While processing a request from the coherence-aware master, a 
coherent slave may send intervention requests for the latest write to be 
returned, as discussed in detail in Section 13.3.4.1 on page 276.) If the 
associated address for a request is in the non-coherent address space, then 
the request has the semantics of a legacy request.

The coherent slave is the target of coherent request commands from all or 
any master in the coherence domain, depending on the type of coherence 
protocol used. It receives requests on its main port. Before it generates the 
response, it in turn sends requests on the intervention port to snoop all or a 
subset of the coherent caches in the coherence domain and may send a 
request to the memory controller. After it receives the responses to the 
intervention requests and/or from the memory controller, it finally sends the 
response to the original request on its main port. The coherent slave also 
ensures that writes to the same location appear to be seen in the same order 
by all the coherence masters. The coherent slave implementation usually 
takes the form of either a snoop- or directory-based scheme, as described in 
Section 5.11. 

OCP 3.0 maintains full backward compatibility with OCP 2.2, that is, the 
command set for the coherence extensions is a superset of the OCP 2.2 
command set. OCP 3.0 defines a new signal, MCohCmd, which, when set, 
indicates a coherent command. Non-coherent commands, which refer to the 
OCP 2.2 command set, do not have the MCohCmd bit set. In the rest of the 
document, the port defined by OCP 2.2 is referred to as the legacy port. Note 
that the main port defined by OCP 3.0 is capable of generating legacy 
transactions. Hence, a new design would not need both the legacy and main 
ports. 
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A master with a legacy port that only generates transactions to non-coherent 
space is called a legacy master. A slave with a legacy port is called a legacy 
slave. 

Other terms used in this document include:

• The term requester is interchangeably used for a coherent master which 
initiates a request.

• The term responder is interchangeably used for a coherent master which 
responds to an intervention request.

• The term owner is interchangeably used for a coherent master which has 
a cache line in the M or the O state.

• The term snoop is interchangeably used with intervention.

• The term home agent is interchangeably used with coherent slave. Thus 
each coherent address has an associated home which is the coherent 
slave managing its coherency actions. 

5.6 Commands
A master which can only issue legacy commands to noncoherent space is 
called a legacy master. A master which can issue only legacy commands to 
both coherent and noncoherent address spaces is called a coherence aware 
master. A master which can issue legacy commands to both non-coherent 
and coherent address spaces, and can issue coherent commands to coherent 
address spaces is called a coherent master.

It is illegal for coherent commands to be issued to non-coherent address 
spaces.

Legacy commands accessing the noncoherent address space are called 
“Legacy Commands to Noncoherent Space” (LC-NC for short). Legacy 
commands accessing the coherent address space are called “Legacy 
Commands to Coherent Space” (LC-C for short).

Table 31 summarizes the allowed combination of OCP masters and command 
types.

The LC-C semantics are different from LC-NC since they operate on a different 
address space. The LC-C and the Coherent Commands are described in 
Section 6.2.3.2 on page 99.
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Table 31 Allowed Commands

Table 32 summarizes the scope of the address space access for each 
command type.

Table 32 Address Space Access by Command Type

5.7 Self Intervention and Serialization
When a coherent slave receives a request R1 from a coherent master M1, the 
slave is required to send an intervention request to M1 in addition to any other 
intervention requests it needs to send as a result of request R1. Such a 
request to M1 is called a self intervention. In case of conflicting requests by 
multiple masters to the same cache line, the self intervention request is used 
to establish the same order at the coherent master as the conflicting requests 
seen at the coherent slave. Self intervention is a key mechanism to ensure 
cache coherence and freedom from deadlock.

An intervention that is not a self intervention is called a system 
intervention. The term intervention by itself is can be used to refer to either 
self intervention or system intervention—with the distinction made clear by 
the context; self-interventions are explicitly noted.

The coherent slave or home agent plays a significant role in ensuring that 
conflicting write requests (i.e., write-write, read-write, or write-read access 
sequence to the same cache line) are serialized. The serialization point is the 
logic in the home that orders or serializes the conflicting requests. This 
ordering is done in an implementation-specific manner. It is necessary that 
the coherent masters that process these conflicting requests also see them in 
the same order established by the home agent. To facilitate this, OCP requires 
that the interconnect preserves the ordering of OCP transactions between a 
given pair of entities (A and B) on a per-address basis: if two transactions T1 
and T2 with the same address are launched from A to B, the interconnect will 

Master Type Legacy Commands 
to Noncoherent 
Space (LC-NC)

Legacy Commands 
to Coherent Space 
(LC-C)

Coherent 
Commands (CC)

Legacy Yes No No

Coherence-Aware Yes Yes No

Coherent Yes Yes Yes

Command Type Address Space Access Scope

LC-NC Non-coherent address space at OCP word granularity. Bridge 
agent handles multiple word sizes, packing, etc. 

LC-C, CC Coherent address space at cache line granularity, aligned at 
cache line size boundary. Single cache line size used within 
entire coherence domain.
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deliver the transactions to B in the same order. These conditions, along with 
the self intervention mechanism, ensure that all coherent masters see writes 
to the same cache line in the order established at the home agent. 

Thus, each coherent master has to implement logic to maintain the ordering 
imposed by the home. The serialization point at the home is called the primary 
serialization point and the one at each master is called the secondary serial-
ization point. Unless otherwise noted, the term serialization point refers to the 
primary serialization point. 

In a snoop based design, the home agent for all coherent requests is typically 
the interconnect agent itself, which acts as the coherent slave. Thus, snoop 
based designs have a single serialization point. In a directory based design, 
the home agents for coherent addresses may be physically centralized or may 
be distributed and are typically separate from the interconnect. Each physical 
home agent becomes the serialization point for the set of coherent addresses 
it controls.

5.8 Interconnect or Bridge Agent
An OCP 3.0 cache coherent system requires at least two coherent masters. It 
also requires at least one coherent slave. The slave in a directory based 
implementation needs to be able to identify the coherent masters to know the 
coherent cache state, send targeted intervention requests, etc. Hence, unlike 
a legacy OCP system, the slave needs to be aware of all the coherent masters 
in the coherence domain. Further, since there are at least three entities in the 
coherent system, a bridge or interconnect agent is necessary in OCP 3.0. The 
bridge has to preserve the transaction ordering property on a per-address 
basis as mentioned in Section 5.7. 

Note that the interconnection agent is still able to preserve the abstraction 
that a master still communicates with a single slave and a legacy slave still 
communicates with a single legacy master. Thus all these entities have a 
“local” view as outlined in Section 5.2. The interconnect agent, in this case, 
acts as a proxy for these entities by assigning appropriate IDs and providing 
routing functionality. Thus, only coherent slaves which have directory based 
implementations need to have the “system view” in addition to the 
interconnect. 

In snoopy based designs, the interconnect frequently provides additional 
functionality by acting as the coherent slave. This is explained in 
Section 5.11.2.

5.9 Port Characteristics
Table 33 captures the roles of different masters and slaves.



82 Open Core Protocol Specification

OCP-IP Confidential

Table 33 Roles of Masters and Slaves

Figures 7—9 capture the port connectivities and port directions for three 
generic cases: 

• Figure 7 for an OCP non-coherent (legacy) system

• Figure 8 for an OCP coherent system which is snoop based with the 
interconnect acting as the coherent slave or home.

Core 
Type

Legacy 
Port

Main 
Port

Inter-
vention
Port

Function

Legacy 
Master

Yes No No • Initiates requests to non-
coherent address space only

• Receives responses from 
non-coherent address space 
only

Coherence
-Aware 
Master

No Yes No • Initiates legacy and coherent 
requests to coherent and 
non-coherent spaces using 
legacy commands

• Receives responses from 
coherent and non-coherent 
spaces

Coherent 
Master

No Yes Yes • Initiates requests to both 
non-coherent and coherent 
address spaces on main port 
(including coherent 
commands)

• Receives responses on main 
port

• Receives intervention 
requests

• Generates intervention 
responses 

Legacy 
Slave

Yes No No • Receives legacy requests
• Initiates legacy responses

Coherent 
Slave 
(Home 
Agent) 

Possible1

1. These are requests to a non-coherent slave (typically the memory). This can be handled 
through a legacy OCP port or through a custom interface.

Yes Yes • Receives requests on main 
port

• Generates intervention 
requests 

• Receives intervention 
responses

• Generates legacy port 
requests1

• Receives legacy port 
responses1

• Generates responses on 
main port
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• Figure 9 for an OCP coherent system with a centralized directory based 
coherent slave. 

Figure 7 Block Diagram of OCP Non-Coherent System

Figure 8 Block Diagram of Snoop-Based OCP Coherent System
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Figure 9 Block Diagram of Directory-Based OCP Coherent System

5.10 Master Models

5.10.1 Coherent Master
Each request on the main port generates at most one response. This 
requirement makes the design of the coherent master relatively simple. The 
coherent slave and the interconnect have to bear additional responsibilities 
(as outlined in Section 5.11) to support this requirement. 

Consider a coherent master sending a read request to the coherent slave and 
waiting for its response.

In the interim, it receives the self intervention request on its intervention port 
and one or more system intervention requests, one or more of which may 
conflict with the address of the request. Figure 10 shows the abstract model 
of the coherent master to deal with coherence and serialization.
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Figure 10 Abstract Model of Coherent Master

An abstract implementation of the secondary serialization point is described 
below.

Each request is associated with two fencing points: one at the main port 
request path and the other at the intervention port request path. Each fencing 
point is associated with a fencing interval.

The main port fencing interval begins when the request enters the lower 
queue on the request side and lasts till all the associated response is received 
on the main port response queue. During this interval, the fencing logic does 
not accept additional conflicting requests on the main port from the master 
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the intervention port request side and is detected by the fencing logic. It lasts 
until the associated response is received on the main port response queue. 
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serviced in order at the intervention port and the appropriate responses 
generated (i.e., cache look up, possible cache state change, generation of 
response).

Upon receipt of the response for the request, the fences need to be cleared. 
The fencing logic is implementation specific. 

A non-coherent request follows the same behavior as a legacy master.

5.10.2 Coherence-Aware Master
A master sends a request on its main port. It then waits for the associated 
response to come back on the main port. Since the master has no coherent 
cache, it does not have an intervention port. Correspondingly, this simplifies 
the abstract model of Figure 10 (e.g., only the main port fencing logic is 
needed).

A non-coherent request follows the same behavior as a legacy master.

5.10.3 Legacy Master
A legacy master generates only non-coherent requests. It follows the same 
behavior as a traditional OCP master. The target addresses are to the non-
coherent address space.

5.11 Slave Models
It is convenient to consider snoop-based and directory-based coherent slaves 
separately.

5.11.1 Coherent Slave: Directory Based
Figure 11 shows the abstract model of the directory based coherent slave to 
deal with coherence and serialization.

The directory is a logically centralized structure which maintains information 
of cache lines at each coherent master. Various directory schemes are 
possible depending on what information it maintains. To make this 
discussion concrete, it is assumed that the directory maintains the cache 
state for each cache line that is cached in the coherence domain. If a line is 
not present in any coherent master, then the most up-to-date data is present 
in the memory. 
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Figure 11 Directory-Based Coherent Slave Model

A request received on the main port is looked up in the directory controller to 
determine which of the coherent masters need to be sent intervention 
requests in addition to the self intervention request. These requests go out on 
the intervention port. In addition, a request to memory may also need to be 
sent. The figure shows a speculative path option to memory in which case the 
memory request is sent before the directory lookup, optimizing for latency. 
Alternatively, bandwidth conscious designs could do a lookup and determine 
if a memory request is warranted (e.g., if the line is in M state in a master, 
then a memory access is not necessary). The directory controller is the serial-
ization point and determines a single order to process conflicting requests 
across the coherence domain.

Cache writeback requests arriving on the main port will be written to memory 
on the legacy port, after a directory lookup to update the state of the line. 

Responses arriving at the intervention port and at the legacy port are 
appropriately “merged” and zero or more responses are generated depending 
on the nature of the request (for example, on a read request it could be the 
read data from memory combined with a completion response or it could be 
no response if a modified line was returned directly by a responding coherent 
master to the requesting coherent master). The main port of the requesting 
coherent master receives only one response for each request. With cache-to-
cache transfers, the modified line that is received (DVA) also serves as a 
transaction completion indicator.

As already mentioned, receiving only one response makes the design of the 
coherent master relatively simple. It has the potential to introduce race 
conditions at the directory, however. It is expected that the implementation 
will take care to prevent such races and possible deadlocks. Some scenarios 
are outlined below:

Directory 
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In the case of a cache-to-cache transfer, the directory may choose to not 
generate a completion response after the transaction is complete from its 
perspective. If the slave does generate a response, then the interconnect agent 
must taken on the responsibility to drop this response. 

Additionally, the race condition arising below has to be handled by the 
directory: Assume that a master (say, B) supplies a modified cache line to the 
original requester A. The response arrives at A and the data is consumed and 
the transaction is deallocated. It is possible that A generates another request 
to the same cache line even before the additional response from B to the 
directory controller has arrived at the latter. In such a case, the directory 
should hold off servicing the request from A until it has processed the 
response. This is typically handled by having separate request and response 
queues at the directory. 

Note that the directory structure is only logically centralized. The serialization 
point refers to a single cache line address. Hence the directory controller may 
be physically distributed with each controller being “home” to a distinct set of 
cache line addresses. The set of addresses controlled by each controller is 
non-overlapping and together cover the complete coherent address space.

Note that the coherent slave is required to have a “system view”—thus, it 
needs to identify coherent masters as a requesters, the targets of intervention 
requests, and as responders who provide cache line data and cache state. 
This information is used to keep the directory up-to-date, to broadcast 
intervention requests selectively, etc. OCP provides explicit signals for this 
purpose on both the main port (MCohId, SCohId) and the intervention port 
(MCohId, SCohId, MCohFwdId, SCohFwdId).

5.11.2 Coherent Slave: Snoop Based
Figure 12 shows the abstract model of the snoop based coherent slave to deal 
with coherence and serialization. In a snoop based design, an intervention 
request is broadcast to ALL the coherent masters in its coherence domain. 
The directory controller is replaced by a relatively simple piece of logic which 
is logically and, frequently, physically a single unit which is the target of all 
coherent requests from all coherent masters. This piece of “bus logic” also is 
the coherent slave’s single serialization point. Since all main port requests are 
targeted to a single coherent slave and the coherent slave, in turn, broadcasts 
to all coherent masters, it is not necessary for the coherent slave to have 
explicit knowledge of the master ids (the *CohId fields as in the directory 
based design). Apart from these changes, the functionality of the snoop based 
design is the same as the directory based design.
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Figure 12 Home Agent Coherent Slave Model (Snoop Based)

Frequently, the coherent slave functionality (the shaded portion in Figure 12) 
is provided by the interconnect agent itself. In such a case, the main port and 
the intervention port of the coherent slave is not exposed as OCP ports. Only 
the legacy port gets exposed to the memory subsystem. In this specification, 
such an interconnect is called a broadcast interconnect or a snoop-based 
interconnect.

Just as in the case of the directory based coherent slave, the snoop based 
slave and the interconnect need to provide similar functionality to ensure that 
the coherent master's main port receives at most one response to a request.

5.11.3 Legacy Slave
A legacy slave receives only non-coherent requests and generates responses. 
It follows the same behavior as a traditional OCP slave. The target addresses 
are to the non-coherent address space. 

5.12 Multi-threading and Tags
If accesses of different threads or tags are not related to cache coherency, the 
accesses have no ordering requirement. If accesses of different threads or tags 
access the same cache line (in coherent address space), the order of the 
accesses must be maintained properly. As described in Section 5.7, the order 
of all accesses to a coherent memory location is globally ordered at the serial-
ization point. 
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Multithreading and tagging are supported in the OCP coherence extensions, 
with the above restrictions. 

5.13 Burst Support
Bursts to coherent space have the following restrictions: They have to be 
SRMD, burst lengths have to be the cache line size. Only INCR, XOR, and 
WRAP burst sequences are allowed.

Bursts to non-coherent space follow legacy behavior.

5.14 Memory Consistency
The serialization mechanism, enforced through intervention in the OCP 
coherence extensions, imposes ordering constraints on conflicting cache line 
addresses which is globally seen or observed. The set of possible orderings 
may be further restricted by the particular memory consistency model 
employed by the system. The coherence extensions do not restrict the type of 
memory consistency used by the system.

5.15 Race Condition, Deadlock, Livelock, and 
Starvation
In the context of OCP cache coherence, a race occurs when two entities 
concurrently access the same cache line. The home agent establishes the 
order and this order is reflected throughout the coherence domain; the race 
is thus resolved.

Some possible scenarios that result from race conditions include:

1. The master’s cache state may be changed before it receives its own request 
from its intervention request port as self-intervention.

2. If a master receives a read request to the same cache line as the master’s 
cache write-back request, the cache write-back request may be canceled.

3. Transactions with data phase may be cancelled. The cc-WB request 
coming from main port may be canceled by the requester itself, due to the 
cache state change caused by another master’s coherent request.

There are other situations that can cause races, starvation, deadlocks, and 
livelocks in cache coherent systems. Solutions to these problems are 
implementation dependent, and are outside the scope of the main specifi-
cation. Some specific examples of race conditions which arise in specific 
implementations are discussed in the Developer’s Guidelines.
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5.16 Heterogeneous Coherence System
With increasing sophistication and the need for multiple functional blocks 
(computation intensive, graphics, video, audio, etc.), SoC architectures are 
being built as hierarchical subsystems. In such architectures, some 
subsystems could be locally cache coherent (usually referred to “subsystem 
coherence”). Additionally, there may be a need for cache coherence across 
subsystems. In fact, the subsystem cache coherence and global coherence 
may follow different cache coherent protocols.

The OCP coherence extensions support coherence in such sophisticated 
heterogeneous architectures—this is discussed through the example in 
Figure 13. The figure shows a hierarchical system composed of 4 “super 
nodes” or subsystems (NUMA nodes 0–3). Each subsystem is in turn 
composed of processors with differing cache hierarchies, memory, and I/O. 
Note that the memory is physically distributed, but is logically shared.

At the local level, a snoop bus based coherence scheme is used to keep the 
subsystem coherent. The directory agent at each node maintains coherence 
among the nodes at the global level. Thus, a read request from node 0 first 
snoops locally. If the read request is not satisfied, then it is routed to its 
“home” at the global level (say, Node 1). The directory node then handles the 
request. Assume that the line is modified state in Node 2 (the directory only 
maintains information at this granularity and not at the level of individual 
caching agents). This then results in snooping of Node 2 which then returns 
the data to the original requester, routed through the Node 0 directory 
controller.

Another level of heterogeneity that is permitted is in the granularity of the 
cache line states. For example, the directory could only implement an MSI 
based protocol while the snoop based protocol could be based on MESI.
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Figure 13 OCP-Based Heterogeneous SoC Architecture
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6 OCP Coherence Extensions: 
Signals and Encodings

6.1 Definitions

6.1.1 New Transaction Types 
Since some of the coherent transactions do not act exactly like legacy write 
and read commands, new basic command types are introduced. 

6.1.1.1 Message Command Type
The first new command type, called Message, is similar to a write command 
but does not do any data transfer on the port in which the command request 
appears. 

There are two extensions of this basic type: Posted Message and Non-Posted 
Message.

The Posted Message command does not receive any response if port 
parameter writeresp_enable is set equal to zero. 

The following MCmd commands are of type Posted Message:

• CohWriteBack when port parameter intport_writedata=1

• CohCopyBack when port parameter intport_writedata=1

• CohCopyBackInv when port parameter intport_writedata=1

The non-posted message command always receives a response. 

The following MCmd command is of type Non-Posted Message:
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• CohInvalidate

These MCmd commands are described in Section 6.2.3.2 on page 99.

6.1.1.2 Query Command Type
The second new transaction type, called Query, is similar to a read command 
and always gets a response from the slave but may not transfer any data. 

The following MCmd commands are of type Query:

• CohUpgrade

• CohCompletionSync

These MCmd commands are described in Section 6.2.3.2 on page 99. 

6.2 Main Port: Parameters, Signals, and 
Encodings

6.2.1 Introduction
The main port is an OCP port with the following extensions, new signals, and 
port restrictions:

• A MCohCmd signal is added to the request phase.

• The MCmd signal field is extended to allow issuing coherence commands.

• The SResp signal field is extended to support new coherence response 
semantics.

• A SCohState signal is added to the response phase to indicate the 
coherence installing state (at the response receiving side).

• SRMD bursts must be supported, i.e., the MBurstSingleReq signal must 
be supported or, alternatively, the signal may be tied off to a non-default 
tie-off value of 1. The datahandshake phase must be enabled. The 
reqdata_together parameter must be set to 1.

• If the port parameter intport_writedata=0, then the CohWriteback 
command behaves in this manner:

1. The initial write request occurs on the Main port with the write data 
phase appearing on the Main port.

2. The home agent sends a self-intervention request to the initiator on 
the intervention port.

3. The initiator responds with OK to acknowledge the operation. 

• If the port parameter intport_writedata=1, then the CohWriteback 
command behaves in this manner:



OCP Coherence Extensions: Signals and Encodings 95

OCP-IP Confidential

1. The initial write request occurs on the Main port but no write data 
phase appears on the Main port.

2. The home agent sends a self-intervention request to the initiator on 
the intervention port. No write data phase occurs with this request. 

3. The initiator responds with the writeback data on the intervention 
port, (if the cache line hasn’t been invalidated in between steps 1 and 
2). 

This option allows self-intervention data responses and “normal” snoop 
responses to use the same data paths and thus be ordered.

6.2.2 Main Port Parameters
cohcmd_enable

If this parameter is set, the MCohCmd signal is instantiated. The MCmd 
signal is extended. 

cohstate_enable

If this parameter is set, the SCohState signal is instantiated. 

coh_enable

If this parameter is set, the Cached Coherent commands are enabled for 
the port. 

cohnc_enable

If this parameter is set, the Non-Cached Coherent command set are 
enable for the port. Each specific commands within the set have their own 
enable parameters. 

cohwrinv_enable

If this parameter is set and both coh_enable and writeresp_enable are 
also set, then the CohWriteInvalidate and CohInvalidate commands are 
allowed on the main port.

read_enable, readex_enable, rdlwrc_enable, write_enable, 
writenonpost_enable

These parameters enable the specific commands within the Non-Cached, 
Coherent set. 

upg_enable

If this parameter is set, the Coh_Upgrade command is enabled for the 
port. 

intport_exists

If this parameter is set, an associated intervention port is instantiated. 

intport_writedata

If this parameter is set and intport_exists is also set, then writeback 
data appears on the intervention port instead of the main port. 

mcohid_enable

If this parameter is set, the MCohID signal is instantiated.
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scohid_enable

If this parameter is set, the SCohID signal is instantiated.

cohfwdid_enable

If this parameter is set, the MCohFwdID and SCohFwdID signals are 
instantiated.

mcohid_wdth

Width of the MCohID signal. 

scohid_wdth

Width of the SCohID signal.

cohfwdid_wdth

Width of the CohFwdID signal.

6.2.3 Signals and Encodings
Table 34 lists the OCP 2.2 signals that must be included in the main port. It 
also lists in bold and italic fonts the new signals and their control parameters 
introduced for coherent transactions. Unless specifically mentioned, the 
default tie-off values are the same as in the legacy specification. 

Table 34 Main Port Signals

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments

Basic Clk Required

MAddr addr=1 addr_wdth Required

MCmd
Bus widened for 
coherent 
commands.

To enable the 
coherent 
commands:
cohnc_enable
coh_enable
cohwrinv_enable

Required

MData mdata=1 data_wdth Required for SRMD

MDataValid datahandshake=1 Required for SRMD

MRespAccept resp
respaccept

Optional

SCmdAccept cmdaccept Optional

SData resp = 1
sdata = 1

data_wdth Required

SDataAccept datahandshake=1
dataaccept

Optional

SResp resp=1 Required
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Simple MAddrSpace addrspace addrspace_wdth Optional

MByteEn mdata=1
byteen=1

Required

MDataByteEn mdata=1
datahandshake=1
mdatabyteen=1

Required

MDataInfo Optional

MReqInfo reqinfo
reqinfo_wdth

Optional

SDataInfo resp=1
sdatainfo
sdatainfo_wdth

Optional

SRespInfo resp=1
respinfo
respinfo_wdth

Optional

Burst MAtomicLength atomiclength atomiclength_wdth Tied off to cache 
line size

MBurstLength burstlength burstlength_wdth Tied off to cache 
line size

MBurstPrecise burstprecise=1 Required.
Set to 1 for 
Coherent 
commands

MBurstSeq burstseq Required. Only 
INCR, XOR, and 
WRAP are 
allowed.

MBurstSingleReq datahandshake=1
burstsinglereq=1

Required.
Set to 1 for 
Coherent 
commands.

MDataLast datalast=1 Required

MReqLast reqlast Optional

SRespLast resplast Optional

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments
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Coherence SCohState cohstate_enable Required
Default Tie-off=0

MCohCmd cohcmd_enable Required
Default Tie-off=0

MCohID mcohid_enable mcohid_wdth Optional; required 
for directory 
based protocols 
and three-hop 
protocols

SCohID scohid_enable scohid_wdth Optional; required 
for directory 
based protocols 
and three-hop 
protocols

MCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required 
for three-hop 
protocols

SCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required 
for three-hop 
protocols

Thread MConnID connid=0 Optional

MDataThreadID when threads > 1
datahandshake=0

threads Optional

MThreadBusy mthreadbusy
threads

threads Optional

MThreadID when threads > 1 threads Optional

SDataThreadBusy sdatathreadbusy
threads
datahandshake=1

threads Optional

SThreadBusy sthreadbusy
threads

threads Optional

SThreadID when threads > 1
resp

threads Optional

Tags MTagID tags tags Optional

MDataTagID tags
datahandshake

tags Optional

STagID tags
resp

tags Optional

MTagInOrder taginorder Optional

STagInOrder taginorder
resp

Optional

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments



OCP Coherence Extensions: Signals and Encodings 99

OCP-IP Confidential

6.2.3.1 MCohCmd
When set to one, indicates that the command is coherent. When set to zero, 
the semantics of the command depend on whether the target address is in 
coherent address space or non-coherent address space. 

6.2.3.2 MCmd
When the OCP interface supports coherency, the width of the MCmd signal is 
extended to five-bits to accommodate the extra coherence commands.

Commands are arranged into two groups: Non-Coherent and Coherent. Non-
Coherent commands are the same set of commands as in the existing OCP 2.2 
command set and are also referred to as Legacy commands. Within the 
Coherent set of transactions, some existing OCP 2.2 commands remain, but 
are re-defined as Coherence-Aware2. The Coherence-Aware commands are 
used by initiators that do not contain caches but access the coherent address 
space. The new coherent commands must always be issued with MCohCmd 
asserted. See Table 35 below for the extensions to the encoding of MCmd.

Table 35 Extended MCohCmd and MCmd Encoding

Sideband SReset_n or 
MReset_n

sreset=1 or 
mreset=1

Required

(all others) (all others) Optional

Test (all) (all) Optional

2 They are redefined as Non-Cached because the bulk of the use of these commands will be to 
satisfy Non-Cached accesses; however, they could be used by caching agents as well; examples 
being write-through caches and cached DMA controllers.

MCohCmd MCmd Command Mnemonic Data 
Source

Coherence
State
Changed?

Address 
Space

0 0x0 Idle IDLE None No (none)

0 0x1 Write WR Requester No Non-
Coherent

0 0x2 Read RD Home No Non-
Coherent

0 0x3 ReadEx RDEX Home No Non-
Coherent

0 0x4 ReadLinked RDL Home No Non-
Coherent

0 0x5 WriteNonPost WRNP Requester No Non-
Coherent

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments
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The semantics of legacy commands targeting coherent address space are 
described below. Please see Section 5.6 on page 79 for a list of restrictions 
related to cache line granularity and Section 5.13 on page 90 for bursts.

0 0x6 WriteConditional WRC Requester No Non-
Coherent

0 0x7 Broadcast BCST Requester No Non-
Coherent

0 0x8-0xF (Reserved) (Reserved) — — —

0 0x1 Write WR Requester Yes Coherent

0 0x2 Read RD Home or 
Owner

Yes Coherent

0 0x3 ReadEx RDEX Home or 
Owner

Yes Coherent

0 0x4 ReadLinked RDL Home or 
Owner

Yes Coherent

0 0x5 WriteNonPost WRNP Requestor Yes Coherent

0 0x6 WriteConditional WRC Requester Yes Coherent

0 0x7 Broadcast BCST Not Permitted Coherent

1 0x8 CohReadOwn CC_RDOW Home or 
Owner

Yes Coherent

1 0x9 CohReadShare CC_RDSH Home or 
Owner

Yes Coherent

1 0xA CohReadDiscard CC_RDDS Home or 
Owner

No Coherent

1 0xB CohReadShareAlways CC_RDSA Home or 
Owner

Yes Coherent

1 0xC CohUpgrade CC_UPG None or 
Owner

Yes Coherent

1 0xD CohWriteBack CC_WB Requester Yes Coherent

1 0x0E–
0x0F

(Reserved) (Reserved) — — —

1 0x10 CohCopyBack CC_CB Requester Yes Coherent

1 0x11 CohCopyBackInv CC_CBI Requester Yes Coherent

1 0x12 CohInvalidate CC_I None Yes Coherent

1 0x13 CohWriteInvalidate CC_WRI Requester Yes Coherent

1 0x14 CohCompletionSync CC_SYNC None No Coherent

1 0x15–
0x1F

(Reserved) (Reserved) — — —

MCohCmd MCmd Command Mnemonic Data 
Source

Coherence
State
Changed?

Address 
Space
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Write (0x1, WR)

This form of coherent request is meant to transfer cache line-sized data to 
memory (finer granularity can be achieved through the use of byte 
enables). While the semantics of this command are very similar to the 
legacy Write (WR) command, the home invalidates cache lines for write 
invalidate semantics. This command is generated by non-cached or write-
through stores etc. This command is enabled by the port parameter 
write_enable. 

Read (0x2, RD)

Very similar to a Legacy Read command, but the system returns data from 
the owning agent rather than home when the former has the most recent 
copy. This command is generated by non-cached loads or instruction 
fetches; read misses for write-through memory locations, etc. This 
command is enabled by the port parameter read_enable.

ReadEx (0x3, RDEX)

Very similar to a Legacy ReadEx command, but the system returns data 
from the owning agent rather than home when the former has the most 
recent copy. This command is generated by non-cached loads. The 
command is enabled by the port parameter readex_enable.

ReadLinked (0x4, RDL)

Similar to its non-coherent counterpart (RDL), this command can be used 
to set a reservation at home, but in a coherent system. This command is 

generated by non-cached synchronizing3 loads etc. This command is 
enabled by the port parameter rdlwrc_enable. 

WriteNonPost (0x5, WRNP)

This form of coherent request is meant to transfer cache line-sized data to 
memory (finer granularity can be achieved through the use of byte 
enables). While the semantics of this command are very similar to the 
legacy WriteNonPost (WRNP) command, the system invalidates cache 
lines for write invalidate semantics. This command is generated by non-
cached or write-through stores. This command is enabled by the port 
parameter writenonpost_enable. 

WriteConditional (0x6, WRC)

Similar to its non-coherent counterpart (WRC), this command can be used 
to clear a reservation at home, but in a coherent system. This command 
is generated by non-cached synchronizing stores etc. This command is 
enabled by the port parameter rdlwrc_enable. 

Broadcast (0x7, BCST)

This command is undefined when the target is in coherent space.

CohReadOwn (0x8, CC_RDOW)

This coherent command is used to read data from home with the intent to 
modify. This command is generated by processor stores that miss in the 
cache hierarchy. The data transfer size is a cache line.

3 The term ‘synchronizing loads’ refers to conditional load instructions, which are available in the 
instruction sets of various architectures.
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On all CPUs with coherent caches (excluding the original requester), if 
there is a cache line with a matching address that is in the Modified or 
Owned state, the implementation has the choice of:

• writing back the cache line to home, or,

• forwarding the data to the requestor directly from the cache, or,

• doing both.

These options do not affect the behavior of the intervention ports and 
main ports so there are no port parameters for these options.

On all CPUs with coherent caches (not including the original requester), if 
there is a cache line with the matching address and it is in a state other 
than Invalid, the cache line state transitions to Invalid.

The original requester receives the most up-to-date data.

CohReadShared (0x9, CC_RDSH)

This coherent command is used to read data from home with no intent to 
modify. This command is generated by processor loads that miss in the 
cache hierarchy. The data transfer size is a cache line.

For the MOESI protocol: 

On all CPUs with coherent caches (excluding the original requestor), if 
there is a cache line with the matching address and it is in the 
Modified state, the cache line state transitions to Owned.

On all CPUs with coherent caches (excluding the original requestor), if 
there is a cache line with the matching address and it is in the 
Modified or Owned states, the data is forwarded to the requestor 
directly from the cache.

For the MOESI and MESI protocols: 

On all CPUs with coherent caches (excluding the original requester), if 
there is a cache line with the matching address and it is in the 
Exclusive state, the cache line state transitions to Shared. 

The implementation may also choose to forward the data to the 
requestor directly from the cache, this option is enabled by the 
intport_estate_c2c port parameter.

For the MSI and MESI protocol:

On all CPUs with coherent caches (excluding the original requestor), if 
there is a cache line with the matching address and it is in the 
Modified state, the cache line state transitions to Shared. The cache 
line is written back to home. 

The implementation may also choose to forward the data to the 
requestor directly from the cache. This option does not affect the 
behavior of the intervention ports and main ports so there is no port 
parameter for this option.
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If the cache line with the matching address is in the Shared state, the 
cache line state stays as previous4. 

For all protocols, the original requester receives the most up-to-date data.

CohReadDiscard (0xA, CC_RDDS)

This coherent command is used to read data from the processor caches 
and not cause any cache line state changes. It is normally generated by 
external agents (such as coherent DMA controllers) to read data from the 
processor cache hierarchy. The data transfer size is a cache line.

The cache line state is not modified. The original requester receives the 
data.

CohReadShareAlways (0xB, CC_RDSA)

This coherent command is used to read data from home with intent to 
never modify. The install state is always shared. This command is 
generated by processor instruction fetches for coherent instruction 
caches. The cache line state transitions are the same as for 
CohReadShared. The data transfer size is a cache line.

Coherent instruction caches are not snooped as there can never be any 
modified data and the install state is always shared. The original 
requester receives the requested data.

CohUpgrade (0xC, CC_UPG)

This coherent command is used to request ownership of a shared cache 
line from the system. It is usually generated for processor stores which hit 
cache lines with shared states. This command is of the new type “Query.” 
The possible responses are OK (no data) or DVA (data). The data transfer 
size is either zero or a cache line.

On all CPUs with coherent caches (excluding the original requester), if 
there is a cache line with the matching address and it is in the Modified 
or Owned state, the implementation has the choice of writing back the 

cache line to home or forwarding the data to the requestor or doing both5. 
For this case, the response is DVA. This DVA response only occurs if 
another agent has modified its copy of the data after receiving the 
CohUpgrade request (A race within the other agent between its local 
operations and the initiator’s command).

The more common response is OK (the original requestor has an up-to-
date copy of the data), and there is no data phase. 

On all CPUs with coherent caches (not including the original requester), if 
there is a cache line with the matching address and it is in a state other 
than Invalid, the cache line state transitions to Invalid. 

The original requester receives the updated data.

4 Some implementations may choose to forward the data to the requestor directly from the cache, 
this option requires an additional cache line state (Forwarding/Recent) that is beyond the scope 
of this document.

5 These options do not affect the behavior of the intervention and main ports, so there is no port 
parameter for these options.
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This command is enabled by the port parameter upg_enable. If this 
command is not enabled, any store which hits a shared cache line will 
generate a CohReadOwn command. 

CohWriteBack (0xD, CC_WB)

This coherent command is used to writeback cache lines into home 
memory. It has posted write semantics. When intport_writedata is set 
to 0, the write data phase happens on the main port along with the 
request phase. The data transfer size is a cache line.

The user has the option of the write data phase to occur on the 
intervention port after a self-intervention (port parameter 
intport_writedata=1). For this case, this command is of the new type 
“Message.” This option allows self-intervention data responses and 
“normal” snoop responses to use the same datapaths and thus be 
ordered.

CohCopyBack (0x10, CC_CB)

This coherent command is used to writeback cache lines into home and 
the cache line is not evicted from the cache hierarchy. This command is 
generated by processor-specific cache management instructions. It has 
posted write semantics. The data transfer size is either zero or a cache 
line.

On masters with coherent caches, if the cache line with the matching 
address is originally in the Modified or Owned state then the cache line 
will be written back to home. The cache line state transitions to Shared. 
When intport_writedata is set to 0, the write data phase occurs on the 
main port along with the request phase. When intport_writedata is set 
to 1, the write data phase happens on the intervention port as part of the 
snoop response. 

On masters with coherent caches, if the cache line with the matching 
address is in the Shared or Exclusive state, the cache line state is 
unchanged and there is no data phase. 

CohCopyBackInv (0x11, CC_CBI)

This coherent command is used to writeback cache lines into home and 
the cache line is evicted from the cache hierarchy. This command is 
generated by processor-specific cache management instructions. It has 
posted write semantics. The data transfer size is either zero or a cache 
line.

On masters with coherent caches, if the cache line with the matching 
address is originally in the Modified or Owned state then the cache line 
will be written back to home. The cache line state transitions to Invalid. 
When intport_writedata is set to 0, the write data phase occurs on the 
main port along with the request phase. When intport_writedata is set 
to 1, the write data phase happens on the intervention port as part of the 
snoop response. 

On all CPUs with coherent caches, if the cache line with the matching 
address is in the Shared or Exclusive states then the cache line state 
transitions to Invalid. For this case, there is no data phase.
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CohInvalidate (0x12, CC_I)

This coherent command is used to purge data from the cache hierarchy. 
This command is generated by processor-specific cache management 
instructions and also generated by coherent DMA controllers. This 
command has non-posted write semantics. The data transfer size is zero.

On masters with coherent caches, if a cache line contains the requested 
address, its state is set to invalid, regardless of the previous state. 

There is no data phase for this command.

The port parameter cohwrinv_enable must be set as well for the 
CohWriteInvalidate command to be used on the main port.

CohWriteInvalidate (0x13, CC_WRI)

This coherent command is used to inject new data into a coherent system 
by simultaneously invalidating a cache line from the system and updating 
its value at home. The use of byte enables allows the update of partial 
cache lines. Typically used by coherent DMA controllers to write new 
values into home and remove stale copies from the cache hierarchy. This 
command has non-posted write semantics. The data transfer size is less 
than or equal to a cache line.

On all CPUs with coherent caches, if the cache line with the matching 
address is originally in the Modified or Owned state and the write does not 
modify the entire cache line, then the cache line data will be supplied so 
that the new write data can be merged. The cache line state transitions to 
Invalid. For this case, SResp is equal to DVA. The data transfer happens 
on the intervention port as the snoop response. For this case, the home 
agent is responsible to merge the newer write data with the older snoop 
response data before the data is written to system memory. 

On all CPUs with coherent caches, if the cache line with the matching 
address is in the Shared or Exclusive states or if the new write modifies 
all bytes within the cache line, then the cache line state transitions to 
invalid. For this case, SResp is equal to OK and there is no data phase. 

The port parameter cohwrinv_enable must be set as well for the 
CohWriteInvalidate command to be used on the main port.

CohCompletionSync (0x14, CC_SYNC)

This coherent cache command is used to maintain ordering. This 
command is of the new type “Query.” The slave, after receiving this 
command, in an implementation specific fashion, will send the response 
when it is satisfied that transaction ordering has been satisfied. Normally 
this is used to stall the initiator until all preceding requests have reached 
a global ordering point within the system. The slave responds with a single 
cycle of DVA on the SResp bus.

For this command there is no data phase.
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6.2.3.3 SCohState
This signal indicates the install state and is part of the response phase and is 
passed back to the master with any response to a coherent request. It is also 
used to indicate the prior state of the cache line on interventions. For non-
coherent and coherence-aware requests, this signal is a “don’t care”. 
SCohState is a three-bit field with encodings as shown in Table 36.

Table 36 SCohState Encoding

6.2.3.4 SResp
Existing responses remain as in OCP 2.2, but a new one (OK) is added to 
support intervention port related transactions and main port transaction 
(e.g., CC_UPG). The OK response indicates completion without any data 
transfer. If the OCP interface supports coherence extensions, SResp becomes 
a three-bit field with encodings as shown in Table 37, below.

Table 37 SResp Encoding

6.2.3.5 MReqInfo
MReqInfo is not explicitly defined, but mentioned to remind implementors 
that it is available for sending more coherency hints if desired. Some examples 
are Instruction or Data miss, Cache management instructions etc. 

SCohState Name Mnemonic

0x0 Invalid I

0x1 Shared S 

0x2 Modified M

0x3 Exclusive E

0x4–0x5 Reserved —

0x6 Owned O

0x7 Reserved —

SResp Value Response Mnemonic

0x0 No response NULL

0x1 Data valid / accept DVA

0x2 Request failed FAIL

0x3 Response error ERR

0x4 Ack without data transfer OK

0x5–0x7 Reserved -
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6.2.4 Transfer Phases

Table 38 Main Port transfer phases

MCmd Phases

writeresp_enable=0 writeresp_enable=1

intport_writedata=0 intport_writedata=1 intport_writedata=0 intport_writedata=1

WR Request (with write 
data)

Request (with write 
data)

Request (with write 
data);
Response

Request (with write 
data);
Response

RD Request;
Response

Request;
Response

Request;
Response

Request;
Response

RDEX Request;
Response

Request;
Response

Request;
Response

Request;
Response

RDL Request;
Response

Request;
Response

Request;
Response

Request;
Response

WRNP Request (with write 
data); Response

Request (with write 
data); Response

Request (with write 
data);
Response

Request (with write 
data);
Response

WRC Request (with write 
data)

Request (with write 
data)

Request (with write 
data);
Response

Request (with write 
data);
Response

CC_RDOW Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_RDSH Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_RDDS Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_RDSA Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_UPG Request; 

Response1
Request;

Response1
Request; 

Response1
Request; 

Response1

CC_UPG Request;

Response2
Request;

Response2
Request;

Response2
Request;

Response2

CC_WB Request (with write 
data)

Request (no write 
data)
If data is resident 
within local cache, 
the CopyBack 
data is supplied 
with intervention 
response on the 
Intervention Port.

Request (with write 
data);
Response

Request (no write 
data);
Response
WriteBack data is 
supplied with self-
intervention 
response on 
Intervention Port (if 
cache line 
ownership hasn’t 
moved to another 
master—data 
race)
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6.2.5 Transfer Effects
Read, CohReadOwn, CohReadShared, CohReadDiscard, 
CohReadSharedAlways

The master receives the requested data on SData.

CC_CB Request (with write 
data)

Request (no write 
data)
If data is resident 
within local cache, 
the CopyBack 
data is supplied 
with intervention 
response on the 
Intervention Port. 

Request (with write 
data);
Response

Request (no write 
data);
Response
If modified data is 
resident within local 
cache, the 
CopyBack Data is 
supplied with 
intervention 
response on the 
Intervention Port.

CC_CBI Request (with write 
data)

Request; Response
Non-Posted Write

Request (with write 
data);
Response

Request (no write 
data);
Response
If modified data is 
resident within local 
cache, CopyBack 
Data is supplied 
with intervention 
response on the 
Intervention Port. 

CC_I Request (with write 
data);
Response

Request;
Response

Request (with write 
data);
Response

Request; Response

CC_WRI Request (with write 
data);
Response

Request;
Response

Request (with write 
data);
Response
If data is resident 
within local cache, 
the snoop data is 
supplied with the 
intervention 
response on 
Intervention Port. 

Request (with write 
data);
Response
If modified data is 
resident within local 
cache, the snoop 
data is supplied 
with the 
intervention 
response on the 
Intervention Port. 

CC_SYNC Request;
Response

Request;
Response

Request;
Response

1. Cache line ownership stays with original requesting master.
2. Data transfer only occurs if cache line ownership had moved to another master (data-race)

MCmd Phases

writeresp_enable=0 writeresp_enable=1

intport_writedata=0 intport_writedata=1 intport_writedata=0 intport_writedata=1
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ReadEx

The master receives the requested data on SData. Sets a lock on the 
address for the initiating thread.

ReadLinked

The master receives the requested data on SData. Sets a reservation on 
that address.

Write, WriteNonPost

The request phase includes the write data.

WriteConditional

If there was an existing reservation for the address by the same initiating 
thread, the request phase includes the write data. If the write proceeds in 
this manner, the reservation for the address is cleared. 

CohUpgrade

If the cache line ownership is still resident within the requesting master, 
there is no data transfer. 

If the cache line ownership had moved to another master (data race), then 
the master receives the requested data on SData.

CohWriteBack

If port parameter intport_writedata=1 there is no data transfer on the 
main port. The data is transferred on the intervention port.

If port parameter intport_writedata=0, the request phase includes the 
write data. 

CohCopyBack, CohCopyBackInv

There is no data transfer on the main port. If the data was resident within 
any cache, the data is transferred on the intervention port.

CohInvalidate

The SResp value is OK and there is no data transfer phase. 

CohWriteInvalidate

The write data is sent along with the Request. The SResp value is OK.

If the data was resident within any cache, the snoop data is written back 
on the intervention port. For this case, the home agent is responsible to 
merge this older snoop response data with the newer write data. 

CohCompletionSync

The master receives the response from the slave that previous 
transactions have been made globally visible. 
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6.3 Intervention Port: Parameters, Signals, and 
Encodings

6.3.1 Introduction
The intervention port signals and encodings are similar to the main port’s 
signals and encodings for the main port Coherent command set (CC_*). 
However, many of the port parameters and configurations are fixed. 

• The intervention slave only sends out data, it does not receive data. 

• ALL intervention port requests must have a response, e.g., the port 
parameter writeresp_enable must be set to 1. 

• If port parameter intport_writedata=0, then the CohWriteback, 
CohCopyBack, and CohCopyBackInv commands behave in this manner:

1. The initial write request occurs on the Main port with the write data 
phase appearing on the Main port. 

2. The home agent sends a self-intervention request to the initiator on 
the intervention port. No write data phase occurs with this request.

3. The initiator responds with OK to acknowledge the operation.

• If port parameter intport_writedata=1, then the CohWriteback, 
CohCopyBack, and CohCopyBackInv commands behave in this manner:

1. The initial write request occurs on the Main port but no write data 
phase appears on the Main port.

2. The home agent coherent slave sends a self-intervention request to the 
initiator on the intervention port. No write data phase occurs with this 
request.

3. The initiator responds with the writeback data on the intervention 
port, (if the cache line hasn’t been invalidated in between steps 1 and 
2).

This option allows self-intervention data responses and “normal” snoop 
responses to use the same datapaths and thus be ordered.

• There is an option for split transactions on the Intervention Port. This 
option allows for responses to precede the data transfer. For this option, 
new data handshaking signals are added to aid in transferring data from 
the slave back to the master. These signals are MDataAccept and 
SDataValid. If threads are used with these split transactions, an 
additional hand-shaking signal, MDataThreadBusy, is used. 

Legacy reads to coherent address space are processed as follows:

• ReadEx: The coherent slave issues I_CBI, the intervention port request to 
write back a possibly modified cache line to the home memory location 
and evict the line from the cache hierarchy of each coherent master. The 
memory is also read (in an implementation specific manner, either 
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speculatively or after the response(s) to I_CBI are received). The slave then 
sets a lock for the initiating thread on this address at the home memory. 
The data is returned to the requesting master (either the contents of the 
modified cache line or the memory contents). It is assumed that an 
implementation specific mechanism ensures that this is the only ReadEx 
operating on this location.

• Other Read Operations: The coherent slave issues I_RDSA, the 
intervention port request to read a possibly modified cache line and 
update the home. The memory is also read (in an implementation specific 
manner, either speculatively or after the response(s) to I_RDSA are 
received). With Read Linked, the slave then sets a reservation in a monitor 
for the initiating thread on this address. The data is returned to the 
requesting master. 

Legacy writes to coherent address space are processed as follows:

• Clearing Write6: (Note the home agent coherent slave will be able to 
determine if this is a clearing write). The data is written to main memory 
(request on legacy port of coherent slave) and the lock is cleared 
atomically in an implementation dependent manner.

• Write Conditional: If a reservation is set for the matching address and for 
the corresponding thread, the slave issues I_WRI, the request to update 
the value at home. If the reservation is cleared, the write is not performed, 
a FAIL response is returned and no reservations are cleared.

• Other Writes: Clears the reservations on any conflicting addresses set by 
other threads. The slave issues I_WRI, the intervention port request to 
update the value at home. 

6.3.2 Port Parameters
intport_writedata

If this parameter is set, then writeback data appears on the intervention 
port instead of the main port. 

intport_split_tranx

If this parameter is set, then the intervention port data phase occurs after 
the intervention port response phase instead of being coincident with the 
response phase. The signals MDataAccept and SDataValid are 
instantiated.

intport_estate_c2c

If this parameter is set, then coherent slaves supply intervention data 
when their matching local cache lines are in the Exclusive state. 

mcohid_enable

If this parameter is set, the MCohID signal is instantiated.

6 The term clearing write refers to the Write or WriteNonPost command to the matching address 
issued after a ReadEx on that thread. It is called a clearing write as it clears any reservations on 
the matching address set by other threads.
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scohid_enable

If this parameter is set, the SCohID signal is instantiated.

cohfwdid_enable

If this parameter is set, the MCohFwdID signal is instantiated.

mcohid_wdth

Width of the MCohID signal. 

scohid_wdth

Width of the SCohID signal.

cohfwdid_wdth

Width of the CohFwdID signal. 

6.3.3 Signals and Encodings
Table 39 gives an overview of which signals can be or must be included. New 
signals and their control parameters introduced for the Coherent 
Transactions are in bold and italicized font. 

Table 39 Intervention Port Signals

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments

Basic Clk Required

MAddr addr=1 addr_wdth Required

MCmd Required (only a 
subset of the 
coherent 
commands are 
allowed)

MData mdata=0 Not allowed

MDataValid datahandshake=0 Not allowed

MRespAccept respaccept Optional

SCmdAccept cmdaccept Optional

SData sdata=1 data_wdth Optional

SDataAccept dataaccept=0 Not allowed

SResp resp=1 Required (only 
NULL, DVA, and OK 
responses allowed)
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Simple MAddrSpace addrspace addrspace_wdth Optional

MByteEn byteen=0 Not allowed

MDataByteEn mdatabyteen=0 Not allowed

MDataInfo mdatainfo=0 Not allowed

MReqInfo reqinfo reqinfo_wdth Optional

SDataInfo sdatainfo sdatainfo_wdth Optional

SRespInfo respinfo respinfo_wdth Optional

Burst MAtomicLength atomiclength atomiclength_wdth Tied off to cache 
line size

MBurstLength burstlength burstlength_wdth Tied off to cache 
line size

MBurstPrecise burstprecise=1 Tied off to 1

MBurstSeq burstseq Required. Only 
INCR, XOR, and 
WRAP are allowed.

MBurstSingleReq burstsinglereq=1 Tied off to 1

MDataLast datalast=0 Not allowed

MReqLast reqlast=0 Not allowed

SRespLast resplast=0 Not allowed

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments
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Coherence SCohState Required, used to 
transmit current 
state of the cache 
line

MReqSelf Required

MCohID mcohid_enable mcohid_wdth Optional; required 
for directory based 
protocols and 
three-hop 

protocols1

SCohID scohid_enable scohid_wdth Optional; required 
for directory based 
protocols and 
three-hop 

protocols1

MCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required 
for three-hop 

protocols1

SCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required 
for three-hop 

protocols1

SDataValid intport_split_tranx Optional; needed 
for split transaction 
responses

SDataLast Required

MDataAccept intport_split_tranx Optional; needed 
for split transaction 
responses

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments
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6.3.3.1 MCmd
The intervention port commands are shown in the Table 40 below. The 
commands that are write-like (including CohWriteBack, CohCopyBack, 
CohCopyBackInv, CohWriteInvalidate) have no associated write data during 
the request phase. If the port parameter intport_writedata=1, the write 
data transfer phase occurs on the intervention port during the data response 
phase for the self intervention. The mnemonics for the intervention port 
commands are prefixed by I_ to distinguish them from the main port 
commands. 

Thread MConnID connid=0 Optional

MDataThreadID threads
datahandshake=0

threads Not allowed

MThreadBusy mthreadbusy
threads

threads Optional

MThreadID threads threads Optional

MDataThreadBusy mdatathreadbusy
threads

threads Optional

SDataThreadBusy sdatathreadbusy=0
threads

threads Not allowed

SThreadBusy sthreadbusy
threads

threads Optional

SThreadID threads
resp

threads Optional

SDataThreadID threads
resp

threads Optional

Tags MTagID tags tags Optional

MDataTagID tags
datahandshake=0

tags Not allowed

STagID tags
resp

tags Optional

MTagInOrder taginorder Optional

STagInOrder taginorder
resp

Optional

Sideband SReset_n or 
MReset_n

sreset=1 or 
mreset=1

Required

(all others) (all others) Not allowed

Test (all) (all) Not allowed

1. If coherent master is responsible for providing the system view (see Section 5.2 on page 74).

Group Signal Enable Control 
Parameters

Width Control 
Parameters

Comments
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Table 40 Intervention Port MCohCmd and MCmd Encoding

IntvReadOwn (0x8, I_RDOW)

This coherent command is used to read data from home with the intent to 
modify. This command is generated by processor stores that miss in the 
cache hierarchy. The slave responds with either SResp=OK (no data) or 
DVA (data).

IntvReadShared (0x9, I_RDSH)

This coherent command is used to read data from home with no intent to 
modify. This command is generated by processor loads that miss in the 
cache hierarchy. The slave responds with either SResp=OK (no data) or 
DVA (data).

IntvReadDiscard (0xA, I_RDDS)

This coherent command is used to read data from the processor caches 
and not cause any cache line state changes. It is generated by external 
agents (such as coherent DMA controllers) to read data from the processor 
cache hierarchy. The slave responds with either SResp=OK (no data) or 
DVA (data).

IntvReadShareAlways (0xB, I_RDSA)

This coherent command is used to read data from home with intent to 
never modify. This command is generated by processor instruction 
fetches. The slave responds with either SResp=OK (no data) or DVA (data).

MCmd Command Mnemonic

0x0 Idle IDLE

0x1–0x7 (Reserved) (Reserved)

0x8 IntvReadOwn I_RDOW

0x9 IntvReadShare I_RDSH

0xA IntvReadDiscard I_RDDS

0xB IntvReadShareAlways I_RDSA

0xC IntvUpgrade I_UPG

0xD IntvWriteBack I_WB

0xE–0xF (Reserved) (Reserved)

0x10 IntvCopyBack I_CB

0x11 IntvCopyBackInv I_CBI

0x12 IntvInvalidate I_I

0x13 IntvWriteInvalidate I_WRI

0x14–0x1F (Reserved) (Reserved)



OCP Coherence Extensions: Signals and Encodings 117

OCP-IP Confidential

IntvUpgrade (0xC, I_UPG)

This coherent command is used to request ownership of a shared cache 
line from the system. It is usually generated for processor stores which hit 
cache lines with shared states. This is a non-posted write. The slave 
responds with either SResp=OK (no data) or DVA (data).

The DVA response occurs when the local CPU has modified its data after 
the Upgrade command was sent by the originating CPU. 

IntvWriteBack (0xD, I_WB)

This coherent command is used to writeback cache lines into home. This 
command is generated when a cache miss causes modified cache lines to 
be evicted from the cache hierarchy. This is a non-posted write. The slave 
responds with either SResp=OK (no data) or DVA (data).

The user has the option of placing the writeback data on this port instead 
of the main port (Port parameter intport_writedata=1). This option allows 
self-intervention data responses and “normal” responses to use the same 
datapaths.

For the self-intervention case, it is possible for the slave to response with 
OK instead of DVA. This case occurs if another CPU has gained ownership 
of the cache line before the original writeback transaction has been 
processed. The cache line would have been previously been written back 
for this change of ownership (Race between another core requesting the 
line and writeback completing at the originating CPU). 

IntvCopyBack (0x10, I_CB)

This coherent command is used to writeback cache lines into home and 
the cache line is not evicted from the cache hierarchy. This command is 
generated by processor-specific cache management instructions. This is a 
non-posted write. The slave responds with either SResp=OK (no data) or 
DVA (data).

The user has the option of placing the writeback data on this port instead 
of the main port (Port parameter intport_writedata=1). This option allows 
self-intervention data responses and “normal” responses to use the same 
datapaths. 

IntvCopyBackInv (0x11, I_CBI)

This coherent command is used to writeback cache lines into home and 
the cache line is evicted from the cache hierarchy. Functionally, it is the 
same as CohWriteBack, but this command is generated by processor-
specific cache management instructions. This is a non-posted write. The 
slave responds with either SResp=OK (no data) or DVA (data). 

The user has the option of placing the writeback data on this port instead 
of the main port (Port parameter intport_writedata=1). This option allows 
self-intervention data responses and “normal” responses to use the same 
datapaths. 

IntvInvalidate (0x12, I_I)

This coherent command is used to purge data from the cache hierarchy. 
If a cache line contains the requested address, its state is set to invalid, 
regardless of the previous state. Typically used by coherent DMA 
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controllers to remove stale copies of data from the cache hierarchy and 
also by processor-specific cache management instructions. This is a non-
posted write. The slave responds with SResp=OK. 

IntvWriteInvalidate (0x13, I_WRI)

This coherent command is used to inject new data into a coherent system 
by simultaneously invalidating a cache line from the system and updating 
its value at home. Typically used by coherent DMA controllers to write new 
values into home and remove stale copies from the cache hierarchy. This 
is a non-posted write. The slave responds with either SResp=OK (no data) 
or DVA (data). The original data is merged with the new data before it is 
written to home. 

In some systems, a third port for coherent IO traffic can be used to allow 
external masters (such as DMA engines) to inject these WriteInvalidate 
commands into the coherent memory system without requiring the CPU main 
ports to set writeresp_enable=1.

6.3.3.2 SCohState
This signal indicates the cache line state of the slave cache and is part of the 
intervention response phase. Its encoding is identical to the description of the 
signal with the same name in the main port signal descriptions (see Table 36 
on page 106).

6.3.3.3 MReqSelf
MReqSelf is an output of the master and an input to the slave. It is valid when 
MCmd is not IDLE. It indicates to the intervention slave that this intervention 
request is a result of a main port request which originated from the master 
port of this agent (i.e., it is a self-intervention). This bit is typically asserted by 
the interconnect. The concept of self-intervention is critical in OCP 3.0 (along 
with a serialization point) to enforce global order in the coherent system.

6.3.3.4 MCohID
MCohID specifies the target of the request. It is valid when MCmd is not IDLE. 
For directory based coherence it is used at the intervention ports to indicate 
the target of the response. For an interrupt command from the main port it is 
used to indicate the target of the command. This is an optional signal which 
could be used in three hop protocols when the coherent master also provides 
the system view (see Section 5.2 on page 74).

6.3.3.5 SCohID
SCohID specifies the target of the response. It is valid when SResp is not 
NULL. For directory based coherence it is used at the intervention ports to 
indicate the target of the response. This is an optional signal which could be 
used in three hop protocols when the coherent master also provides the 
system view (see Section 5.2 on page 74).
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6.3.3.6 McohFwdID
MCohFwdID specifies the target for a three hop transaction. It is valid when 
MCmd is not IDLE. Its main use is meant in directory based coherence where 
it is used at the intervention port to signal to the target that if a three hop 
transaction is required, then this is the address of the final target. This is an 
optional signal which could be used in three hop protocols when the coherent 
master also provides the system view (see Section 5.2 on page 74).

6.3.3.7 SDataValid
SDataValid is a optional signal. This signal is included if the port parameter 
intport_split_tranx is set equal to 1. It is an output from the slave and an 
input to the Master to denote that snoop intervention data is valid on SData. 

6.3.3.8 SDataLast
SDataLast is a required signal. It is an output from the slave and an input to 
the Master to denote that the last data beat of the transfer is valid on SData. 

6.3.3.9 MDataAccept
MDataAccept is an optional signal. This signal is included if the port 
parameter intport_split_tranx is set equal to 1. It is an output from the 
Master and an input to the slave to denote that the Master can accept snoop 
intervention data from the slave. 

6.3.3.10 MDataThreadBusy
MDataThreadBusy is an optional signal used if threads have been enabled for 
the Intervention Port. The master notifies the slave that it cannot accept any 
data associated with certain threads. This field is a vector (one bit per thread). 
A value of 1 on any given bit indicates that the thread associated with that bit 
is busy. Bit 0 corresponds to thread 0, and so on. This signal is enabled by 
the port parameter mdatathreadbusy. The semantics of this signal are 
controlled by the port parameters mdatathreadbusy_exact and 
mdatathreadbusy_pipelined. 

6.3.4 Signal Groups
The following table shows the Intervention Port signals placed into specific 
groups. All signals within one group as asserted at the same time. 
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Table 41 Intervention Port Signal Groups

Group Signal Condition

Request MAddr always

MCmd always

MAddrSpace always 

MReqInfo Optional

MAtomicLength Optional 

MBurstLength always

MBurstPrecise always

MBurstSeq always

MBurstSingleReq always

MReqSelf always

MCohID Optional

MCohFwdID Optional

MTagID Optional

MTagInOrder Optional

MThreadsID Optional

Response SResp always

SRespInfo Optional

SCohState always

STagID Optional

STagInOrder Optional

SCohID Optional

SThreadID Optional

RespDataHandShake SData Always

SDataValid Optional

SDataLast Always

SDataInfo Optional

STagID Optional

STagInOrder Optional

SCohID Optional

SThreadID Optional

SDataThreadID Optional
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6.3.5 Transfer Phases
Table 42 shows the transfer phases allowed given specific values of the signal 
MReqSelf and the parameter intport_writedata.

Table 42 Intervention Port transfer phases

6.3.6 Phase Ordering within a Transfer
The intervention port follows the legacy OCP phase ordering rules except for 
the following:

MCmd Phases

MReqSelf=0 MReqSelf=1

intport_writedata=1 intport_writedata=0

I_RDOW Request; Response;

RespDataHandShake1

1. RespDataHandShake group active if cache line was in M or O state in local cache. If port 
parameter intport_estate_c2c=1, then RespDataHandShake group also active if cache 
line was in E state in local cache.

Request; Response; Request; Response;

I_RDSH Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_RDDS Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_RDSA Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_UPG Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_WB Request; Response2

2. The request and response transfers are not needed in directory based protocols since the 
intervention requests are only directed to the original requester. In snoop-based protocols, 
some implementations may choose to broadcast the intervention requests, in which case 
these transfers are needed.

Request; Response; 

RespDataHandShake3

3. RespDataHandShake phase might not occur if cache line ownership has been passed to 
another CPU subsequent to when the originating CC_WB command was issued. WriteBack 
Data is supplied with self-intervention response

Request; Response

I_CB Request; Response2 Request; Response;

RespDataHandShake3
Request; Response

I_CBI Request; Response2 Request; Response;

RespDataHandShake3
Request; Response

I_I Request; Response Request; Response Request; Response

I_WRI Request; Response; 

RespDataHandShake4

4. RespDataHandShake group only active if the cache line in the local cache was in the M or 
O state.

Request; Response

RespDataHandShake4
Request; Response
RespDataHandShake
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• If the port parameter intport_split_tranx=1 then it is allowed that the 
Response phase can begin before the associated RespDataHandShake 
phase. 

• If the port parameter intport_split_tranx=1 then it is allowed that the 
Response phase can end before the associated RespDataHandShake 
phase. 

These are optimizations to allow forwarding of the local cache tag lookups 
before the local cache data array lookup is completed. 

6.3.7 Transfer Effects
All transaction requests on the Intervention Port require a response from the 
slave. Some of the transactions may also cause data transfer on the port.

The SCohState signal reports the cache line state prior to the intervention.

If port parameter intport_split_tranx=0, then the SResp signals reports 
whether the local slave will deliver data or not. The Response phase is 
coincident with the data transfer phase.

If port parameter intport_split_tranx=1, then the SDataValid signal 
reports when the local slave delivers data. The response phase is single cycle 
and occurs before the data transfer phase. The Response is reported on the 
SResp signal.

Table 43 Summary of Transfer Effects

Condition(s) SResp Behavior

IntvReadOwn, IntvReadShared, IntvReadDiscard, 
IntvReadSharedAlways, IntvUpgrade

MReqSelf = b0, Cache Line State = M, O DVA (data transfer)

intport_estate_c2c=1, MReqSelf = b0, Cache Line State = E DVA (data transfer)

All other cases OK (no data transfer)

IntvWriteBack

intport_writedata=1, MReqSelf = b1, Cache Line State = M, O DVA (data transfer)

All other cases OK (no data transfer)

IntvCopyBack, IntvCopyBackInv

intport_writedata=1, Cache Line State = M, O DVA (data transfer)

All other cases OK (no data transfer)

IntvWriteInvalidate

Cache Line State = M, O DVA (data transfer)

All other cases OK (no data transfer)

IntvInvalidate

All cases OK (no data transfer)
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7 Interface Configuration File

The interface configuration file describes a group of signals, called a bundle. 
For OCP interfaces, the bundle is pre-defined, and no interface configuration 
file is required. If you are using an interface other than OCP in your core RTL 
configuration file, the interface configuration file is required. 

Name the file <bundle-name>_intfc.conf where bundle-name is the name 
given to the bundle that is being defined in the file.

7.1 Lexical Grammar
The lexical conventions used in the interface configuration file are:

<name> : (<letter> | '_') (<letter> | '_' | <digit>)*
<letter> : 'a' .. 'z' | 'A' .. 'Z'
<digit>  : '0' .. '9'

<number> : <integer> | <float>

<integer> : <decimal_integer> | <hexadecimal_integer> | <octal_integer> |
<binary_integer>

<decimal_integer> : <digit>+
<hexadecimal_integer> : '0x'<hexadecimal_digit>+
<hexadecimal_digit> : <digit> | 'a' .. 'f' | 'A' .. 'F'
<octal_integer> : '0o'<octal_digit>+
<octal_digit> : '0' .. '7'
<binary_integer> : '0b'<binary_digit>+
<binary_digit> : '0' | '1'

<float> : <mantissa> [<exponent>]
<mantissa>: (<decimal_integer> '.') |('.' <decimal_integer>) |

 (<decimal_integer> '.' <decimal_integer>)
<exponent>: ('e' | 'E') ['+' | '-'] <decimal_integer>



124 Open Core Protocol Specification

OCP-IP Confidential

7.2 Syntax
The interface configuration file is written using standard Tcl syntax. Syntax 
is described using the following conventions:

The syntax of the interface configuration file is:

version <version_string>
bundle <bundle_name> \

[ revision <revision_string> ] {<bundle_stmt>+}

where:

<bundle_stmt>: 
| interface_types <interface_type-name>+
| net <net_name> {<net_stmt>*}
| proprietary <vendor_code> <organization_name> 
 {<proprietary_statements>}

<net_stmt>: 
| direction (input|output|inout)+
| width <number-of-bits>
| vhdl_type <type-string>
| type <net-type>
| proprietary <vendor_code> <organization_name> 

{<proprietary_statements>}

The file must contain a single version statement followed by a single bundle 
statement. The bundle statement must contain exactly one 
interface_types statement, and one or more net statements. Each net 
statement must contain exactly one direction statement and may contain 
additional statements of other types.

Symbol Meaning

[ ] optional construct

| or, alternate constructs

* zero or more repetitions

+ one or more repetitions

< > enclose names of syntactic units

( ) are used for grouping

{ } are part of the format and are required. An open brace 
must always appear on the same line as the statement

\ line continuation character

# comments
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version
The version statement identifies the version of the interface 
configuration file format. The version string consists of major and minor 
version numbers separated by a decimal. The current version is 4.5.

bundle 
The bundle statement is required and indicates that a bundle is being 
defined instead of a core or a chip. Make the bundle-name the same name 
as the one used in the interface configuration file name. 

Use a bundle_name of ocp for OCP 1.0 bundles, ocp2 for OCP 2.x bundles, 
and ocp3 for OCP 3.x bundles. The optional revision_string identifies 
a specific revision for the bundle. If not provided, the revision_string 
defaults to 0. The pre-defined ocp, ocp2, and ocp3 bundles use the default 
value of revision_string to refer to the 1.0, 2.0, and 3.0 versions of the 
OCP Specification, respectively. For ocp2 bundles, set revision_string 
to 2 to refer to the 2.2 version of the OCP Specification.

interface_types
The interface_types statement lists the legal values for the interface 
types associated with the bundle. Interface types are used by the toolset 
in conjunction with the direction statement to determine whether an 
interface uses a net as an input or output signal. This statement is 
required and must have at least one type defined. 

Predefined interface types for OCP bundles are slave, master, 
system_slave, system_master, and monitor. These are explained in 
Table 18 on page 35.

net
The net statement defines the signals that comprise the bundle. There 
should be one net statement for each signal that is part of the bundle. A 
net can also represent a bus of signals. In this case the net width is 
specified using the width statement. If no width statement is provided, 
the net width defaults to one. A bundle is required to contain at least one 
net. The net-name field is the same as the one used in the net-name field 
of the port statements in the core RTL file described in Chapter 8. 

proprietary
For a description, see ”Proprietary Statement” on page 137.

direction
The direction statement indicates whether the net is of type input, 
output, or inout. This field is required and must have as many direction-
values as there are interface types. The order of the values must duplicate 
the order of the interface types in the interface_types statement. The legal 
values are input, output, and inout.

vhdl_type
By default VHDL signals and ports are assumed to be std_logic and 
std_logic_vector, but if you have ports on a core that are of a different 
type, the vhdl_type command can be used on a net. This type will be 
used only when soccomp is run with the design_top=vhdl option to 
produce a VHDL top-level netlist.
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type
The type statement specifies that a net has special handling needs for 
downstream tools such as synthesis and layout. Table 44 shows the 
allowed <net-type> options. If no <net-type> is specified, normal is 
assumed.

Table 44 net-type Options

proprietary
For a description, see ”Proprietary Statement” on page 137.

The following example defines an SRAM interface. The bundle being defined 
is called sram16.

bundle "sram16" {

# Two interface types are defined, one is labeled
# "controller" and the other is labeled "memory"
interface_types controller memory

# A net named Address is defined to be part of this bundle.
net "Address" {

# The direction of the "Address" net is defined to be
# "output" for interfaces of type "controller" and "input"
# for interfaces of type "memory".
direction output input

# The width statement indicates that there are 14 bits in

<net-type> Description

clock clock net

clock_sample clock sample net

jtag_tck JTAG test clock

jtag_tdi JTAG test data in

jtag_tdo JTAG test data out

jtag_tms JTAG test mode select

jtag_trstn JTAG test logic reset

normal default for nets without special handling needs

reset reset net

scan_enable scan enable net, serves as mode control between functional and 
scan data inputs

scan_in scan input net

scan_out scan output net

test_mode test mode net, puts logic into a special mode for use during 
production testing
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# the "Address" net.
width 14

}
net "WData" {

direction output input
width 16

}
net "RData" {

# The direction of the "RData" net is defined to be
# "input" for bundle of type "controller" and "output" for
# bundles of type "memory".
direction input output
width 16

}
net "We_n" {

direction output input
}
net "Oe_n" {

direction output input
}
net "Reset" {

direction output input
type reset

}
# close the bundle
}
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8 Core RTL Configuration File

The required core RTL configuration file provides a description of the core and 
its interfaces. The name of the file needs to be <corename>_rtl.conf, where 
corename is the name of the module to be used. For example, the file defining 
a core named uart must be called uart_rtl.conf.

For a description of the lexical grammar, see page 123.

8.1 Syntax
The core RTL configuration file is written using standard Tcl syntax. Syntax 
is described using the following conventions:

[ ] optional construct
| or, alternate constructs
* zero or more repetitions
+ one or more repetitions
<> enclose names of syntactic units
() are used for grouping
{ } are part of the format and are required. An open brace must always

appear on the same line as the statement
# comments

The syntax for the core RTL configuration file is:

version <version_string>

module <core_name> {<core_stmt>+}

core_name is the name of the core being described and:

<core_stmt>: 
| icon <file_name>
| core_id <vendor_code> <core_code> <revision_code> 
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 [<description>]
| interface <interface_name> bundle <bundle_name> [revision 
 <revision_string>]

[{<interface_body>*}]
| addr_region <name> {<addr_region_body>*}
| proprietary <vendor_code> <organization_name> 
 {<proprietary_statements>}

The file must contain a single version statement followed by a single module 
statement. The module statement contains multiple core statements. One 
core_id must be included. At least one interface statement must be included. 
One icon statement and one or more addr_region and proprietary statements 
may also be included.

8.2 Components
This section describes the core RTL configuration file components.

Version Statement
The version statement identifies the version of the core RTL configuration file 
format. The version string consists of major and minor version numbers 
separated by a period. The current version of the file is 4.5.

Icon Statement
This statement specifies the icon to display on a core. The syntax is:

icon <file_name>

file_name is the name of the graphic file, without any directory names. Store 
the file in the design directory of the core. For example:

icon "myCore.ppm"

The supported graphic formats are GIF, PPM, and PGM. Graphics should be 
no larger than 80x80 pixels. Since the text used for the core is white, use a 
dark background for your icon, otherwise it will be difficult to read.

Core_id Statement
The core_id statement provides identifying information to the tools about the 
core. This information is required. Syntax of the core_id statement is:

core_id <vendor_code> <core_code> <revision_code> [<description>]

where:

vendor_code An OCP-IP-assigned vendor code that uniquely identifies the core developer. 
OCP-IP maintains a registry of assigned vendor codes. The allowed range is 
0x0000 - 0xFFFF. Use 0x5555 to denote an anonymous vendor. For a list of codes 
check www.ocpip.org.
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core_code A developer-assigned core code that (in combination with the vendor code) 
uniquely identifies the core. OCP-IP provides suggested values for common 
cores. See “Defined Core Code Values” on page 131. The allowed range is 0x000 
- 0xFFF.

revision_code A developer-assigned revision code that can provide core revision information. 
The allowed range is 0x0–0xF.

description An optional Tcl string that provides a short description of the core.

Defined Core Code Values
0x000 - 0x7FF: Pre-defined

0x000 - 0x0FF: Memory
Sum values from following choices:

ROM:
0x0: None
0x1: ROM/EPROM
0x2: Flash (writable)
0x3: Reserved
SRAM:
0x0: None
0x4: Non-pipelined SRAM
0x8: Pipelined SRAM
0xC: Reserved
DRAM:
0x00: None
0x10: DRAM (trad., page mode, EDO, etc.)
0x20: SDRAM (all flavors)
0x30: RDRAM (all flavors)
0x40: Several
0x50: Reserved
0x60: Reserved
0x70: Reserved
Built-in DMA:
0x00: No
0x80: Yes

Values from 0x000 - 0x0FF are defined/reserved
Example: Memory controller supporting only SDRAM & Flash
  would have <cc> = 0x2 + 0x20 = 0x022

0x100 - 0x1FF: General-purpose processors
Sum values from following choices plus offset 0x100:

Word size:
0x0: 8-bit
0x1: 16-bit
0x2: 32-bit
0x3: 64-bit
0x4 - 0x7: Reserved
Embedded cache:
0x0: No cache
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0x8: Cache (Instruction, Data, combined, or both)
Processor Type:
0x00: CPU
0x10: DSP
0x20: Hybrid
0x30: Reserved

Only values from 0x100 - 0x13F are defined/reserved
Example: 32-bit CPU with embedded cache
  would have <cc> = 0x100 + 0x2 + 0x8 + 0x00 = 0x10A

0x200 - 0x2FF: Bridges
Sum values from following choices plus offset 0x200:

Domain:
0x00 - 0x7F: Computing

0x00 - 0x3F: PC's
0x00: ISA (inc. EISA)
0x01 - 0x0F: Reserved
0x10: PCI (33MHz/32b)
0x11: PCI (66MHz/32b)
0x12: PCI (33MHz/64b)
0x13: PCI (66MHz/64b)
0x14 - 0x1F: AGP, etc.
0x40 - 0x7F: Reserved

0x80 - 0xBF: Telecom
0xA0 - 0xAF: ATM
0xA0: Utopia Level 1
0xA1: Utopia Level 2
...

0xC0 - 0xFF: Datacom

0x300 - 0x3FF: Reserved

0x400 - 0x5FF: Other processors
(enumerate types: MPEG audio, MPEG video, 2D Graphics,
 3D Graphics, packet, cell, QAM, Vitterbi, Huffman,
 QPSK, etc.)

0x600 - 0x7FF: I/O
(enumerate types: Serial UART, Parallel, keyboard, mouse,
 gameport, USB, 1394, Ethernet 10/100/1000, ATM PHY,
 NTSC, audio in/out, A/D, D/A, I2C, PCI, AGP, ISA,
 etc.)

0x800 - 0xFFF: Vendor-defined
(explicitly left up to vendor)
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Interface Statement
The interface statement defines and names the interfaces of a core. The 
interface name is required so that cores with multiple interfaces can specify 
to which interface a particular connection should be made. Syntax for the 
interface statement is:

interface <interface_name> bundle <bundle_name> [revision 
<revision_string>]
[{<interface_body>*}]

Parameters lacking a default must be specified using a param statement. For 
a list of the required parameters, see Section 4.9.6 on page 67. All other 
interface body statements are optional

The <bundle_name> must be a defined bundle such as ocp or ocp2 or a 
bundle specified in an interface configuration file as described on page 123. 
The optional <revision_string> must match that of the referenced bundle. 
Different interfaces can refer to different revisions of the same bundle. The 
pre-defined ocp, ocp2, and ocp3 bundles  use the default revision_string to 
refer to the 1.0, 2.0, or 3.0 versions of the OCP Specification, respectively. For 
ocp2 bundles, set revision_string to 2 to refer to the 2.2 version of the OCP 
Specification.

In the following example, an interface named xyz is defined as an OCP 3.0 
bundle. The quotation marks around xyz are not required but help to 
distinguish the format.

interface "xyz" bundle ocp3 revision 0

<interface_body>: 
| interface_type <type_name>
| port <port_name> net <net_name> 
| reference_port <interface_name>.<port_name> net <net_name>
| prefix <name>
| param <name> <value> [{(<attribute> <value>)*}]
| subnet <net_name> <bit_range_list> <subnet_name>
| location (n|e|w|s|) <number>
| proprietary <vendor_code> <organization_name> 

 {<proprietary_statements>}

Ports on a core interface may have names that are different than the nets 
defined in the bundle type for the interface. In this case, each port in the 
interface must be mapped to the net in the bundle with which it is associated. 
Mapping links the module port <prefix><port_name> with the bundle 
<net_name>. 

The default rules for mapping are that the port_name is the same as the 
net_name and the prefix is the name of the interface. These rules can be 
overridden using the Port and Prefix statements.
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Interface_type Statement
The interface_type statement defines characteristics of the bundle. Typically, 
the different types specify whether the core drives or receives a particular 
signal within the bundle. Syntax for the interface_type statement is:

interface_type <type_name>

The type_name must be a type defined in the bundle definition. If the bundle 
is OCP, the allowed types are: master, system_master, slave, system_slave, 
and monitor as described in Table 18 on page 35. To define a type, specify it 
in the interface configuration file (described on page 123).

Port Statement
Use the port statement to map a single port corresponding to a signal that is 
defined in the bundle. Syntax for the port statement is:

port <port_name> net <net_name> 

The module port named <prefix><port name> implements the <net_name> 
function of the bundle. The legal net_name values are defined in the bundle 
definition. For OCP bundles, the net names are defined in Section 3 on 
page 13.

Reference_port Statement
The reference_port statement re-directs a net to another bundle. Syntax for 
the port statement is:

reference_port <interface_name>.<port_name> net <net_name>

The interface (in which the reference_port is declared) does not have the 
reference port and the bundle does not have the reference net. The 
reference_port statement declares that the net is internally connected to the 
given port of the referenced interface. For example, consider the following two 
interfaces:

interface tp bundle ocp {
reference_port ip.Clk_i net Clk
reference_port ip.SReset_ni net MReset_n
reference_port ip.EnableClk_i net EnableClk
port Control_i net Control
port MCmd_i net MCmd

}

interface ip bundle ocp {
port Clk_i net Clk
port SReset_ni net SReset_n
port EnableClk_i net EnableClk
port Control_i net Control
port MCmd_o net MCmd

}
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Figure 14 Reference Port 

Figure 14 illustrates the operation of a reference port. In the interface tp, no 
ports exist for bundle signals Clk, EnableClk, and MReset_n. Neither do the 
bundle signals themselves exist. Instead, they reference the corresponding 
ports in the ip interface and nets in the bundle connected to that interface. 
The internal signals in the tp interface that would have been connected to the 
Clk, EnableClk, and MReset_n signals of the OCP bundle connected to the tp 
interface are instead connected to the referenced ports in the ip interface.

Prefix Command
The prefix command applies to all ports in an interface. It supplies a string 
that serves as the prefix for all core port names in the interface. Syntax for the 
prefix command is:

prefix <name>

For example, the statement prefix external_ specifies that the names for all 
ports in the interface are of the form external_*.

If the prefix command is omitted, the interface name will be inserted as the 
default prefix. To omit the prefix from the port name, specify it as an empty 
string, that is prefix "".

Configurable Interfaces Parameters
For configurable interfaces, parameters specify configurations. The specific 
parameters for OCP are described in Chapters 3 and 4 and summarized in 
Table 29 on page 68. The syntax for setting a parameter is:

param <name> <value> [{(<attribute> <value>)*}]
<value>: <number>|<name>
<attribute>: tie_off|width

If the parameter is used to configure a signal, the attribute list can be used to 
attach additional values to that signal. The supported attributes are the tie-
off (if the signal is configured out of the interface) and the signal width (if the 
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signal is configured into the interface). Specifying the signal width using an 
attribute attached to the signal parameter is equivalent to using the 
corresponding signal width parameter but the attribute syntax is preferred. 
The width of the signals MData, SData, MByteEn, and MDataByteEn are 
derived from the single data_wdth parameter, so cannot have their width 
specified using an attribute. For example, an OCP might be configured to 
include an interrupt signal as follows.

param interrupt 1

The following example shows the MBurstLength field tied off to a constant 
value of 4.

param burstlength 0 {tie_off 4}

The following code shows two equivalent ways of setting the address width to 
16 bits though the second method is preferred.

param addr_wdth 16

param addr 1 {width 16}

Subnet Statement
The subnet statement assigns names to bits or contiguous bit-fields within a 
net. Syntax for the subnet statement is:

subnet <net_name> <bit_range_list> <subnet_name>
<bit_range_list>: <bit_range>[,<bit_range>]*
<bit_range>: <bit_number>[:<bit_number>]

The subnet_name is assigned to the bit_range within the given net_name. 
Bit_range can be either a single bit or a range. Subnet_name is a Tcl string.

For example bit 3 of the MReqInfo net may be assigned the name “cacheable” 
as follows:

subnet MReqInfo 3 cacheable

Location Statement
The location statement provides a way for the core to indicate where to place 
this interface when a schematic symbol for the core is drawn. The location is 
specified as a compass direction of north(n), south(s), east(e), west(w) and a 
number. The number indicates a percentage from the top or left edge of the 
block. Syntax for the location statement is:

location (n|e|w|s) <number>

To place an interface on the bottom (south-side) in the middle (50% from the 
left edge) of the block, for example, use this definition:

location s 50



Core RTL Configuration File 137

OCP-IP Confidential

Address Region Statement
The address region statement specifies address regions within the complete 
address space of a core. It allows you to give a symbolic name to a region, and 
to specify its base, size, and behavior.

addr_region <name> {<addr_region_body>*}

where:

<addr_region_body>: addr_base <integer> | addr_size <integer> 
| addr_space <integer>
| proprietary <vendor_code> <organization_name> 
{<proprietary_statements>}

• The addr_base statement specifies the base address of the region being 
defined and is specified as an integer. 

• The addr_size statement similarly specifies the size of the region. 

• The addr_space statement specifies to which OCP address space the 
region belongs. If the addr_space statement is omitted, the region belongs 
to all address spaces.

Proprietary Statement
The proprietary statement enables proprietary extensions of the core RTL 
configuration file syntax. Standard parsers must be able to ignore the 
extensions, while proprietary parsers can extract additional information 
about the core. Syntax for the proprietary statement is:

proprietary <vendor_code> <organization_name>
{<proprietary_statements>}

The vendor_code uniquely identifies the vendor associated with the 
proprietary extensions and is described in more detail on page 130.

The organization_name specifies the name of the organization that specified 
the extensions. Any number of proprietary statements can be included 
between the braces but must follow legal Tcl syntax.

The proprietary statement can be included at multiple levels of the syntax 
hierarchy, allowing it to use scoping to imply context. If multiple proprietary 
statements are included in a single scope, the parser must process these in 
an additive fashion.
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8.3 Sample RTL Configuration File
The format for a core RTL configuration file for a core is shown in Example 1. 

Example 1 Sample flashctrl_rtl.conf File

# define the module
version 4.5

module flashctrl {
core_id 0xBBBB 0x001 0x1 “Flash/Rom Controller”

# Use the Vista icon
icon “vista.ppm”

addr_region “FLASHCTRL0” {
addr_base 0x0
addr_size 0x100000
}

# one of the interfaces is an OCP slave using the pre-defined ocp2 bundle
# Revision is "1", indicating compliance with OCP 2.1
interface tp bundle ocp2 revision 1 {

# this is a slave type ocp interface
interface_type slave

# this OCP is a basic interface with byteen support plus a named SFlag
# and MReset_n
param mreset 1
param sreset 0
param byteen 1
param sflag 1 {width 1}
param addr 1 {width 32}
param mdata 1 {width 64}
param sdata 1 {width 64}

prefix tp
# since the signal names do not exactly match the signal
# names within the bundle, they must be explicitly linked
port Reset_ni net MReset_n 
port Clk_i net Clk
port TMCmd_i    net MCmd 
port TMAddr_i   net MAddr 
port TMByteEn_i  net MByteEn 
port TMData_i   net MData 
port TCCmdAccept_o net SCmdAccept
port TCResp_o   net SResp 
port TCData_o   net SData 
port TCError_o   net SFlag 
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# name SFlag[0] access_error
subnet SFlag 0 access_error

# stick this interface in the middle of the top of the module
location n 50

} # close interface tp defininition

# The other interface is to the flash device defined in an interface file
# Define the interface for the Flash control
interface emem bundle flash {

# the type indicates direction and drive of the control signals
 interface_type controller

# since this module has direction indication on some of the signals
# ('_o','_b') and is missing assertion level indicators '_n' on
# some of the signals, the names must again be directly linked to
# the signal names within the bundle
 port Addr_o net addr 
 port Data_b net data 
 port OE net oe_n 
 port WE net we_n 
 port RP net rp_n 
 port WP  net wp_n 

 # all of the signals on this port have the prefix 'emem_'
 prefix "emem_"

 # stick this interface in the middle of the bottom of the module
 location s 50

 } # close interface emem defininition

} # close module definition

The flash bundle is defined in the following interface configuration file. See 
Section 7 on page 123 for the syntax definition of the interface configuration 
file.

bundle flash {
#types of flash interfaces
#controller: flash controller; flash: flash device itself.
interface_types controller flash
net addr {    

#Address to the Flash device
direction output input
width 19

}
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net data {
#Read or Write Data
direction inout inout
width 16

}
net oe_n {

# Output Enable, active low.
direction output input

}
net we_n { 

# Write Enable, active low.
direction output input

}
net rp_n { 

# Reset, active low.
direction output input

}
net wp_n {

# Write protect bit, Active low.
direction output input

}
}
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9 Core Timing 

To connect two entities together, allowing communication over an OCP 
interface, the protocols, signals, and pin-level timing must be compatible. 
This chapter describes how to define interface timing for a core. This process 
can be applied to OCP and non-OCP interfaces. 

Use the core synthesis configuration file to set timing constraints for ports in 
the core. The file consists of any of the constraint sections: port, max delay, 
and false path. If the core has additional non-OCP clocks, the file should 
contain their definitions. 

When implementing IP cores in a technology independent manner it is 
difficult to specify only one timing number for the interface signals, since 
timing is dependent on technology, library and design tools. The methodology 
specified in this chapter allows the timing of interface signals to be specified 
in a technology independent way.

To make your core description technology independent use the technology 
variables defined in the Core Preparation Guide. The technology variables 
range from describing the default setup and clock-to-output times for a port 
to defining a high drive cell in the library. 
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9.1 Timing Parameters
There is a set of minimum timing parameters that must be specified for a core 
interface. Additional optional parameters supply more information to help the 
system designer integrate the core. Hold-time parameters allow hold time 
checking. Physical-design parameters provide details on the assumptions 
used for deriving pin-level timing.

9.1.1 Minimum Parameters
At a minimum, the timing of an OCP interface is specified in terms of two 
parameters:

• setuptime is the latest time an input signal is allowed to change before 
the rising edge of the OCP clock. 

• c2qtime is the latest time an output signal is guaranteed to become stable 
after the rising edge of the OCP clock.

Figure 15 shows the definition of setuptime and c2qtime. See 
Section 9.2.5.1 on page 149 for a description of these parameters.

Figure 15 OCP Timing Parameters 

9.1.2 Hold-time Parameters
Hold-time parameters are needed to allow the system integrator to check hold 
time requirements. On the output side, c2qtimemin specifies the minimum 
time for a signal to propagate from a flip-flop to the given output pin. On the 
input side, holdtime specifies the minimum time for a signal to propagate 
from the input pin to a flip-flop.

1 clock cycle

c2qtime setuptime

logic logic
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9.1.3 Technology Variables
To give meaning to the timing values, timing requirements on input and 
output pins must be accompanied by information on the assumed 
environment for which these numbers are determined. This information also 
adds detail on the expected connection of the pin.

For an input signal, the parameter drivingcellpin indicates the cell library 
name for a cell representative of the strength of the driver that needs to be 
used to drive the signal. This is shown in Figure 16.

Figure 16 Driver Strength 

For an output signal, the variable loadcellpin indicates the input load of the 
gate that the signal is expected to drive. The variable loads indicates how 
many loadcellpins the signal is expected to drive. Additionally, information on 
the capacitive load of the wire must be included. There are two options. Either 
the variable wireloaddelay can be specified, as shown in Figure 17. Or, the 
combination wireloadcapacitance/wireloadresistance must be 
specified, as shown in Figure 18.

Figure 17 Variable Loads - wireloaddelay 

For instructions on calculating a delay, refer to the Synopsys Design Compiler 
Reference.

logic

drivingcellpin core

loadslogic

 wireloaddelay

loadcellpin
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Figure 18 Variable Loads - wireloadresistance/wireloadcapacitance

9.1.4 Connecting Two OCP Cores
Figure 19 shows the timing model for interconnecting two OCP compliant 
cores.

The sum of setuptime, c2qtime and wire delay must be less than the clock 
period or cycle time minus the clock-skew. Similarly, the minimum clock-
cycle for two cores to interoperate is determined by the maximum of the sum 
of c2qtime, setuptime, wire delay and clock-skew over all interface signals.

The wireload delay is defined by either the variable wireloaddelay or the set 
wireloadcapacitance/wireloadresistance.

Figure 19 Connecting Two OCP Compliant Cores 
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9.1.4.1 Max Delay
In addition to the setup and c2qtime paths for a core, there may also be 
combinational paths between input and output ports. Use maxdelay to 
specify the timing for these paths.

Figure 20 Max Delay Timing 

9.1.4.2 False Paths
It is possible to identify a path between two ports as being logically impossible. 
Such paths can be specified using the falsepath constraint syntax.

For instructions on specifying the core’s timing parameters, see Section 9.2.7 
on page 154. 

max delay

logic
input output
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9.2 Core Synthesis Configuration File 
The core synthesis configuration file contains the following sections:

Version
Specifies the current version of the synthesis configuration file format. 
The current version is 1.3.

Clock 
Describes clocks brought into the core.

Area
Defines the area in gates of the core.

Port 
Defines the timing of IP block ports.

Max Delay
Specifies the delay between two ports on a combinational path.

False Path
Specifies that a path between input and output ports is logically 
impossible.

9.2.1 Syntax Conventions
Observe the following syntax conventions:

• Enclose all expr statements within braces { }, to differentiate between 
expressions that are to be evaluated while the file is being parsed (without 
braces) and those that are to be evaluated during synthesis constraint file 
generation (with braces). 

• Although not required by Tcl, enclose strings within quotation marks ““, 
to show that they are different than keywords.

• Specify keywords using lower case.

Parameter values are specified using Tcl syntax. Expressions can use any of 
the technology or environment variables, and any of the following variables:

clockperiod
This variable should only be used in calculations of timing values for 
ports. When evaluating expressions that use $clockperiod, the program 
will determine which clock the port is relative to, determine its period (in 
nanoseconds), and apply that value to the equation. For example:

port "in" {
setuptime {[expr $clockperiod * .5]}

}
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rootclockperiod 
This variable is set to the period of the main system clock, usually referred 
to as the root clock. It is typically used when a value needs to be a multiple 
of the root clock, such as for non-OCP clocks. For example:

clock "myClock" {
 period {[expr $rootclockperiod * 4]}

}

The design_syn.conf file can also use conditional settings of the parameters 
in the design as outlined by the following arrays. These variables are only 
used at the time the file is read into the tools.

param
This array is indexed by the configuration parameters that can be found 
on a particular instance. Only use param for core_syn.conf files since it is 
only applicable to the instance being processed. For example:

if { $param("dma_fd") == 1 } { 
port "T12_ipReset_no" {
c2qtime {[expr $clockperiod * 0.7]}
}

} 

chipparam
This array is indexed by the configuration parameters that are defined at 
the chip or design level. These variables can be used in both the 
design_syn.conf and core_syn.conf files as they are more global in nature 
than those specified by param. For example:

if { $chipparam("full") == 1 } {
instance "bigcore" {
port "in" {

 setuptime {[expr $clockperiod * 0.7]}
}
}

}

interfaceparam 
This array is indexed by the interface name and the configuration param-
eters that are on an interface. It should only be used for core_syn.conf files 
since it is only applicable to the interfaces on the instance being pro-
cessed. In the following example the interface name is ip.

if { $interfaceparam("ip_respaccept") == 1 } {
port "ipMRespAccept_o" {
c2qtime {[expr $clockperiod * 21/25]}
}

}
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9.2.2 Version Section
The version of the core synthesis configuration file is required. Specify the 
version with the version command, for example: version 1.3 

9.2.3 Clock Section
If you have non-OCP clocks for an IP block or want to specify the 
worstcasedelay of any clock (including OCP clocks) used in the core, specify 
the names of the clocks in the core synthesis configuration file. Use the 
following syntax to specify the name of the clock and its worstcasedelay: 

clock <clockName> {
worstcasedelay <delay Value>

}

clockName refers to the name of the port that brings the clock into the core 
for the core synthesis configuration file. For example:

clock “myClock”

worstcasedelay
The worst case delay value is the longest path through the core or 
instance for a particular clock. The value is used to check that the core 
can meet the timing requirements of the current design. To help make this 
value more portable, you may want to use the technology variable 
gatedelay. For example:

clock "myClock" {
worstcasedelay {[10.5 * $gatedelay]}
}

clock "otherClock" {
worstcasedelay 5
}

Constant values are specified in nanoseconds. For consistency, use 
expressions that can be interpreted in nanoseconds.

9.2.4 Area Section
The area is the size in gates of the core or instance. By specifying the size in 
gates the area can be calculated based on the size of a typical two input nand 
gate in a particular synthesis library. For example:

area {[expr 20500 / $gatesize]}
area 5000

Constant values are specified in two input nand gate equivalents. For 
consistency, use expression that can be interpreted in gates.
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9.2.5 Port Constraints Section
Use the port constraints section to specify the timing parameters. Input port 
information that can be specified includes the setup time, related clock (non-
OCP ports), and driving cell. For output ports, the clock to output times, 
related clock (non-OCP ports), and the loading information must be supplied. 

9.2.5.1 Port Constraint Keywords
The keywords that can be used to specify information about port constraints 
are:

c2qtime
The c2q (clock to q or clock to output) time is the longest path using worst 
case timing from a starting point in the core (register or input port) to the 
output port. This includes the c2qtime of the register. To maintain port-
ability, most cores specify this as a percentage of the fastest clock period 
used while synthesizing the core. For example:

c2qtime {[expr $timescale * 3500]}
c2qtime {[expr $clockperiod * 0.25]}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds. 

c2qtimemin
The c2q (clock to q or clock to output) time min is the shortest path using 
best case timing from a starting point in the core (register or input port) 
to the output port. This includes the c2qtime of the register. Most cores 
use the default from the technology section, defaultc2qtimemin. For ex-
ample:

c2qtimemin {[expr $timescale * 100]}
c2qtimemin {$defaultc2qtimemin}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds. 

clockname
This is an optional field for all OCP ports and is a string specifying the 
associated clock portname. For input ports, input delays use this clock as 
the reference clock. For output ports, output delays use this clock as the 
reference clock. For example:

clockname “myClock”

drivingcellpin
This variable describes which cell in the synthesis library is expected to 
be driving the input. To maintain portability set this variable to use one of 
the technology values of high/medium/lowdrivegatepin.

Values are a string that specifies the logical name of the synthesis library, 
the cell from the library, and the pin that will be driving an input for the 
core. The pin is optional. For example:
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drivingcellpin {$mediumdrivegatepin}
drivingcellpin "pt25u/nand2/O"

holdtime
The hold time is the shortest path using best case timing from an input 
port to any endpoint in the core. Most cores use the default from the tech-
nology section, defaultholdtime. For example:

holdtime {[expr $timescale * 100]}
holdtime {$defaultholdtime}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds. 

loadcellpin
The name of the load library/cell/pin that this output port is expected to 
drive. The value is specified to the synthesis tool as the gate to use (along 
with the number of loads) in its load calculations for output ports of a 
module. For portability use the default.

Values are a string that specifies the logical name of the synthesis library, 
the cell from the library, and the pin that the load calculation is derived 
from. The pin is optional. For example:

loadcellpin "pt25u/nand2/I1"
loadcellpin {$defaultloadcellpin}

loads
The number of loadcellpins that this output port is expected to drive. The 
value is communicated to the synthesis tool as the number of loads to use 
in load calculations for output ports of a module. The typical setting for 
this is the technology value of defaultloads. Values are an expression 
that evaluates to an integer. For example:

loads 5
loads {$defaultloads}

maxfanout 
This keyword limits the fanout of an input port to a specified number of 
fanouts. To maintain portability set this variable in terms of the 
technology variable defaultfanoutload.Constant values are specified 
in library units. For example:

maxfanout {[expr $defaultfanoutload * 1]}

setuptime
The longest path using worst case timing from an input port to any end-
point in the core. To maintain portability, most cores specify this as a per-
centage of the fastest clock period used during synthesis of the core. For 
example:

setuptime {[expr $timescale * 2500]}
setuptime {[expr $clockperiod * 0.25]}
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Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds. 

wireloaddelay
Replaces capacitance/resistance as a way to specify expected delays 
caused by the interconnect. To maintain portability set this variable to use 
a technology value of long/medium/shortnetdelay. 

The resulting values get added to the worst case clock-to-output times of 
the ports to anticipate net delays of connections to these ports. To improve 
the accuracy of the delay calculation cores should use the resistance and 
capacitance settings. 

You cannot specify both wireloaddelay and wireloadresistance/ca-
pacitance for the same port. For example:

wireloaddelay {[expr $clockperiod * .25]} 
wireloaddelay {$mediumnetdelay}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds. 

wireloadresistance
wireloadcapacitance

Specify expected loading and resistance caused by the interconnect. If 
available, specify both resistance and capacitance. To maintain portability 
set this variable to use one of the technology values of long/medium/
shortnetrcresistance/capacitance.

If these constraints are specified they show up as additional loads and re-
sistances on output ports of a module. You cannot use both wireloaddelay 
and wireloadresistance/capacitance for the same port.

Specify constant values as expressions that result in kOhms for resis-
tance and picofarads (pf) for capacitance. For example:

wireloadresistance {[expr $resistancescale * .09]} 
wireloadcapacitance {[expr $capacitancescale * .12]}
wireloadresistance {$mediumnetrcresistance} 
wireloadcapacitance {$mediumnetrccapacitance}

9.2.5.2 Input Port Syntax
For input and inout ports (inout ports have both an input and an output 
definition) use the following syntax:

port <portName> {
clockname <clockName>
drivingcellpin <drivingCellName>
setuptime <Value>
holdtime <Value>
maxfanout <Value>

}
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Examples 
In the following example, the clock is not specified since this is an OCP port 
and is known to be controlled by the OCP clock. If a clock were specified as 
something other than the OCP clock, an error would result.

port “MCmd_i” {
drivingcellpin {$mediumdrivegatepin}
setuptime {[expr $clockperiod * 0.2]}

}

In the following example, the setup time is required to be 2ns. Time constants 
are assumed to be in nanoseconds. Use the timescale variable to convert 
library units to nanoseconds.

port “MAddr_i” {
drivingcellpin {$mediumdrivegatepin}
setuptime 2

}

The following example shows how to associate a non OCP clock to a port. The 
example uses maxfanout to limit the fanout of myInPort to 1. If the logic for 
myInPort required it to fanout to more than one connection, the synthesis tool 
would add a buffer to satisfy the maxfanout requirement.

port “myInPort” {
clockname “myClock”
drivingcellpin {$mediumdrivegatepin}
setuptime 2
maxfanout {[expr $defaultfanoutload * 1]}

}

9.2.5.3 Output Port Syntax
For output and inout ports (inout ports have both an input and an output 
definition) use the following syntax:

port <portName> {
clockname <clockName>
loadcellpin <loadCellPinName>
loads <Value>
wireloadresistance <Value>
wireloadcapacitance <Value>
wireloaddelay <Value>
c2qtime <Value>
c2qtimemin <Value>

}

You cannot specify both wireloaddelay and wireloadresistance/
capacitance for the same port.
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Examples 
In the following example, the clock is not specified since this is an OCP port 
and is known to be controlled by the OCP clock.

port “SCmdaccept_o”
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {$mediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}
c2qtime {[expr $clockperiod * 0.2]}

}

In the following example, the clock to output time is required to be 2 ns. Time 
constants are assumed to be in nanoseconds. Use the timescale variable to 
convert library units to nanoseconds.

port “SResp_o”
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {$mediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}
c2qtime 2

}

The following example shows how to associate a clock to an output port.

port “myOutPort”
clockname “myClock”
loadcellpin {$defaultloadcellpin}
loads 10
wireloaddelay {$longnetdelay}
c2qtime {[expr $clockperiod * .2]}

}

InOut Port Example
port “Signal_io”

drivingcellpin {$mediumdrivegatepin}
setuptime {[expr $clockperiod * 0.2]}

}
port “Signal_io”

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {$mediumnetrcresistance}
wireloadresistance {$mediumnetrccapacitance}
c2qtime {[expr $clockperiod * 0.2]}

}



154 Open Core Protocol Specification

OCP-IP Confidential

9.2.6 Max Delay Constraints
Using the max delay constraints you can specify the delay between two ports 
on a combinational path. This is useful when synthesizing two communi-
cating OCP interfaces. The syntax for maxdelay is:

maxdelay {
delay <delayValue> fromport <portName> toport <portName>
.
.
.

}

where: <delayValue> can be a constant or a Tcl expression.

In the following example, a maxdelay of 3 ns is specified for the combinational 
path between myInPort1 and myOutPort1. A maxdelay of 50% of the 
clockperiod is specified for the path between myInPort2 and myOutPort2. The 
braces around the expression delay evaluation until the expression is used by 
the mapping program.

maxdelay {
delay 3 fromport “myInPort1” toport “myOutPort1
delay {[expr $clockperiod *.5]} fromport “myInPort2” toport “myOutPort2”

}

9.2.7 False Path Constraints
Using the false path constraints you can specify that a path between certain 
input and output ports is logically impossible. 

The syntax for falsepath is:

falsepath{
fromport <portName> toport <portName>

.

.

.
}

In the following example, a falsepath is set up between myInPort1 and 
myOutPort1 as well as myInPort2 and myOutPort2. This tells the synthesis 
tool that the path is not logically possible and so it will not try to optimize this 
path to meet timing.

falsepath {
fromport “myInPort1” toport “myOutPort1”
fromport “myInPort2” toport “myOutPort2”

}
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9.2.8 Sample Core Synthesis Configuration File 
The following example shows a complete core synthesis configuration file.

version 1.3
port “Reset_ni” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “MCmd_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .9]}

}
port “MAddr_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “MWidth_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “MData_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “SCmdAccept_o” {

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {$mediumnetdelay}
c2qtime {[expr $clockperiod * .9]}

}
port “SResp_o” {

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {$mediumnetdelay}
c2qtime {[expr $clockperiod * .8]}

}
port “SData_o” {

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {$mediumnetdelay}
c2qtime {[expr $clockperiod * .8]}

}
maxdelay {

delay 2 fromport “MData_i” toport 
“SResp_o”

}
falsepath {

fromport “MData_i” toport “SData_o”
}
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10 Timing Diagrams

The timing diagrams within this chapter look at signals at strategic points and 
are not intended to provide full explanations but rather, highlight specific 
areas of interest. The diagrams are provided solely as examples. For related 
information about phases, see Section 4.3 on page 40.

Most of the timing diagrams in this chapter are based upon simple OCP 
clocking, where the OCP clock is completely determined by the Clk signal. A 
few diagrams are repeated to show the impact of the EnableClk signal. Most 
fields are unspecified whenever their corresponding phase is not asserted. 
This is indicated by the striped pattern in the waveforms. For example, when 
MCmd is IDLE the request phase is not asserted, so the values of MAddr, 
MData, and SCmdAccept are unspecified.

Subscripts on labels in the timing diagrams denote transfer numbers that can 
be helpful in tracking a transfer across protocol phases.

For a description of timing diagram mnemonics, see Tables 2 on page 15 and 
3 on page 16.

10.1 Simple Write and Read Transfer
Figure 21 illustrates a simple write and a read transfer on a basic OCP 
interface. This diagram shows a write with no response enabled on the write, 
which is typical behavior for a synchronous SRAM or a register bank. 
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Figure 21 Simple Write and Read Transfer 

Sequence
A. The master starts a request phase on clock 1 by switching the MCmd field 

from IDLE to WR. At the same time, it presents a valid address (A1) on 
MAddr and valid data (D1) on MData. The slave asserts SCmdAccept in 
the same cycle, making this a 0-latency transfer.

B. The slave captures the values from MAddr and MData and uses them 
internally to perform the write. Since SCmdAccept is asserted, the request 
phase ends.

C. The master starts a read request by driving RD on MCmd. At the same 
time, it presents a valid address on MAddr. The slave asserts SCmdAccept 
in the same cycle for a request accept latency of 0.

D. The slave captures the value from MAddr and uses it internally to 
determine what data to present. The slave starts the response phase by 
switching SResp from NULL to DVA. The slave also drives the selected 
data on SData. Since SCmdAccept is asserted, the request phase ends.

E. The master recognizes that SResp indicates data valid and captures the 
read data from SData, completing the response phase. This transfer has 
a request-to-response latency of 1.
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10.2 Request Handshake
Figure 22 illustrates the basic flow-control mechanism for the request phase 
using SCmdAccept. There are three writes with no responses enabled, each 
with a different request accept latency. 

Figure 22 Request Handshake 

Sequence
A. The master starts a write request by driving WR on MCmd and valid 

address and data on MAddr and MData, respectively. The slave asserts 
SCmdAccept in the same cycle, for a request accept latency of 0.

B. The master starts a new transfer in the next cycle. The slave captures the 
write address and data. It deasserts SCmdAccept, indicating that it is not 
yet ready for a new request.

C. Recognizing that SCmdAccept is not asserted, the master holds all 
request phase signals (MCmd, MAddr, and MData). The slave asserts 
SCmdAccept in the next cycle, for a request accept latency of 1.

D. The slave captures the write address and data.

E. After 1 idle cycle, the master starts a new write request. The slave 
deasserts SCmdAccept.

F. Since SCmdAccept is asserted, the request phase ends. SCmdAccept was 
low for 2 cycles, so the request accept latency for this transfer is 2. The 
slave captures the write address and data.
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10.3 Request Handshake and Separate 
Response
Figure 23 illustrates a single read transfer in which a slave introduces delays 
in the request and response phases. The request accept latency 2, 
corresponds to the number of clock cycles that SCmdAccept was deasserted. 
The request to response latency 3, corresponds to the number of clock cycles 
from the end of the request phase (D) to the end of the response phase (F).

Figure 23 Request Handshake and Separate Response 

Sequence
A. The master starts a request phase by issuing the RD command on the 

MCmd field. At the same time, it presents a valid address on MAddr. The 
slave is not ready to accept the command yet, so it deasserts SCmdAccept.

B. The master sees that SCmdAccept is not asserted, so it keeps all request 
phase signals steady. The slave may be using this information for a long 
decode operation, and it expects the master to hold everything steady 
until it asserts SCmdAccept. 

C. The slave asserts SCmdAccept. The master continues to hold the request 
phase signals.

D. Since SCmdAccept is asserted, the request phase ends. The slave 
captures the address, and although the request phase is complete, it is 
not ready to provide the response, so it continues to drive NULL on the 
SResp field. For example, the slave may be waiting for data to come back 
from an off-chip memory device. 
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E. The slave is ready to present the response, so it issues DVA on the SResp 
field, and drives the read data on SData. 

F. The master sees the DVA response, captures the read data, and the 
response phase ends.

10.4 Write with Response
Figure 24 is the same example as the waveform on page 161 but with 
response on write enabled. The response is typically provided to the master in 
the same cycle as SCmdAccept, but could be delayed (if required to perform 
an error check for instance). On the first write transaction, the slave uses a 
default accept scheme, resulting in a 0-wait state write transaction. Using 
fully-synchronous handshake, this condition is only possible when the slave’s 
ability to accept a command depends solely on its internal state: any 
command issued by the master can be accepted. Same-cycle SCmdAccept 
could also be achieved using combinational logic.

Figure 24 Write with Response

Sequence
A. The master starts a write request by driving WR on MCmd and valid 

address and data on MAddr and MData, respectively. The slave having 
already asserted SCmdAccept for a request accept latency of 0, drives DVA 
on SResp to indicate a successful transaction.
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B. The master starts a new transfer in the next cycle. The slave captures the 
write address and data and deasserts SCmdAccept, indicating that it is 
not ready for a new request.

C. With SCmdAccept not asserted, the master holds all request phase 
signals (MCmd, MAddr, and MData). The slave asserts SCmdAccept in the 
next cycle, for a request accept latency of 1 and drives DVA on SResp to 
indicate a successful transaction.

D. The slave captures the write address and data.

E. After 1 idle cycle, the master starts a new write request. The slave 
deasserts SCmdAccept.

F. Since SCmdAccept is asserted, the request phase ends. SCmdAccept was 
low for 2 cycles, so the request accept latency for this transfer is 2. The 
slave captures the write address and data. The slave drives DVA on SResp 
to indicate a successful transaction.

G. The master samples the response.

10.5 Non-Posted Write 
Figure 25 repeats the previous example for a non-posted write transaction. In 
this case the response must be returned to the master once the write 
operation commits. There is no difference in the command acceptance, but 
the response may be significantly delayed. If this scheme is used for all 
posting-sensitive transactions, the result is decreased data throughput but 
higher system reliability.

Figure 25 Non-posted Write 
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Sequence
A. The master starts a non-posted write request by driving WRNP on MCmd 

and valid address and data on MAddr and MData, respectively. The slave 
asserts SCmdAccept combinationally, for a request accept latency of 0. 

B. The slave drives DVA on SResp to indicate a successful first transaction.

C. The master starts a new transfer. The slave deasserts the SCmdAccept, 
indicating it is not yet ready to accept a new request. The master samples 
DVA on SResp and the first response phase ends.

D. The slave asserts SCmdAccept for a request accept latency of 1.

E. The slave captures the write address and data. 

F. The slave drives DVA on SResp to indicate a successful second 
transaction.

G. The master samples DVA on SResp and the second response phase ends.

10.6 Burst Write
Figure 26 illustrates a burst of four 32-bit words, incrementing precise burst 
write, with optional burst framing information (MReqLast). As the burst is 
precise (with no response on write), the MBurstLength signal is constant 
during the whole burst. MReqLast flags the last request of the burst, and 
SRespLast flags the last response of the burst. The slave may either count 
requests or monitor MReqLast for the end of burst.
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Figure 26 Burst Write

Sequence
A. The master starts the burst write by driving WR on MCmd, the first 

address of the burst on MAddr, valid data on MData, a burst length of four 
on MBurstLength, the burst code INCR on MBurstSeq, and asserts 
MBurstPrecise. MReqLast must be deasserted until the last request in the 
burst. The burst signals indicate that this is an incrementing burst of 
precisely four transfers. The slave is not ready for anything, so it deasserts 
SCmdAccept.

B. The slave asserts SCmdAccept for a request accept latency of 1.

C. The master issues the next write in the burst. MAddr is set to the next 
word-aligned address. For 32-bit words, the address is incremented by 4. 
The slave captures the data and address of the first request.

D. The master issues the next write in the burst, incrementing MAddr. The 
slave captures the data and address of the second request.

E. The master issues the final write in the burst, incrementing MAddr, and 
asserting MBurstLast. The slave captures the data and address of the 
third request.

F. The slave captures the data and address of the last request.
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10.7 Non-Pipelined Read
Figure 27 shows three read transfers to a slave that cannot pipeline responses 
after requests. This is the typical behavior of legacy computer bus protocols 
with a single WAIT or ACK signal. In each transfer, SCmdAccept is asserted 
in the same cycle that SResp is DVA. Therefore, the request-to-response 
latency is always 0, but the request accept latency varies from 0 to 2.

Figure 27 Non-Pipelined Read 

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid 

address on MAddr. The slave asserts SCmdAccept, for a request accept 
latency of 0. When the slave sees the read command, it responds with DVA 
on SResp and valid data on SData. (This requires a combinational path in 
the slave from MCmd, and possibly other request phase fields, to SResp, 
and possibly other response phase fields.)

B. The master launches another read request. It also sees that SResp is DVA 
and captures the read data from SData. The slave is not ready to respond 
to the new request, so it deasserts SCmdAccept.

C. The master sees that SCmdAccept is low and extends the request phase. 
The slave is now ready to respond in the next cycle, so it simultaneously 
asserts SCmdAccept and drives DVA on SResp and the selected data on 
SData. The request accept latency is 1.

D. Since SCmdAccept is asserted, the request phase ends. The master sees 
that SResp is now DVA and captures the data.

E. The master launches a third read request. The slave deasserts 
SCmdAccept.
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F. The slave asserts SCmdAccept after 2 cycles, so the request accept latency 
is 2. It also drives DVA on SResp and the read data on SData.

G. The master sees that SCmdAccept is asserted, ending the request phase. 
It also sees that SResp is now DVA and captures the data.

10.8 Pipelined Request and Response
Figure 28 shows three read transfers using pipelined request and response 
semantics. In each case, the request is accepted immediately, while the 
response is returned in the same or a later cycle.

Figure 28 Pipelined Request and Response 

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid 

address on MAddr. The slave asserts SCmdAccept, for a request accept 
latency of 0. 

B. Since SCmdAccept is asserted, the request phase ends. The slave 
responds to the first request with DVA on SResp and valid data on SData. 

C. The master launches a read request and the slave asserts SCmdAccept. 
The master sees that SResp is DVA and captures the read data from 
SData. The slave drives NULL on SResp, completing the first response 
phase.
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D. The master sees that SCmdAccept is asserted, so it can launch a third 
read even though the response to the previous read has not been received. 
The slave captures the address of the second read and begins driving DVA 
on SResp and the read data on SData.

E. Since SCmdAccept is asserted, the third request ends. The master sees 
that the slave has produced a valid response to the second read and 
captures the data from SData. The request-to-response latency for this 
transfer is 1.

F. The slave has the data for the third read, so it drives DVA on SResp and 
the data on SData.

G. The master captures the data for the third read from SData. The request-
to-response latency for this transfer is 2.

10.9 Response Accept
Figure 29 shows examples of the response accept extension used with two 
read transfers. An additional field, MRespAccept, is added to the response 
phase. This signal may be used by the master to flow-control the response 
phase.

Figure 29 Response Accept 
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Sequence
A. The master starts a read request by driving RD on MCmd and a valid 

address on MAddr. The slave asserts SCmdAccept immediately, and it 
drives DVA on SResp and the read data on SData as soon as it sees the 
read request. The master is not ready to receive the response for the 
request it just issued, so it deasserts MRespAccept.

B. Since SCmdAccept is asserted, the request phase ends. The master 
continues to deassert MRespAccept, however. The slave holds SResp and 
SData steady.

C. The master starts a second read request and is ready for the response 
from its first request, so it asserts MRespAccept. This corresponds to a 
response accept latency of 2.

D. Since SCmdAccept is asserted, the request phase ends. The master 
captures the data for the first read from the slave. Since MRespAccept is 
asserted, the response phase ends. The slave is not ready to respond to 
the second read, so it drives NULL on SResp.

E. The slave responds to the second read by driving DVA on SResp and the 
read data on SData. The master is not ready for the response, however, so 
it deasserts RespAccept.

F. The master asserts MRespAccept, for a response accept latency of 1.

G. The master captures the data for the second read from the slave. Since 
MRespAccept is asserted, the response phase ends.

10.10 Incrementing Precise Burst Read
Figure 30 illustrates a burst of four 32-bit words, incrementing precise burst 
read, with burst framing information (MReqLast/SRespLast). Since the burst 
is precise, the MBurstLength signal is constant during the whole burst. 
MReqLast flags the last request of the burst, and SRespLast flags the last 
response of the burst.
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Figure 30 Incrementing Precise Burst Read

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address 

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts 
MBurstPrecise. MBurstLength, MBurstSeq and MBurstPrecise must be 
kept constant during the burst. MReqLast must be deasserted until the 
last request in the burst. The slave is ready to accept any request, so it 
asserts SCmdAccept.

B. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The slave captures 
the address of the first request and keeps SCmdAccept asserted.

C. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The slave captures 
the address of the second request and keeps SCmdAccept asserted. The 
slave responds to the first read by driving DVA on SResp and the read data 
on SData.
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D. The master issues the last request of the burst, incrementing MAddr and 
asserting MReqLast. The master also captures the data for the first read 
from the slave. The slave responds to the second request, and captures 
the address of the third request. 

E. The master captures the data for the second read from the slave. The slave 
responds to the third request and captures the address of the fourth.

F. The master captures the data for the third read from the slave. The slave 
responds to the fourth request and asserts SRespLast to indicate the last 
response of the burst.

G. The master captures the data for the last read from the slave, ending the 
last response phase. 

10.11 Incrementing Imprecise Burst Read
Figure 31 illustrates a burst of four 32-bit words, incrementing imprecise 
burst read, with burst framing information (MReqLast/SRespLast). MReqLast 
flags the last request of the burst and SRespLast flags the last response of the 
burst. The last burst request is signaled primarily by driving the value 1 on 
MBurstLength.

The burst length sequence (3,3,2,1) is chosen arbitrarily for illustration 
purposes. The protocol requires that the burst length of the last transfer of 
the burst be equal to one.

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address 

on MAddr, three on MBurstLength, INCR on MBurstSeq, and asserts 
MBurstPrecise. The burst length is the best guess of the master at this 
point. MBurstSeq and MBurstPrecise are kept constant during the burst. 
MReqLast must be deasserted until the last request in the burst. The slave 
is ready to accept any request, so it asserts SCmdAccept.

B. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The MBurstLength 
is set to three, since the master knows the burst is longer than it originally 
thought. The slave captures the address of the first request and keeps 
SCmdAccept asserted.

C. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The MBurstLength 
is set to two. The slave captures the address of the second request, and 
keeps SCmdAccept asserted. The slave responds to the first read by 
driving DVA on SResp and the read data on SData.
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Figure 31 Incrementing Imprecise Burst Read 

D. The master issues the last request of the burst, incrementing MAddr, 
setting MBurstLength to one, and asserting MReqLast. The master also 
captures the data for the first read from the slave. The slave responds to 
the second request and captures the address of the last request. 

E. The master captures the data for the second read from the slave. The slave 
responds to the third request.

F. The master captures the data for the third read from the slave. The slave 
responds to the fourth request and asserts SRespLast to indicate the last 
response of the burst.

G. The master captures the data for the last read from the slave, ending the 
last response phase. 
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10.12 Wrapping Burst Read
Figure 32 illustrates a burst of four 32-bit words, wrapping burst read, with 
optional burst framing information (MReqLast/SRespLast). MReqLast flags 
the last request of the burst and SRespLast flags the last response of the 
burst. As a wrapping burst is precise, the MBurstLength signal is constant 
during the whole burst, and must be power of two. The wrapping burst 
address must be aligned to boundary MBurstLength times the OCP word size 
in bytes.

Figure 32 Wrapping Burst Read 

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address 

on MAddr, four on MBurstLength, WRAP on MBurstSeq, and asserts 
MBurstPrecise. MBurstLength, MBurstSeq, and MBurstPrecise must be 
kept constant during the burst. MReqLast must be deasserted until the 
last request in the burst. The slave is ready to accept any request, so it 
asserts SCmdAccept.
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B. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The slave captures 
the address of the first request, and keeps SCmdAccept asserted.

C. If incremented, the next address would be 0x10. Since the first transfer 
was from address 0x8 and the burst length is 4, the addresses must be 
between 0 and 0xF. The master wraps the MAddr to 0, which is the closest 
alignment boundary. (If the first address were 0x14, the address would 
wrap to 0x10, rather than 0x20.) The slave captures the address of the 
second request, and keeps SCmdAccept asserted. The slave responds to 
the first read by driving DVA on SResp and valid data on SData.

D. The master issues the last request of the burst, incrementing MAddr and 
asserting MReqLast. The master also captures the data for the first read 
from the slave. The slave responds to the second request and captures the 
address of the third. 

E. The master captures the data for the second read from the slave. The slave 
responds to the third request and captures the address of the fourth.

F. The master captures the data for the third read from the slave. The slave 
responds to the fourth request and asserts SRespLast to indicate the last 
response of the burst.

G. The master captures the data for the last read from the slave, ending the 
last response phase. 

10.13 Incrementing Burst Read with IDLE Request 
Cycle
Figure 33 illustrates a burst of four 32-bit words, incrementing precise burst 
read, with an IDLE cycle inserted in the middle. The master may insert IDLE 
requests in any burst type.

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address 

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts 
MBurstPrecise. MBurstLength, MBurstSeq, and MBurstPrecise must be 
kept constant during the burst. MReqLast must be deasserted until the 
last request in the burst. The slave is ready to accept any request, so it 
asserts SCmdAccept.

B. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The slave captures 
the address of the first request and keeps SCmdAccept asserted.

C. The master inserts an IDLE request in the middle of the burst. The slave 
does not have to deassert SCmdAccept, anticipating more burst requests 
to come. The slave captures the address of the second request. The slave 
responds to the first read by driving DVA on SResp and the read data on 
SData. The slave must keep SRespLast deasserted until the last response.
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Figure 33 Incrementing Precise Burst Read with IDLE Cycle 

D. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The master also 
captures the data for the first read from the slave. The slave responds to 
the second read by driving DVA on SResp and the read data on SData. If 
it has the data available for response, the slave does not have to insert a 
NULL response cycle.

E. The master issues the last request of the burst, incrementing MAddr, and 
asserting MReqLast. The master also captures the data for the second 
read from the slave. The slave captures the address of the third request 
and responds to the third request. 

F. The master captures the data for the third read from the slave. The slave 
captures the address of the fourth request. The slave responds to the 
fourth request, and asserts SRespLast to indicate the end of the slave 
burst.

G. The master captures the data for the last read from the slave, ending the 
last response phase. 
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10.14 Incrementing Burst Read with NULL 
Response Cycle
Figure 34 illustrates a burst of four 32-bit words, incrementing precise burst 
read, with a NULL response cycle (wait state) inserted by the slave. Null cycles 
can be inserted into any burst type by the slave.

Figure 34 Incrementing Burst Read with Null Cycle 

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address 

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts 
MBurstPrecise. MBurstLength, MBurstSeq and MBurstPrecise must be 
kept constant during the burst. MReqLast must be deasserted until the 
last request in the burst. The slave is ready to accept any request, so it 
asserts SCmdAccept.
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B. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The slave captures 
the address of the first request and keeps SCmdAccept asserted. The slave 
responds to the first request by driving DVA on SResp and the read data 
on SData. The slave must keep SRespLast deasserted until the last 
response.

C. The master issues the next read in the burst. MAddr is set to the next 
word-aligned address (incremented by 4 in this case). The master also 
captures the data for the first read from the slave. The slave captures the 
address of the second request and keeps SCmdAccept asserted. The slave 
responds to the second request.

D. The master issues the last request of the burst, incrementing MAddr and 
asserting MReqLast. The master also captures the data for the second 
read from the slave. The slave captures the address of the third request 
and keeps SCmdAccept asserted. The slave responds to the third request.

E. The master captures the data for the third read from the slave. The slave 
captures the address of the fourth request and keeps SCmdAccept 
asserted. The slave cannot respond to the fourth request, so it inserts 
NULL to SResp.

F. The slave responds to the fourth request and asserts SRespLast to 
indicate the last response of the burst.

G. The master captures the data for the last read from the slave, ending the 
last response phase. 

10.15 Single Request Burst Read
Figure 35 illustrates a single request, multiple data burst read. The master 
provides the burst length, start address, and burst sequence, and identifies 
the burst as a single request with the MBurstSingleReq signal. A single 
request burst is always precise.

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address 

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts 
MBurstPrecise, and MBurstSingleReq. The MBurstPrecise and 
MBurstSingleReq signals would normally be tied off to logic 1, which is not 
supplied by the master. The slave is ready to accept any request, so it 
asserts SCmdAccept.

B. The master completes the request cycles. The slave captures the address 
of the request. The slave responds to the request by driving DVA on SResp 
and the first response data on SData. The slave must keep SRespLast 
deasserted until the last response.
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Figure 35 Single Request Burst Read

C. The master captures the first response data. The slave issues the second 
response.

D. The master captures the second response data. The slave issues the third 
response.

E. The master captures the third response data. The slave issues the fourth 
response, and asserts SRespLast to indicate the last response of the 
burst.

F. The master captures the last response data.
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10.16 Datahandshake Extension
Figure 36 shows three writes with no responses using the datahandshake 
extension. This extension adds the datahandshake phase, which is 
completely independent of the request and response phases. Two signals, 
MDataValid and SDataAccept, are added, and MData is moved from the 
request phase to the datahandshake phase.

Figure 36 Datahandshake Extension 

Sequence
A. The master starts a write request by driving WR on MCmd and a valid 

address on MAddr. It does not yet have the write data, however, so it 
deasserts MDataValid. The slave asserts SCmdAccept. It does not need to 
assert or deassert SDataAccept yet, because MDataValid is still 
deasserted.

B. The slave captures the write address from the master. The master is now 
ready to transfer the write data, so it asserts MDataValid and drives the 
data on MData, starting the datahandshake phase. The slave is ready to 
accept the data immediately, so it asserts SDataAccept. This corresponds 
to a data accept latency of 0.

C. The master deasserts MDataValid since it has no more data to transfer. 
(Like MCmd and SResp, MDataValid must always be in a valid, specified 
state.) The slave captures the write data from MData, completing the 
transfer. The master starts a second write request by driving WR on 
MCmd and a valid address on MAddr.
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D. Since SCmdAccept is asserted, the master immediately starts a third write 
request. It also asserts MDataValid and presents the write data of the 
second write on MData. The slave is not ready for the data yet, so it 
deasserts SDataAccept.

E. The master sees that SDataAccept is deasserted, so it holds the values of 
MDataValid and MData. The slave asserts SDataAccept, for a data accept 
latency of 1.

F. Since SDataAccept is asserted, the datahandshake phase ends. The 
master is ready to deliver the write data for the third request, so it keeps 
MDataValid asserted and presents the data on MData. The slave captures 
the data for the second write from MData, and keeps SDataAccept 
asserted, for a data accept latency of 0 for the third write.

G. Since SDataAccept is asserted, the datahandshake phase ends. The slave 
captures the data for the third write from MData.

10.17 Burst Write with Combined Request and 
Data
Figure 37 illustrates a single request, multiple data burst write, with 
datahandshake signaling. Through the request handshake, the master 
provides the burst length, the start address, and burst sequence, and 
identifies the burst as a single request with the MBurstSingleReq signal. 

The write data is transferred with a datahandshake extension (see Figure 36). 
The parameter reqdata_together forces the first data phase to start with the 
request, making the design of a slave state machine easier, since it only needs 
to track one request handshake during the burst. Without this parameter, the 
MDataValid signal could be asserted any time after the first request. If 
datahandshake is not used, a single-request write burst is not possible; 
instead a request is required for each burst word.

Sequence
A. The master starts a write request by driving WR on MCmd, a valid address 

on MAddr, INCR on MBurstSeq, five on MBurstLength, and asserts the 
MBurstPrecise and MBurstSingleReq signals. The master also asserts the 
MDataValid signal, drives valid data on MData, and deasserts MDataLast. 
The MDataLast signal must remain deasserted until the last data cycle. 

B. Since it has not received SCmdAccept or SDataAccept, the master holds 
the request phase signals, keeps MDataValid asserted, and MData steady. 
The slave asserts SCmdAccept and SDataAccept to indicate it is ready to 
accept the request and the first data phase.

C. The master completes the request phase, asserts MDataValid and drives 
new data to MData. The slave captures the initial data and keeps 
SDataAccept asserted to indicate it is ready to accept more data.
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D. The master asserts MDataValid and drives new data to MData. The slave 
captures the second data phase and keeps SDataAccept asserted to 
indicate it is ready to accept more data.

Figure 37 Burst Write with Combined Request and Data 

E. The master asserts MDataValid and drives new data to MData. The slave 
captures the third data phase and keeps SDataAccept asserted to indicate 
it is ready to accept more data.

F. The master asserts MDataValid, drives new data to MData, and asserts 
MDataLast to identify the last data in the burst. The slave captures the 
fourth data phase and keeps SDataAccept asserted to indicate it is ready 
to accept more data.

G. The slave captures the last data phase and address. 
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This example also shows how the slave issues SResp at the end of a burst 
(when the optional write response is configured in the interface). For single 
request / multiple data bursts there is only a single response, and it can be 
issued after the last data has been detected by the slave. The SResp is NULL 
until point G. in the diagram. The slave may use code DVA to indicate a 
successful burst, or ERR for an unsuccessful one.

10.18 2-Dimensional Block Read
Figure 38 illustrates two read bursts with a 2-dimensional block burst 
address sequence and optional response phase end-of-row (SRespRowLast) 
and end-of-burst (SRespLast) framing information. The first transaction is a 
single-request, multiple-data style block burst of two rows by two words per 
row, with an address stride of S1 bytes. The second transaction is a multiple-
request, multiple-data style block burst of two rows by one word per row, with 
an address stride of S2 bytes. Block bursts are always precise.



184 Open Core Protocol Specification

OCP-IP Confidential

Figure 38 2 Dimensional Block Read

Sequence
A. The master begins the first block read by asserting RD on MCmd, a valid 

address (A1) on MAddr, BLCK on MBurstSeq, 2 words per row on 
MBurstLength, 2 rows on MBlockHeight, and the row-to-row spacing (S1) 
on MBlockStride. The master identifies this as the only request for the 
read burst by asserting MBurstSingleReq. The slave asserts SCmdAccept 
signifying that it is ready to accept the request.

B. The rising edge of the OCP clock ends the first request phase as the slave 
captures the request. The master starts the second block read at address 
A2, with only a single word per row, and requests 2 rows at a spacing of 
S2. The master deasserts MBurstSingleReq, indicating that there will be 
one request phase for each data phase. The slave keeps SCmdAccept 
asserted. The slave also returns a response to the original block burst, 
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including the first word of data. Since there are more data words 
remaining in the first row of this burst, the slave deasserts SRespRowLast 
and SRespLast.

C. The slave captures the first request for the second transaction, and keeps 
SCmdAccept asserted for the next cycle. The master presents the second 
(and last) request in the second block burst. The master sets MAddr to the 
starting address for the second row (A2 + S2). The master accepts the first 
response for the first burst. The slave returns the second data word for 
the first burst, which ends the first row, so the slave also asserts 
SRespRowLast.

D. The slave accepts the second request for the second transaction. The 
master accepts the second response for the first burst. The slave returns 
the third data word for the first burst, which is the first word of the second 
row, so the slave deasserts SRespRowLast.

E. The master accepts the third response for the first burst. The slave 
returns the fourth (and final) data word for the first burst, and asserts 
SRespLast and SRespRowLast.

F. The master accepts the last response for the first burst. The slave returns 
the first data word for the second burst, which ends the first row, so the 
slave keeps SRespRowLast asserted and deasserts SRespLast.

G. The master accepts the first response for the second burst. The slave 
returns the second (and final) data word for the second burst, and asserts 
SRespLast.

H. The master accepts the last response for the second burst.

10.19 Tagged Reads
Figure 39 illustrates out-of-order completion of read transfers using the OCP 
tag extension. The tag IDs, MTagID and STagID, have been added, along with 
the MTagInOrder and STagInOrder signals. Writes are configured to have 
responses. There is significant reordering of responses, together with in-order 
responses forced by both MTagInOrder and address overlap.
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Figure 39 Tagged Reads 

Sequence
A. The master starts the first read request, driving a RD on MCmd and a 

valid address on MAddr. The master drives a 0 on MTagID, indicating that 
this read request is for tag 0. The master also deasserts MTagInOrder, 
allowing the slave to reorder the responses.

B. Since SCmdAccept is sampled asserted, the request phase ends with a 
request accept latency of 0. The master begins a write request to a second 
address, providing the write data on MData. The master asserts 
MTagInOrder, indicating that the slave may not reorder this request with 
respect to other in-order transactions and that MTagID is a “don’t care.”

C. When SCmdAccept is sampled asserted, the second request phase ends. 
The master launches a third request, which is a read to an address that 
matches the previous write. MTagInOrder is deasserted, enabling 
reordering, and the assigned tag value is 1.

D. Since SCmdAccept is sampled asserted, the third request phase ends. The 
master launches a fourth request, which is a read. MTagInOrder is 
asserted, forcing ordering with respect to the earlier in-order write. The 
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slave responds to the second request (the in-order write presented at B) 
by driving DVA on SResp. Since the transaction is in-order, STagInOrder 
is asserted and STagID is a “don’t care.”

E. SCmdAccept is sampled asserted so the fourth request phase ends. Since 
the response phase is sampled asserted, the response to the second 
request ends with a request-to-response latency of 2 cycles. The slave 
responds to the fourth request (D) by driving DVA on SResp and read data 
on SData. STagInOrder is asserted to match the associated request. This 
response was reordered with respect to the first (A) and third (C) requests, 
which allow reordering.

F. The response phase is sampled asserted so the response to the fourth 
request ends with a request-to-response latency of 1 cycle. The slave 
responds to the third request (C) by driving DVA on SResp, read data on 
SData, and a 1 on STagID. STagInOrder is deasserted, indicating that 
reordering is allowed. This response is reordered with respect to the first 
request (A), but must occur after the second request (B), which has a 
matching address.

G. Since the response phase is sampled asserted, the response to the third 
request ends with a request-to-response latency of 3 cycles. The slave 
responds to the first request (A) by driving DVA on SResp, read data on 
SData, and a 0 on STagID. STagInOrder is deasserted.

H. When the response phase is sampled asserted, the response to the first 
request ends with a request-to-response latency of 6 cycles. 

10.20 Tagged Bursts
Figure 40 illustrates out-of-order completion of packing single-request/ 
multiple data read transactions using the OCP tag extension. With the 
burstprecise parameter set to 0, and the MBurstPrecise signal tied-off to 
the default, all bursts are precise. The burstsinglereq parameter is 0, and 
the MBurstSingleReq signal is tied-off to 1 (not the default), so all requests 
have a single request phase.The taginorder parameter is set to 0, allowing 
all transactions to be reordered, subject to the tagging rules. The 
tag_interleave_size parameter is set to 2, so packing bursts must not 
interleave at a granularity finer than 2 words. Note that the first two words of 
the second read return before the only word associated with the first read.



188 Open Core Protocol Specification

OCP-IP Confidential

Figure 40 Tagged Burst Transactions

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid 

address on MAddr. The request is for a single-word incrementing burst, 
as driven on MBurstLength and MBurstSeq, respectively. The master also 
drives a 0 on MTagID, indicating that this read request is for tag 0.

B. Once SCmdAccept is sampled asserted, the request phase ends with a 
request accept latency of 0. The master begins a four-word read request 
to a second, non-conflicting address, on tag 1. 

C. SCmdAccept is sampled asserted ending the second request phase. The 
slave responds to the second request by driving DVA on SResp together 
with 1 on STagID. The slave provides the first data word from the burst on 
SData.

D. When the response phase is sampled asserted, the first response to the 
second request ends with a request-to-response latency of 1 cycle. The 
slave provides the second word of read data for tag 1 on SData, together 
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with a DVA response. Because tag_interleave_size is 2 and the read 
burst sequence is packing, the slave was forced to return the second word 
of tag 1’s data before responding to tag 0.

E. The response phase is sampled asserted, terminating the second response 
to the second request with a request-to-response latency of 2 cycles. The 
slave responds to the first request by providing the read data for tag 0 
together with a DVA response.

F. When the response phase is sampled asserted, the response to the first 
request ends with a request-to-response latency of 4 cycles. Since the 
burst length of the first request is 1, the transaction on tag 0 is complete. 
The slave provides the third word of read data for tag 1 on SData, together 
with a DVA response.

G. The response phase is sampled asserted so the third response to the 
second request ends with a request-to-response latency of 4 cycles. The 
slave provides the fourth word of read data for tag 1 on SData, together 
with a DVA response.

H. When the response phase is sampled asserted, the fourth and final 
response to the second request ends with a request-to-response latency of 
5 cycles. 

10.21 Threaded Read
Figure 41 illustrates out-of-order completion of read transfers using the OCP 
thread extension. This diagram is developed from Figure 28 on page 168. The 
thread IDs, MThreadID and SThreadID, have been added, and the order of two 
of the responses has been changed.

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid 

address on MAddr. The master also drives a 0 on MThreadID, indicating 
that this read request is for thread 0. The slave asserts SCmdAccept, for 
a request accept latency of 0. When the slave sees the read command, it 
responds with DVA on SResp and valid data on SData. The slave also 
drives a 0 on SThreadID, indicating that this response is for thread 0.

B. Since SCmdAccept is asserted, the request phase ends. The master sees 
that SResp is DVA and captures the read data from SData. Because the 
request was accepted and the response was presented in the same cycle, 
the request-to-response latency is 0.

C. The master launches a new read request, but this time it is for thread 1. 
The slave asserts SCmdAccept, however, it is not ready to respond. 
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Figure 41 Threaded Read 

D. Since SCmdAccept is asserted, the master can launch another read 
request. This request is for thread 0, so MThreadID is switched back to 0. 
The slave captures the address of the second read for thread 1, but it 
begins driving DVA on SResp, data on SData, and a 0 on SThreadID. This 
means that it is responding to the third read, before the second read.

E. Since SCmdAccept is asserted, the third request ends. The master sees 
that the slave has produced a valid response to the third read and 
captures the data from SData. The request-to-response latency for this 
transfer is 0.

F. The slave has the data for the second read, so it drives DVA on SResp, 
data on SData, and a 1 on SThreadID.

G. The master captures the data for the second read from SData. The 
request-to-response latency for this transfer is 3.

10.22 Threaded Read with Thread Busy
Figure 42 illustrates the out-of-order completion of read transfers using the 
OCP thread extension. The change to Figure 41 is the addition of thread busy 
signals. In this example, the thread busy is only a hint, since the 
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sthreadbusy_exact parameter is not set. In this case the master may ignore 
the SThreadBusy signals, and the slave does not have to accept requests even 
when it is not busy. 

When thread busy is treated as a hint and a request or thread is not accepted, 
the interface may block for all threads. Blocking of this type can be avoided 
by treating thread busy as an exact signal using the sthreadbusy_exact 
parameter. For an example, see Section 10.23.

This example shows only the request part of the read transfers. The response 
part can use a similar mechanism for thread busy.

Figure 42 Threaded Read with Thread Busy 

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid 

address on MAddr. The master also drives a 0 on MThreadID, associating 
this read request with thread 0. The slave asserts SCmdAccept for a 
request accept latency of 0. 

B. Since SCmdAccept is asserted, the request phase ends. 

C. The slave asserts SThreadBusy[1] since it is not ready to accept requests 
on thread 1. The master ignores the hint, and launches a new read 
request for thread 1. The master can issue a request even though the slave 
asserts SThreadbusy (see transfer 2). All threads are now blocked.
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D. The slave deasserts SThreadBusy[1] and asserts SCmdAccept to complete 
the request for thread 1. 

E. Since SCmdAccept is asserted, the second request ends. The master 
issues a new request to thread 0. The slave is not ready to accept the 
request, and indicates this condition by keeping SCmdAccept deasserted. 
It chooses not to assert SThreadBusy[0]. The slave does not have to assert 
SCmdAccept for a request, even if it did not assert SThreadbusy (see 
transfer 3).

F. The slave asserts the SCmdAccept to complete the request on thread 0.

G. The master captures the SCmdAccept to complete the requests.

10.23 Threaded Read with Thread Busy Exact
Figure 43 illustrates the out-of-order completion of read transfers using the 
OCP thread extension. Because the sthreadbusy_exact parameter is set, 
the master may not ignore the SThreadBusy signals. The master is using 
SThreadBusy to control thread arbitration, so it cannot present a command 
on Thread 1 as the slave asserts SThreadbusy[1].

The diagram only shows the request part of the read transfers. The response 
part can use a similar mechanism for thread busy.

Figure 43 Threaded Read with Thread Busy Exact 
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Sequence
A. The master starts the first read request, driving RD on MCmd and a valid 

address on MAddr. The master also drives a 0 on MThreadID, indicating 
that this read request is for thread 0. 

B. Since SThreadBusy[0] is not asserted, the request phase ends. The slave 
samples the data and address and asserts SThreadBusy[1] since it is 
unready to accept requests on thread 1. The master is prevented from 
sending a request on thread 1, but it can send a request on another 
thread.

C. The slave deasserts SThreadBusy[1] and the master can send the request 
on thread 1.

D. Since SThreadBusy[1] is not asserted, the request phase ends and the 
slave must sample the data and address. The master can send a request 
on thread 0 (or thread 1).

E. Since SThreadBusy[0] is not asserted, the request phase ends and the 
slave must sample the data and address.

10.24 Threaded Read with Pipelined Thread Busy
Figure 44 illustrates a set of threaded read requests on an interface where the 
sthreadbusy_pipelined parameter is set. Because pipelining a phase’s 
ThreadBusy signals also forces exact flow control (sthreadbusy_exact must 
be set), the master must obey the SThreadBusy signals.

In this example, the master asserts a single read request phase on thread 0, 
and multiple requests on thread 1. The slave’s SThreadBusy assertions 
control when the master may assert request phases on each thread. The 
diagram only shows the request part of the read transfers. The response part 
uses a similar mechanism for thread busy.

Sequence
A. Because both SThreadBusy signals were sampled asserted on this rising 

edge of the OCP clock, the master may not present requests on either 
thread. The slave indicates its readiness to accept a request on thread 0 
in the next cycle by de-asserting SThreadBusy[0].

B. After sampling SThreadBusy[0] deasserted, the master asserts the first 
read request on thread 0 by driving a 0 on MThreadID, RD on MCmd and 
a valid address on MAddr. The slave indicates that it can accept requests 
on both threads in the next cycle by de-asserting SThreadBusy[1] and 
leaving SThreadBusy[0] deasserted.
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Figure 44 Threaded Read with Pipelined Thread Busy 

C. The master’s first request is sampled by the slave and the request phase 
ends. The master samples SThreadBusy[1] deasserted and uses the 
information to assert a second read request, this time on thread 1. The 
slave asserts SThreadBusy[1] since it cannot guarantee that it can accept 
another request on thread 1 in the next cycle.

D. The master’s second request is sampled by the slave and the request 
phase ends. The master samples SThreadBusy[1] asserted, and is forced 
to drive MCmd to IDLE, since it has no more requests for thread 0 and the 
slave cannot accept a request on thread 1. The slave signals that it will be 
ready to accept requests on both threads in the next cycle by de-asserting 
SThreadBusy[1] and leaving SThreadBusy[0] deasserted.

E. The master samples SThreadBusy[1] deasserted, and uses this 
information to assert a third read request on thread 1. The slave asserts 
SThreadBusy[1] since it cannot guarantee that it can accept another 
request on thread 1 in the next cycle.

F. The master’s third request is sampled by the slave and the request phase 
ends. The master samples SThreadBusy[1] asserted, and is forced to drive 
MCmd to IDLE.
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10.25 Reset
Figure 45 shows the timing of the reset sequence with MReset_n driven from 
the master to the slave. MReset_n must be asserted for at least 16 cycles of 
the OCP clock to ensure that the master and slave reach a consistent internal 
state. Because the interface does not include the EnableClk signal, the OCP 
clock is simply Clk.

Figure 45 Reset Sequence 

Sequence
A. MReset_n is sampled active on this clock edge. Master and slave now 

ignore all other OCP signals, except for the connection signals, if present. 
In the first cycle a response to a previously issued request is presented by 
the slave and ready to be received by the master. Since the master is 
asserting MReset_n, the response is not received. The associated 
transaction is terminated by OCP reset so the response is withdrawn by 
the slave.

B. MReset_n is asserted for at least 16 Clk cycles.

C. A new transfer may begin on the same clock edge that MReset_n is 
sampled deasserted.

10.26 Reset with Clock Enable
Figure 46 shows the timing of the reset signal with the EnableClk signal 
enabled on the interface. In this figure, the EnableClk signal is asserted on 
every other rising edge of Clk, delivering an OCP clock that is one-half the 
frequency of Clk. The MReset_n signal is driven from the master to the slave. 
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However, the presence of EnableClk means that MReset_n must be asserted 
for 16 cycles of the OCP clock (that is, when the rising edge of Clk samples 
EnableClk asserted), which will require 31 cycles of Clk. 

Figure 46 Reset with Clock Enable 

Sequence
A. MReset_n and EnableClk are sampled active on this clock edge. Master 

and slave now ignore all other OCP signals, except for the connection 
signals, if present.

B. MReset_n is asserted for at least 16 Clk cycles with EnableClk sampled 
high.

C. A new transfer may begin on the same clock edge that MReset_n is 
sampled deasserted and EnableClk sampled high.

10.27 Basic Read with Clock Enable
Figure 47 illustrates a simple read transaction of length one with the 
EnableClk signal enabled on the interface. In this figure, the EnableClk signal 
is asserted on every other rising edge of Clk, delivering an OCP clock that is 
one-half the frequency of Clk. As is shown, interface state only advances on 
rising edges of Clk that coincide with EnableClk being asserted.
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Figure 47 Basic Read with Clock Enable Signal 

Sequence
A. The master starts a read request by driving RD on MCmd. At the same 

time, it presents a valid address on MAddr.

B. This clock edge is not valid since EnableClk is sampled low. The slave 
asserts SCmdAccept in this cycle for a request accept latency of 0.

C. The slave uses the value from MAddr to determine what data to return. 
The slave starts the response phase by switching SResp from NULL to 
DVA. The slave also drives the selected data on SData. Since SCmdAccept 
is asserted, the request phase ends.

D. Invalid clock edge.

E. The master recognizes that SResp indicates data valid and captures the 
read data from SData, completing the response phase. This transfer has 
a request-to-response latency of 1.

10.28 Slave Disconnect
Figure 48 illustrates a sequence where a slave device votes for disconnecting 
from the master. After the master ensures that the interface is quiescent (all 
transactions are completed), it changes the connection state to a slave-
requested disconnect. Just as the state change occurs, the slave votes to re-
connect. After the minimum allowed delay of 2 cycles, the master changes the 
connection state back to fully connected.

D       

DVA                         NULL
 

NULL

IDLEIDLE

A B C D E

MAddr

MCmd

SCmdAccept

SResp

SData

R
e

q
ue

st
 

P
h

a
se

R
es

p
on

se
 

P
h

as
e

Clk

EnableClk

RD

   A

1 2 3 4 5 6 7



198 Open Core Protocol Specification

OCP-IP Confidential

Figure 48 Slave-requested Disconnect Sequence

Sequence
A. The master samples the slave’s vote to disconnect on SConnect. The 

master begins draining the interface by completing the request and 
datahandshake phases for any transactions that have already begun.

B. Having sequenced the final request phase for the last in-flight transaction, 
the master has drained the request phase and asserts MCmd to IDLE. The 
master continues draining the interface by waiting for any outstanding 
response phases from the slave.

C. Having sequenced the final response phase for the last in-flight 
transaction, the slave has drained the response phase and asserts SResp 
to NULL. The master samples the final response and can change the 
connection state directly to M_DISC without passing through M_WAIT, 
since SWait is negated and the interface is quiescent. Independently, the 
slave votes to connect by asserting SConnect.

D. The master samples the slave’s vote to connect, but cannot change the 
connection state until 2 cycles have passed.

E. The master re-establishes connection by changing the connection state to 
M_CON. The master may not assert any new transaction until the slave 
samples the new connection state.

F. The slave samples MConnect and the interface is fully connected. The 
master asserts a read transaction on MCmd.

10.29 Connection Transitions with Slave Pacing
Figure 49 illustrates a sequence where several connection state transitions 
are delayed by the slave using SWait. This slave asserts SWait so it can pace 
(i.e., control) when the master may transition between stable connection 
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states. In each case, the master is thus forced to transition through the 
M_WAIT transient state on the way to the desired stable state. The data flow 
and other sideband signals are not shown in the figure for clarity; their 
behavior is described in the sequence description, below.

Figure 49 Connection Transition Sequences with Slave Pacing

Sequence
A. The master votes to disconnect (not visible from the interface). Because all 

data flow transactions are complete, the interface is quiescent and the 
master changes the connection state by asserting MConnect to M_WAIT, 
since SWait is asserted.

B. The slave samples the M_WAIT state and determines that all sideband 
signaling is quiescent and the slave is ready to allow disconnect. The slave 
negates SWait to enable the master to complete the disconnection 
sequence.

C. The master samples SWait negated and changes the connection state to a 
master-requested disconnect by asserting MConnect to M_OFF.

D. The slave samples the M_OFF state and asserts SWait to pace future state 
changes. The slave also votes to disconnect by negating SConnect.

E. The master votes to connect (not visible from the interface) but samples 
SConnect negated and begins the transition to a slave-requested 
disconnect. Because SWait is asserted, the master first asserts MConnect 
to M_WAIT.

F. The slave samples the M_WAIT state and determines that it is ready to 
allow the connection state change, so it negates SWait.

G. The master samples SWait negated and changes the connection state to a 
slave-requested disconnect by asserting MConnect to M_DISC.

H. The slave samples the M_DISC state and asserts SWait to pace future 
state changes.
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11 OCP Coherence Extensions: 
Timing Diagrams

The following timing diagrams show the basic transfer flow on the 
intervention port. 
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Figure 50 Transfer without Data Phase, intport_split_tranx=0

This example has port parameter intport_split_tranx=0. 

Sequence
A. The master starts the request on clock 1 by driving the associated 

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request 
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The 
slave's cache does not contain the requested address so the response of 
“OK” is given on the SResp signal. 

D. The master recognizes the value on SResp and the transfer is 
completed. 
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Figure 51 Transfer with Data Phase, intport_split_tranx=0

This example has port parameter intport_split_tranx=0. 

Sequence
A. The master starts the request on clock 1 by driving the associated 

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request 
phase completes. The slave does the snoop intervention operation.
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C. The slave reports the results of the snoop intervention operation. The 
slave's cache contains the most up-to-date copy of the requested 
address so the response of “DVA” is given on the SResp signal. 
Simultaneously, the slave drives the first data beat onto SData. Also 
simultaneously, the slave drives the cacheline state onto SCohState. 

D. The Master recognizes the SResp value to denote valid data and latches 
the value of the first data beat on SData.

E. Similarly for the 2nd data beat

F. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote 
it is driving the last data beat.

G. The Master latches the 4th data beat and recognizes SDataLast to 
complete the transfer. 
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Figure 52 Transfer with Data Phase, intport_split_tranx=1

When the port parameter intport_split_tranx=1, a separate handshake 
mechanism is used for the data phase. Two additional signals—SDataValid 
and MDataAccept—are used for this data handshake.
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In this configuration, the signal SResp is no longer used to indicated the 
presence of valid data on the intervention port, instead the new signal 
SDataValid is used for that purpose. The signal SResp now only indicates 
whether the local processor contains a copy of the requested memory location 
or not and thus is only asserted for a single cycle per transaction. 

In the current example, the data transfer is still co-incident with the response 
phase. In the following examples, the data transfer is delayed after the 
response phase using these new signals. 

Sequence
A. The master starts the request on clock 1 by driving the associated 

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request 
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The 
slave's cache contains the most up-to-date copy of the requested 
address so the response of “DVA” is given on the SResp signal. 
Simultaneously, since the MDataAccept signal is asserted, the slave 
drives the first data beat onto SData and asserts SDataValid. Also 
simultaneously, the slave drives the cacheline state onto SCohState. 

D. The Master recognizes the SResp value and the response phase 
completes. The Master recognizes the SDataValid signal is asserted and 
latches the value of the first data beat.

E. Similarly for the 2nd data beat

F. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote 
it is driving the last data beat.

G. The Master latches the 4th data beat and recognizes SDataLast to 
complete the transfer. 
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Figure 53 Transfer with Data Phase delayed by MdataAccept, intport_split_tranx=1

The next diagram shows the use of the MDataAccept signal as a way for the 
Master to apply flow-control on the slave's data responses. 

Sequence
A. The master starts the request on clock 1 by driving the associated 

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request 
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The 
slave's cache contains the most up-to-date copy of the requested 
address so the response of “DVA” is given on the SResp signal. 
Simultaneously, the slave drives the first data beat onto SData and 
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asserts SDataValid. Also simultaneously, the slave drives the cacheline 
state onto SCohState. However, since MDataAccept is de-asserted, the 
data phase signal group is held. 

D. The Master recognizes the SResp value and the response phase 
completes. The slave continues holding the data phase signals, awaiting 
the assertion of MDataAccept. 

E. The Master is finally ready to accept the data and asserts MDataAccept. 

F. The Master latches the data value for the 1st data beat. The Slave 
recognizes MDataAccept and drives the data value for the 2nd data 
beat. 

G. The Master latches the data value for the 2nd data beat. 

H. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote 
it is driving the last data beat.

I. The Master latches the 4th data beat and recognizes SDataLast to 
complete the transfer. 
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Figure 54 Transfer with Data Phase delayed by SDataValid, intport_split_tranx=1

The next diagram shows the use of the SDataValid signal as a way for the 
slave to separate the Response phase from the Data Transfer Phase. In 
systems with shadow copies of the cache tags, the response of the cache tags 
can be delivered earlier than the data. 

Sequence
A. The master starts the request on clock 1 by driving the associated 

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request 
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The 
slave's cache contains the most up-to-date copy of the requested 
address so the response of “DVA” is given on the SResp signal. 
Simultaneously, the slave drives the cacheline state onto SCohState.

STATE

Clk

MAddr

MCmd

SCmdAccept

SResp

SData

IDLE

0x01

RDOW

1
IDLE

DVA

MBurstLength 4

NULL

R
eq

u
e

st
 

P
ha

se
R

es
p

o
ns

e
 

P
ha

se

2 3 4 5 6 71

MBurstSeq WRAP

MBurstPrecise

SDataLast

SDataValid

NULL

MDataAccept

D1B3D1B0 D1B1 D1B2

8 9 10

D
a

ta
P

h
as

e

A B C D E F G H I J

SCohState



210 Open Core Protocol Specification

OCP-IP Confidential

D. The Master recognizes the SResp value and the response phase 
completes. Since SDataValid is not asserted, the Master waits for the 
data values.

E. The Master continues waiting for SDataValid signal to assert.

F. The Slave is finally ready to drive the data and asserts SDataValid and 
the first data value on SData. 

G. The Master latches the data value for the 1st data beat. The Slave drives 
the data value for the 2nd data beat since MDataAccept was asserted. 

H. The Master latches the value for the 2nd data beat. The Slave drives the 
value for the 3rd data beat. 

I. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote 
it is driving the last data beat.

J. The Master latches the 4th data beat and recognizes SDataLast to 
complete the transfer. 
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Figure 55 Overlapped Transactions

The following figure shows overlapped transactions with the response phase 
for the second transaction happening before the data transfer of the first 
transaction is completed. 

Sequence
A. The master starts the first request on clock 1 by driving the associated 

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request 
phase completes. The slave does the first snoop intervention operation. 
The master starts the second request by driving new values for the 
request group signals. The slave accepts the second request by 
asserting SCmdAccept in the same cycle. 
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C. The slave reports the results of the first snoop intervention operation. 
The slave's cache contains the most up-to-date copy of the requested 
address so the response of “DVA” is given on the SResp signal. Also 
simultaneously, the slave drives the cacheline state onto SCohState. In 
the same cycle, the slave does the second snoop intervention operation. 

D. The Master recognizes the first SResp value and the first response 
phase completes. Since SDataValid is not asserted, the Master waits for 
the data values. The slave reports the results of the second snoop 
intervention operation. The slave's cache does not contain the second 
requested address so the response of “OK” is given on the SResp signal.

E. The Master continues waiting for SDataValid signal to assert. The 
Master recognizes the second SResp value and the second response 
phase is completed. Since the second transaction does not have a data 
phase, it is completed. 

F. The Slave is finally ready to drive the data for the first request and 
asserts SDataValid and the first data value on SData. 

G. The Master latches the data value for the 1st data beat. The Slave drives 
the data value for the 2nd data beat since MDataAccept was asserted. 

H. The Master latches the value for the 2nd data beat. The Slave drives the 
value for the 3rd data beat. 

I. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote 
it is driving the last data beat.

J. The Master latches the 4th data beat and recognizes SDataLast to 
complete the transfer. 
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12 Developers Guidelines

This chapter collects examples and implementation tips that can help you 
make effective use of the Open Core Protocol and does not provide any 
additional specification material. This chapter groups together a variety of 
topics including discussions of: 

1. The basic OCP with an emphasis on signal timing, state machines and 
OCP subsets

2. Simple extensions that cover byte enables, multiple address spaces and 
in-band information

3. An overview of burst capabilities 

4. The concepts of threading, tagging extensions, and connections

5. OCP features addressing write semantics, synchronization issues, and 
endianness

6. Sideband signals with an emphasis on reset management and the 
connection protocol

7. A description of the debug and test interface

12.1 Basic OCP
This section considers the different OCP phases, their relationships, and 
identifies sensitive timing-related areas and begins with a discussion of 
support for variable-rate divided clocks. The section includes descriptions of 
OCP compliant state machines, and also discusses the OCP parameters 
needed to define simple OCP interfaces.
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12.1.1 Divided Clocks
The EnableClk signal allows OCP to provide flexible support for multi-rate 
systems. When set with the enableclk parameter, the EnableClk signal 
provides a sampling signal that specifies which rising edges of the Clk signal 
are rising edges of the OCP clock. By driving the appropriate waveforms on 
EnableClk, the system can control the effective clocking rate of the interface, 
and frequently the attached cores, without introducing extra outputs from 
PLLs, or requiring delay matching across multiple clock distribution 
networks.

When EnableClk is on, the interfaces behave as if the EnableClk signal is not 
present. All rising edges of Clk are treated as rising edges of the OCP clock 
allowing the OCP to operate at the Clk frequency. If EnableClk is off, no rising 
edges of the OCP clock occur, and the OCP clock is effectively stopped. 

This feature can be used to reduce dynamic power by idling the attached 
cores, although the Clk signal may still be active. In normal operation the 
system drives EnableClk with a periodic signal. For instance, asserting 
EnableClk for every third Clk cycle causes OCP to operate at one third of the 
Clk frequency. The system can modify the frequency by changing the 
repeating pattern on EnableClk.

OCP is fully synchronous (with the exception of reset assertion). All timing 
paths traversing OCP close in a single OCP clock period. If EnableClk has a 
maximum duty cycle less than 100%, these timing paths may be constrained 
as multi-cycle timing paths of the underlying clock domain.

12.1.1.1 OCP Clock Shape
The OCP Specification defines synchronous signals with respect to the rising 
edge of the OCP clock and makes no assertions about the duty cycle of the 
OCP clock. Since most designs use the rising-edge clocked flip-flops as the 
storage element in synchronous designs this is usually not an issue. The OCP 
Clk signal is frequently the output of a PLL or DLL, which tend to output clock 
signals with near 50% duty cycles.

An OCP interface with a repeating pattern on EnableClk tends to produce 
pulsed OCP clock waveforms. For instance, with EnableClk asserted every 
third Clk cycle, the rising edge of the OCP clock is coincident with the rising 
edge of Clk that samples EnableClk asserted. For most implementations that 
use this sampling function, the falling edge of the effective (internal) OCP 
clock is coincident with the next falling edge of Clk. The effective OCP clock is 
high for one-half of a Clk period every third Clk cycle, yielding an effective 
duty cycle of 16.7%.

12.1.1.2 Divided Clock Timing
Most design flows treat EnableClk as a standard synchronous signal that 
could have any value for a cycle. If EnableClk is asserted on consecutive 
cycles the OCP operates at the full Clk frequency, requiring internal and 
external timing paths to meet the maximum Clk frequency.
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The internal and external timing can be relaxed by recognizing that the 
EnableClk signal permits a restricted duty cycle (for instance, only high for 
every third Clk cycle). Taking advantage of this extra timing margin requires 
careful control over the timing flow, which may include definition and 
analysis of multi-cycle paths and other challenges. The design flow must 
assure that the system-side logic that generates EnableClk does not violate 
the duty cycle assumption. Finally, the timing flow must ensure that no 
timing issues arise due to the low duty cycle of the effective OCP clock.

12.1.2 Signal Timing
The Open Core Protocol data transfer model allows many different types of 
existing legacy IP cores to be bridged to the OCP without adding expensive 
glue logic structures that include address or data storage. As such, it is 
possible to draw many state machine diagrams that are compliant with the 
protocol. This section describes some common state machine models that can 
be used with the OCP, together with guidance on the use of those models.

Dataflow signals in the OCP interface follow the general principle of two-way 
handshaking. A group of signals is asserted and must be held steady until the 
corresponding accept signal is asserted. This allows the receiver of a signal to 
force the sender to hold the signals steady until it has completely processed 
them. This principle produces implementations with fewer latches for 
temporary storage.

OCP principles are built around three fundamental decoupled phases: the 
request phase, the response phase, and the datahandshake phase.

12.1.2.1 Request Phase
Request flow control relies on standard request/accept handshaking signals: 
MCmd and SCmdAccept. Note that in version 2.0 of this specification, 
SCmdAccept becomes an optional signal, enabled by the cmdaccept 
parameter. When the signal is not physically present on the interface, it 
naturally defaults to 1, meaning that a request phase in that case lasts 
exactly one clock cycle.

The request phase begins when the master drives MCmd to a value other than 
Idle. When MCmd != Idle, MCmd is referred to as asserted. All of the other 
request phase outputs of the master must become valid during the same clock 
cycle as MCmd asserted, and be held steady until the request phase ends. The 
request phase ends when SCmdAccept is sampled asserted (true) by the rising 
edge of the OCP clock. The slave can assert SCmdAccept in the same cycle 
that MCmd is asserted, or stay negated for several OCP clock cycles. The latter 
choice allows the slave to force the master to hold its request phase outputs 
until the slave can accomplish its access without latching address or data 
signals.

The slave designer chooses the delay between MCmd asserted and 
SCmdAccept asserted based on the desired area, timing, and throughput 
characteristics of the slave.
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As the request phase does not begin until MCmd is asserted, SCmdAccept is 
a “don’t care” while MCmd is not asserted so SCmdAccept can be asserted 
before MCmd. This allows some area-sensitive, low frequency slaves to tie 
SCmdAccept asserted, as long as they can always complete their transfer 
responsibilities in the same cycle that MCmd is asserted. Since an MCmd 
value of Idle specifies the absence of a valid command, the master can assert 
MCmd independently of the current setting of SCmdAccept.

The highest throughput that can be achieved with the OCP is one data 
transfer per OCP clock cycle. High-throughput slaves can approach this rate 
by providing sufficient internal resources to end most request phases in the 
same OCP clock cycle that they start. This implies a combinational path from 
the master’s MCmd output into slave logic, then back out the slaves 
SCmdAccept output and back into a state machine in the master. If the 
master has additional requests to present, it can start a new request phase 
on the next OCP clock cycle. Achieving such high throughput in high-
frequency systems requires careful design including cycle time budgeting as 
described in Section 14.3 on page 316.

12.1.2.2 Response Phase
The response phase begins when the slave drives SResp to a value other than 
NULL. When SResp != NULL, SResp is referred to as asserted. All of the other 
response phase outputs of the slave must become valid during the same OCP 
clock cycle as SResp asserted, and be held steady until the response phase 
ends. The response phase ends when MRespAccept is sampled asserted (true) 
by the rising edge of the OCP clock; if MRespAccept is not configured into a 
particular OCP, MRespAccept is assumed to be always asserted (that is, the 
response phase always ends in the same cycle it begins). If present, the 
master can assert MRespAccept in the same cycle that MResp is asserted, or 
it may stay negated for several OCP clock cycles. The latter choice allows the 
master to force the slave to hold its response phase outputs so the master can 
finish the transfer without latching the data signals.

Since the response phase does not begin until SResp is asserted, 
MRespAccept is a “don’t care” while SResp is not asserted so MRespAccept 
can be asserted before SResp. Since an SResp value of NULL specifies the 
absence of a valid response, the slave can assert SResp independently of the 
current setting of MRespAccept.

In high-throughput systems, careful use of MRespAccept can result in 
significant area savings. To maintain high throughput, systems traditionally 
introduce pipelining, where later requests begin before earlier requests have 
finished. Pipelining is particularly important to optimize Read accesses to 
main memory. 

The OCP supports pipelining with its basic request/response protocol, since 
a master is free to start the second request phase as soon as the first has 
finished (before the first response phase, in many cases). However, without 
MRespAccept, the master must have sufficient storage resources to receive all 
of the data it has requested. This is not an issue for some masters, but can 
be expensive when the master is part of a bridge between subsystems such 
as computer buses. While the original system initiator may have enough 
storage, the intermediate bridge may not. If the slave has storage resources 
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(or the ability to flow control data that it is requesting), then allowing the 
master to de-assert MRespAccept enables the system to operate at high 
throughput without duplicating worst-case storage requirements across the 
die.

If a target core natively includes buffering resources that can be used for 
response flow control at little cost, using MRespAccept can reduce the 
response buffering requirement in a complex SOC interconnect.

Most simple or low-throughput slave IP cores need not implement 
MRespAccept. Misuse of MRespAccept makes the slave’s job more difficult, 
because it adds extra conditions (and states) to the slave’s logic.

12.1.2.3 Datahandshake Phase
The datahandshake extension allows the de-coupling of a write address from 
write data. The extension is typically only useful for master and slave devices 
that require the throughput advantages available through transfer pipelining 
(particularly memory). When the datahandshake phase is not present in a 
configured OCP, MData becomes a request phase signal.

The datahandshake phase begins when the master asserts MDataValid. The 
other datahandshake phase outputs of the master must become valid during 
the same OCP clock cycle while MDataValid is asserted, and be held steady 
until the datahandshake phase ends. The datahandshake phase ends when 
SDataAccept is sampled asserted (true) by the rising edge of the OCP clock. 
The slave can assert SDataAccept in the same cycle that MDataValid is 
asserted, or it can stay negated for several OCP clock cycles. The latter choice 
allows the slave to force the master to hold its datahandshake phase outputs 
so the slave can accomplish its access without latching data signals.

The datahandshake phase does not begin until MDataValid is asserted. While 
MDataValid is not asserted, SDataAccept is a “don’t care”. SDataAccept can 
be asserted before MDataValid. Since MDataValid not being asserted specifies 
the absence of valid data, the master can assert MDataValid independently of 
the current setting of SDataAccept.

12.1.3 State Machine Examples
The sample state machine implementations in this section use only the 
features of the basic OCP, request and response phases (the datahandshake 
phase is not discussed here but can be derived). The examples highlight the 
flexibility of the basic OCP.

12.1.3.1 Sequential Master
The first example is a medium-throughput, high-frequency master design. To 
achieve high frequency, the implementation is a completely sequential (that 
is, Moore state machine) design. Figure 56 shows the state machine 
associated with the master’s OCP. 
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Figure 56 Sequential Master

Not shown is the internal circuitry of the master. It is assumed that the 
master provides the state machine with two control wire inputs, WrReq and 
RdReq, which ask the state machine to initiate a write transfer and a read 
transfer, respectively. The state machine indicates back to the master the 
completion of a transfer as it transitions to its Idle state.

Since this is a Moore state machine, the outputs are only a function of the 
current state. The master cannot begin a request phase by asserting MCmd 
until it has entered a requesting state (either write or read), based upon the 
WrReq and RdReq inputs. In the requesting states, the master begins a 
request phase that continues until the slave asserts SCmdAccept. At this 
point (this example assumes write posting with no response on writes), a 
Write command is complete, so the master transitions back to the idle state. 

In case of a Read command, the next state is dependent upon whether the 
slave has begun the response phase or not. Since MRespAccept is not enabled 
in this example, the response phase always ends in the cycle it begins, so the 
master may transition back to the idle state if SResp is asserted. If the 
response phase has not begun, then the next state is wait resp, where the 
master waits until the response phase begins.

The maximum throughput of this design is one transfer every other cycle, 
since each transfer ends with at least one cycle of idle. The designer could 
improve the throughput (given a cooperative slave) by adding the state 
transitions marked with dashed lines. This would skip the idle state when 
there are more pending transfers by initiating a new request phase on the 
cycle after the previous request or response phase. Also, the Moore state 
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machine adds up to a cycle of latency onto the idle to request transition, 
depending on the arrival time of WrReq and RdReq. This cost is addressed in 
Section 12.1.3.3 on page 220.

The benefits of this design style include very simple timing, since the master 
request phase outputs deliver a full cycle of setup time, and minimal logic 
depth associated with SResp.

12.1.3.2 Sequential Slave
An analogous design point on the slave side is shown in Figure 57. This 
slave’s OCP logic is a Moore state machine. The slave is capable of servicing 
an OCP read with one OCP clock cycle of latency. On an OCP write, the slave 
needs the master to hold MData and the associated control fields steady for a 
complete cycle so the slave’s write pulse generator will store the desired data 
into the desired location. The state machine reacts only to the OCP (the 
internal operation of the slave never prevents it from servicing a request), and 
the only non-OCP output of the state machine is the enable (WE) for the write 
pulse generator.

Figure 57 Sequential OCP Slave

The state machine begins in an idle state, where it de-asserts SCmdAccept 
and SResp. When it detects the start of a request phase, it transitions to either 
a read or a write state, based upon MCmd. Since the slave will always 
complete its task in one cycle, both active states end the request phase (by 
asserting SCmdAccept), and the read state also begins the response phase. 
Since MRespAccept is not enabled in this example, the response phase will 
end in the same cycle it begins. Writes without responses are assumed so 
SResp is NULL during the write state. Finally, the state machine triggers the 
write pulse generator in its write state, since the request phase outputs of the 
master will be held steady until the state machine transitions back to idle.
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As is the case for the sequential master shown in Figure 56 on page 218, this 
state machine limits the maximum throughput of the OCP to one transfer 
every other cycle. There is no simple way to modify this design to achieve one 
transfer per cycle, since the underlying slave is only capable of one write every 
other cycle. With a Moore machine representation, the only way to achieve one 
transfer per cycle is to assert SCmdAccept unconditionally (since it cannot 
react to the current request phase signals until the next OCP clock cycle). 
Solving this performance issue requires a combinational state machine.

Since the outputs depend upon the state machine, the sequential OCP slave 
has attractive timing properties. It will operate at very high frequencies 
(providing the internal logic of the slave can run that quickly).

This state machine can be extended to accommodate slaves with internal 
latency of more than one cycle by adding a counting state between idle and 
one or both of the active states.

12.1.3.3 Combinational Master
Section 12.1.3.1 on page 217 describes the transfer latency penalty 
associated with a Moore state machine implementation of an OCP master. An 
attractive approach to improving overall performance while reducing circuit 
area is to consider a combinational Mealy state machine representation. 
Assuming that the internal master logic is clocked from the OCP clock, it is 
acceptable for the master’s outputs to be dependent on both the current state, 
the internal RdReq and WrReq signals, and the slave’s outputs, since all of 
these are synchronous to the OCP clock. Figure 58 shows a Mealy state 
machine for the OCP master. The assumptions about the internal master logic 
are the same as in Section 12.1.3.1 on page 217, except that there is an 
additional acknowledge (Ack) signal output from the state machine to the 
internal master logic to indicate the completion of a transfer.

This state machine asserts MCmd in the same cycle that the request arrives 
from the internal master logic, so transfer latency is improved. In addition, the 
state machine is simpler than the Moore machine, requiring only two states 
instead of four. The request state is responsible for beginning and waiting for 
the end of the request phase. The wait resp state is only used on Read 
commands where the slave does not assert SResp in the same cycle it asserts 
SCmdAccept. The arcs described by dashed lines are optional features that 
allow a transition directly from the end of the response phase into the 
beginning of the request phase, which can reduce the turn-around delay on 
multi-cycle Read commands. 
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Figure 58 Combinational OCP Master

The cost of this approach is in timing. Since the master request phase outputs 
become valid a combinational logic delay after RdReq and WrReq, there is less 
setup time available to the slave. Furthermore, if the slave is capable of 
asserting SCmdAccept on the first cycle of the request phase, then the total 
path is:

Clk -> (RdReq | WrReq) -> MCmd -> SCmdAccept -> Clk.

To successfully implement this path at high frequency requires careful 
analysis. The effort is appropriate for highly latency-sensitive masters such 
as CPU cores. At much lower frequencies, where area is often at a premium, 
the Mealy OCP master is attractive because it has fewer states and the timing 
constraints are much simpler to meet. This style of master design is 
appropriate for both the highest-performance and lowest-performance ends of 
the spectrum. A Moore state machine implementation may be more 
appropriate at medium performance.

12.1.3.4 Combinational Slave
Achieving peak OCP data throughput of one transfer per cycle is most 
commonly implemented using a combinational Mealy state machine 
implementation. If a slave can satisfy the request phase in the cycle it begins 
and deliver read data in the same cycle, the Mealy state machine represen-
tation is degenerate - there is only one state in the machine. The state 
machine always asserts SCmdAccept in the first request phase cycle, and 
asserts SResp in the same cycle for Read commands (assuming no response 
on writes as in the write posting model).
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Figure 59 Combinational OCP Slave

The implementation shown in Figure 59, offers the ideal throughput of one 
transfer per cycle. This approach typically works best for low-speed I/O 
devices with FIFOs, medium-frequency but low-latency asynchronous SRAM 
controllers, and fast register files. This is because the timing path looks like:

Clk -> (master logic) -> MCmd -> (access internal slave resource) -> SResp -> 
Clk

This path is simplest to make when:

• OCP clock frequency is low

• Internal slave access time is small

• SResp can be determined based only on MCmd assertion (and not other 
request phase fields nor internal slave conditions)

To satisfy the access time and operating frequency constraints of higher-
performance slaves such as main memory controllers, the OCP supports 
transfer pipelining. From the state machine perspective, pipelining splits the 
slave state machine into two loosely-coupled machines: one that accepts 
requests, and one that produces responses. Such machines are particularly 
useful with the burst extensions to the OCP.

12.1.4 OCP Subsets
It is possible to define simple interfaces - OCP subsets that are frequently 
required in complex SOC designs. The subsets provide simple interfaces for 
HW blocks, typically with one-directional, non-addressed, or odd data size 
capabilities. Since most of the OCP signals can be individually enabled or 
disabled, a variety of subsets can be defined. For the command set, any OCP 
command needs to be explicitly declared as supported by the core with at 
least one command enabled in a subset.
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Some sample interfaces are listed in Table 45. For each example the non-
default parameter settings are provided. The list of the corresponding OCP 
signals is provided for reference. Subset variants can further be derived from 
these examples by enabling various OCP extensions. For guidelines on 
suggested OCP feature combinations, see Section 15 on page 319.

Table 45 OCP Subsets 

12.2 Simple OCP Extensions
The simple extensions to the OCP signals add support for higher-performance 
master and slave devices. Extensions include byte enable capability, multiple 
address spaces, and the addition of in-band socket-specific information to 
any of the three OCP phases (request, response, and datahandshake).

12.2.1 Byte Enables
Byte enable signals can be driven during the request phase for read or write 
operations, providing byte addressing capability, or partial OCP word 
transfer. This capability is enabled by setting the byteen parameter to 1. 

Usage Purpose
Non-default 
parameters

Signals

Handshake-only 
OCP

Simple request/acknowledge 
handshake, that can be used to 
synchronize two processing modules. 
Using OCP handshake signals with well-
defined timing and semantics allows 
routing this synchronization process 
through an interconnect. The OCP 
command WR is used for requests, other 
commands are disabled.

read_enable=0, 
addr=0, mdata=0, 
sdata=0, resp=0 

Clk, MCmd, 
SCmdAccept

Write-only OCP Interface for cores that only need to 
support writes.

read_enable=0, 
sdata=0, resp=0 

Clk, MAddr, 
MCmd, MData, 
SCmdAccept

Read-only OCP Interface for cores that only need to 
support reads.

write_enable=0, 
mdata=0

Clk, MAddr, 
MCmd, 
SCmdAccept, 
SData, SResp

FIFO Write-only 
OCP

Interface to FIFO input. read_enable=0 
addr=0, sdata=0, 
resp=0

Clk, MCmd, 
MData, 
SCmdAccept

FIFO Read-only 
OCP

Interface to FIFO output. write_enable=0, 
addr=0, mdata=0

Clk, MCmd, 
SCmdAccept, 
SData, SResp

FIFO OCP Read and write interface to FIFO. addr=0 Clk, MCmd, 
MData, 
SCmdAccept, 
SData, SResp
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Even for simpler OCP cores, it is good practice to implement the byte enable 
extension, making byte addressing available at the chip level with no 
restrictions for the host processors.

When a datahandshake phase is used (typically for a single request-multiple 
data burst), bursts must have the same byte enable pattern on all write data 
words. It is often necessary to send or receive write byte enables with the write 
data. To provide full byte addressing capability, the MDataByteEn field can be 
added to the datahandshake phase. This field indicates which bytes within 
the OCP data write word are part of the current write transfer.

For example, on its master OCP port, a 2D-graphics accelerator can use 
variable byte enable patterns to achieve good transparent block transfer 
performance. Any pixel during the memory copy operation that matches the 
color key value is discarded in the write by de-asserting the corresponding 
byte enable in the OCP word. Another example is a DRAM controller that, 
when connected to a x16-DDR device, needs to use the memory data mask 
lines to perform byte or 16-bit writes. The data mask lines are directly derived 
from the byte enable pattern.

Unpacking operations inside an interconnect can generate variable byte 
enable patterns across a burst on the narrower OCP side, even if the pattern 
is constant on the wider OCP side. Such unpacking operations may also 
result in a byte enable pattern of all zeros. Therefore, it is mandatory that 
slave cores fully support 0 as a legal pattern.

An OCP interface can be configured to include partial word transfers by using 
either the MByteEn field, or the MDataByteEn field, or both.

• If only MByteEn is present, the partial word is specified by this field for 
both read and write type transfers as part of the request phase. This is the 
most common case.

• If only MDataByteEn is present, the partial word is specified by this field 
for write type transfers as part of the datahandshake phase, and partial 
word reads are not supported.

• If both MByteEn and MDataByteEn are present, MByteEn specifies partial 
words for read transfers as part of the request phase, and is don’t care for 
write type transfers. MDataByteEn specifies partial words for write 
transfers as part of the datahandshake phase, and is don’t care for read 
type transfers.

12.2.2 Multiple Address Spaces
Logically separate memory regions with unique properties or behavior are 
often scattered in the system address map. The MAddrSpace signal permits 
explicit selection of these separate address spaces. 

Address spaces typically differentiate a memory space within a core from the 
configuration register space within that same core, or differentiate several 
cores into an OCP subsystem including multiple OCP cores that can be 
mapped at non-contiguous addresses, from the top level system perspective.
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Another example of the usage of the addrspace extension is the case of an 
OCP-to-PCI bridge, since PCI natively supports address spaces for configu-
ration registers, memory spaces and i/o spaces.

12.2.3 In-Band Information
OCP can be extended to communicate information that is not assigned 
semantics by the OCP protocol. This is true for out-of-band information (flag, 
control/status signals) and also for in-band information. The designer or the 
chip level architect can define in-band extensions for the OCP phases.

The fields provided for that purpose are MReqInfo for the request phase, 
SRespInfo for the response phase, MDataInfo for the request phase or the 
datahandshake phase, and SDataInfo for the response phase. The presence 
and width of these fields can be controlled individually.

MReqInfo
Uses for MReqInfo can include user/supervisor storage attributes, cacheable 
storage attributes, data versus program access, emulation versus application 
access or any other access-related information, such as dynamic endianness 
qualification or access permission information.

MReqInfo bits have no assigned meanings but have behavior restrictions. 
MReqInfo is part of the request phase, so when MCmd is Idle, MReqInfo is a 
“don’t care.” When MCmd is asserted, MReqInfo must be held steady for the 
entire request phase. MReqInfo must be constant across an entire 
transaction, so the value may not change during a burst. This facilitates 
simple packing and unpacking of data at mismatched master/slave data 
widths, eliminating the transformation of information.

SRespInfo
Uses for SRespInfo can include error or status information, such as FIFO full 
or empty indications, or data response endianness information.

SRespInfo bits have no assigned meaning, but have behavior restrictions. 
SRespInfo is part of the response phase, so when SResp is NULL, SRespInfo 
is a “don’t care.” When SResp is asserted, SRespInfo must be held steady for 
the entire response phase. Whenever possible, slaves that generate SRespInfo 
values should hold them constant for the duration of the transaction, and 
choose semantics that favor sticky status bits that stay asserted across 
transactions. This simplifies the design of interconnects and bridges that 
span OCP interfaces with different configurations. Holding SRespInfo 
constant improves simple packing and unpacking of data at mismatched data 
widths. The spanning element may need to break a single transaction into 
multiple smaller transactions, and so manage the combination of multiple 
SRespInfo values when the original transaction has fewer responses than the 
converted ones.

If you implement SRespInfo as specified, your implementation should work in 
future versions of the specification. If the current implementation does not 
meet your needs, please contact techsupport@ocpip.org so that the Specifi-
cation Working Group can investigate how to satisfy your requirements.
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MDataInfo and SDataInfo
MDataInfo and SDataInfo have slightly different semantics. While they have 
no OCP-defined meaning, they may have packing/unpacking implications. 
MDataInfo and SDataInfo are only valid when their associated phase is 
asserted (request or datahandshake phase for MDataInfo, response phase for 
SDataInfo). 

Uses for the MDataInfo and SDataInfo fields might include byte data parity in 
the low-order bits and/or data ECC values in the high-order (non-packable) 
bits.

The low-order mdatainfobyte_wdth bits of MDataInfo are associated with 
MData[7:0], and so forth for each higher-numbered byte within MData, so 
that the low-order mdatainfobyte_wdth*(data_wdth/8) bits of MDataInfo 
are associated with individual data bytes. Any remaining (upper) bits of 
MDataInfo cannot be packed or unpacked without further specification, 
although such bits may be used in cases with matched data width, where no 
transformation is required.

The difference between MReqInfo and the upper bits of MDataInfo is that only 
MDataInfo is allowed to change during a transaction. Use SDataInfo for 
information that may change during a transaction.

A slave should be operable when all bits of MReqInfo and MDataInfo are 
negated; in other words, any MReqInfo or MDataInfo signals defined by an 
OCP slave, but not present in the master will normally be negated (driven to 
logic 0) in the tie off rules. A master should be operable when all bits of 
SRespInfo and SDataInfo are negated. 

12.3 Burst Extensions
A burst is basically a set of related OCP words. Burst framing signals provide 
a method for linking together otherwise-independent OCP transfers. This 
mechanism allows various parts of a system to optimize transfer performance 
using such techniques as SDRAM page-mode operation, burst transfers, and 
pre-fetching.

Burst support is a key enabler of SOC performance. The burst extension is 
frequently used in conjunction with pipelined master and slave devices. For a 
pipelined OCP device, the request phase is de-coupled from the response 
phase - that is, the request phase may begin and end several cycles before the 
associated response phase begins and ends. As such, it is useful to think of 
separate, loosely-coupled state machines to support either the master or the 
slave. Decoupling for pipeline efficiency remains true even if the OCP includes 
a separate datahandshake phase.

12.3.1 OCP Burst Capabilities
The OCP burst model includes a variety of options permitting close matching 
of core design requirements.
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Exact Burst Lengths and Imprecise Burst Lengths
A burst can be either precise, of known length when issued by the initiator, 
or imprecise, the burst length is not specified at the start of the burst.

For precise bursts, MBurstLength is driven to the same value throughout the 
burst, but is really meaningful only during the first request phase. Precise 
bursts with a length that is a power-of-two can make use of the WRAP and 
XOR address sequence types.

For imprecise bursts, MBurstLength can assume different values for words in 
the burst, reflecting a best guess of the burst length. MBurstLength is a hint. 
Imprecise bursts are completed by a request with an MBurstLength=1, and 
cannot make use of the WRAP and XOR address sequence types.

Use the precise burst model whenever possible:

• It is compatible with the single request-multiple data model that provides 
advantages to the SOC in terms of performance and power.

• Since it is deterministic, it simplifies burst conversion. Restricting burst 
lengths to power-of-two values and using aligned incrementing bursts (by 
employing the burst_aligned parameter) also reduces the interconnect 
complexity needed to maintain interoperability between cores.

Address Sequences
Using the MBurstSeq field, the OCP burst model supports commonly-used 
address sequences. Benefits include:

• A simple incrementing scheme for regular memory type accesses

• A constant addressing mode for FIFO oriented targets (typically 
peripherals) 

• Wrapping on power-of-two boundaries 

• XOR for processor cache line fill

• A block transfer scheme for 2-dimensional data stored in memory

User-defined sequences can also be defined. They must be carefully 
documented in the core specification, particularly the rules to be applied 
when packing or unpacking. The address behavior for the different sequence 
types is:

INCR
Each address is incremented by the OCP word size. Used for regular 
memory type accesses, SDRAM, SRAM, and burst Flash.

STRM
The address is constant during the burst. Used for streaming data to or 
from a target, typically a peripheral device including a FIFO interface that 
is mapped at a constant address within the system.

DFLT1
User-specified address sequence. Maximum packing is required.
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DFLT2
User-specified address sequence. Packing is not allowed.

WRAP
Similar to INCR, except that the address wraps at aligned MBurstLength 
* OCP word size. This address sequence is typically used for processor 
cache line fill. Burst length is necessarily a power-of-two, and the burst is 
aligned on its size.

XOR
Addr = BurstBaseAddress + (index of first request in burst) ^ (current 
word number). XOR is used by some processors for critical-word first 
cache line fill from wide and slow memory systems.

While it does not always deliver the next sequential words as quickly as 
WRAP, the XOR sequence maps directly into the interleaved burst type 
supported by many DRAM devices. The XOR sequence is convenient when 
there are width differences between OCP interfaces, since the sequence is 
chosen to successively fill power-of-two sized and aligned words of greater 
width until the burst length is reached.

BLCK
Describes a sequence of MBlockHeight row transfers, with the starting 
address MAddr, row-to-row offset MBlockStride (measured from the start 
of one row to the start of the next row), and rows that are MBurstLength 
words long in an incrementing row address per word. MBlockHeight and 
MBlockStride can be considered as don’t care for burst sequences other 
than BLCK. Figure 60 depicts a block transaction representing a 2-
dimensional region out of a larger buffer, showing the various parameters.

Figure 60 BLCK Address Sequence 

MBlockStride

MBlockHeight

MBurstLength
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The following example shows how to decompose a BLCK burst into a 
sequence of INCR bursts.

addr = MAddr;
for (row = 0; row < MBlockHeight; row++, addr += MBlockStride) {

issue INCR using all provided fields (including
MBurstLength), except use "addr" for MAddr

}

UNKN
Indicates that there is no specified relationship between the addresses of 
different words in the burst. Used to group requests within a burst 
container, when the address sequence does not match the pre-defined 
sequences. For example, an initiator can group requests to non-
consecutive addresses on the same SDRAM page, so that the target 
memory bandwidth can be increased.

For targets that have support for some burst sequence, adding support for 
the UNKN burst sequence can improve the chances of interoperability 
with other cores and can ease verification since it removes all 
requirements from the address sequence within a burst.

For single requests, MBurstSeq is allowed to be any value that is legal for that 
particular OCP interface configuration.

The BLCK, INCR, DFLT1, WRAP, and XOR burst sequences are always 
considered packing, whereas STRM and DFLT2 sequences are non-packing. 
Transfers in a packing burst sequence are aggregated / split when translating 
between OCP interfaces of different widths while transfers in a non-packing 
sequence are filled / truncated.

The packing behavior of a bridge or interconnect for an UNKN burst sequence 
is system-dependent. A common policy is to treat an UNKN sequence as 
packing in a wide-to-narrow OCP request width converter, and as non-
packing in a narrow-to-wide OCP request width converter.

Single Request, Multiple Data Bursts for Reads and Writes
A burst model of this type can reduce power consumption, bandwidth 
congestion on the request path, and buffering requirement at various 
locations in the system. This model is only applicable for precise bursts, and 
assumes that the target core can reconstruct the full address sequence using 
the code provided in the MBurstSeq field.

While the model assumes that the datahandshake extension is on, for those 
cores that cannot accept the first-data word without the corresponding 
request, datahandshake can increase design and verification complexity.

For such cores, use the OCP parameter reqdata_together to specify the 
fixed timing relationship between the request and datahandshake phases. 
When reqdata_together is set, each request phase for write-type bursts 
must be presented and accepted together with the corresponding 
datahandshake phase. For single request / multiple data write bursts, the 
request must be presented with the first write data. For multiple request / 
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multiple data write bursts, the datahandshake phase is locked to the request 
phase, so this interface configuration only makes sense when both single and 
multiple request bursts are mixed (that is, burstsinglereq is set).

Unit of Atomicity 
Use this option when there is a requirement to limit burst interleaving 
between several threads. Specifying the atomicity allows the master to define 
a transfer unit that is guaranteed to be handled as an atomic group of 
requests within the burst, regardless of the total burst length. The master 
indicates the size of the atomic unit using the MAtomicLength field. 

Burst Framing with all Transfer Phases
Without burst framing information, cores and interconnects incorporate 
counters in their control logic: To limit this extra gate count and complexity, 
enable end-of-burst information for each phase. Use MReqLast to specify the 
last request within a burst, SRespLast to specify the last response within a 
burst, and MDataLast to specify the last write data during the datahandshake 
phase.

If BLCK burst sequences are enabled, additional framing information can be 
provided to eliminate additional counters associated with the INCR 
subsequences that comprise a BLCK burst. To limit extra gate count and 
complexity, enable end-of-row information for each phase using: 

• MReqRowLast to specify the last request in each row for multiple request/
multiple data bursts

• SRespRowLast to specify the last response in each row

• MDataRowLast to specify the last write data in each row

12.3.2 Compatibility with the OCP 1.0 Burst Model
The OCP 2.0 burst model replaces the OCP 1.0 model, providing a super set 
in terms of available functionality. To maintain interoperability between cores 
using the OCP 1.0 burst and cores using the OCP 2.0 bursts requires a thin 
adaptation layer. Guidelines for the wrapping logic are described in this 
section.

1.0 Master to 2.0 Slave
For converting an OCP 1.0 burst into an OCP 2.0 burst the suggested 
mapping is:

• MBurstPrecise is available only when the OCP 1.0 burst_aligned 
parameter is set. When set, all incrementing bursts once converted to OCP 
2.0 stay precise. Any other OCP 1.0 burst type is mapped to an imprecise 
burst. When burst_aligned is not set, MBurstPrecise is tied off to 0, so 
all bursts are imprecise.

• MBurstSeq is derived from MBurst as follows:
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MBurstSeq = INCR for MBurst {CONT, TWO, FOUR, EIGHT}
STRM for MBurst {STRM}
DFLT1 for MBurst {DFLT1}
DFLT2 for MBurst {DFLT2}

The logic must guarantee that MBurstSeq is constant during the whole 
burst and must continue driving that MBurstSeq when MBurst=LAST is 
detected.

• The value of MBurstLength is derived as follows:

MBurstLength = 8 for MBurst {EIGHT}
4 for MBurst {FOUR}
2 for MBurst {TWO, CONT, DFLT1, DFLT2, STRM}
1 for MBurst {LAST}

For precise bursts, MBurstLength is held constant for the entire burst. 
For imprecise bursts, a new MBurstLength can be derived for each 
transfer.

• MReqLast is derived from MBurst - it is set when MBurst is LAST.

• SRespLast has no equivalent in OCP1.0, and is discarded by the wrapping 
logic.

• If required, MDataLast must be generated from a counter or from a queue 
updated during the request phase.

2.0 Master to 1.0 Slave
For converting an OCP 2.0 burst into an OCP 1.0 burst the suggested 
mapping is:

• MBurst is derived from MBurstPrecise, MBurstSeq, and MBurstLength, 
as follows:

MBurst = 
If MBurstPrecise
if MBurstSeq {INCR}

EIGHT if MBurstLength >= 8 at start of burst
FOUR if MBurstLength >= 4 at start of burst
TWO if MBurstLength >= 2 at start of burst
load counter with MBurstLength at start of burst,
decrement counter after every transfer
subsequent MBurst are generated from counter logic
LAST when counter==1

else if MBurstSeq {DFLT1, DFLT2, STRM}
same as MBurstSeq, except when counter==1, must be LAST

else if MBurstSeq {WRAP, XOR, UNKN}
LAST always: map to consecutive non-burst single transactions

Else if not MBurstPrecise
if MBurstSeq {INCR}

EIGHT if MBurstLength >= 8
FOUR if MBurstLength >= 4
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TWO if MBurstLength >= 2
LAST if MBurstLength == 1

else if MBurstSeq {DFLT1, DFLT2, STRM}
LAST if MBurstLength == 1
same as MBurstSeq if MBurstLength != 1

else if MBurstSeq {WRAP, XOR, UNKN}
LAST always (map to non-burst)

• MAtomicLength, MReqLast, and MDataLast have no equivalents in OCP 
1.0, and are discarded by the wrapping logic.

• SRespLast must be generated from counter logic.

The logic described above is not suitable if the OCP 2.0 master generates 
single request / multiple data bursts. In that case, more complex conversion 
logic is required.

12.4 Tags
Tags are labels that associate requests with responses in order to enable out-
of-order return of responses. In the face of different latencies for different 
requests (for instance, DRAM controllers, or multiple heterogeneous targets), 
allowing the out-of-order delivery of responses can enable higher 
performance. Responses are returned in the order they are produced rather 
than having to buffer and re-order them to satisfy strict response order 
requirements. Tagged transactions to overlapping addresses have to be 
committed in order but their responses may be reordered if the transactions 
have different tag IDs (see Section 4.7.1 on page 57). As is the case for 
threads, to make use of tags, the master will normally need a buffer.

The tag value generally only has meaning to the master as it is made up by 
the master and often corresponds to a buffer ID. The tag is carried by the slave 
and returned with the response. In the case of datahandshake, the master 
also tags the datahandshake phase with the tag of the corresponding request.

Out-of-order request and response delivery can also be enabled using 
multiple threads. The major differences between threads and tags are that 
threads can have independent flow control per thread and have no ordering 
rules for transfers on different threads. Tags, on the other hand, exist within 
a single thread so are restricted to a single flow control for all tags. Also, 
transfers within the same thread still have some (albeit looser) ordering rules 
when tags are in use. The need for independent flow control requires 
independent buffering per thread, leading to more complex implementations. 
Tags enable lower overhead implementations for out-of-order return of 
responses.

Tags are local to a single OCP interface. In a system with multiple cores 
connected to a bridge or interconnect, it is the responsibility of the 
interconnect to translate the tags from one interface to the other so that a 
target sees different tags for requests issued from different initiators. Target 
core implementation can facilitate the job of the bridge or interconnect by 
supporting a large set of tags.
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The MTagInOrder and STagInOrder signals allow both tagged and non-tagged 
(in-order) initiators to talk to a tagged target. Requests issued with 
MTagInOrder asserted must be completed in-order with respect to other in-
order transactions, so an in-order initiator can guarantee that its responses 
are returned in request order. To retain compatibility with non-tagged 
initiators, targets that support tags should also support MTagInOrder and 
STagInOrder.

When MTagInOrder is asserted any MTagID and MDataTagID values are 
“don’t care”. Similarly, the STagID value is “don’t care” when STagInOrder is 
asserted. Nonetheless, it is suggested that the slave return whatever tag value 
the master provided.

Multi-threaded OCP interfaces can also have tags. Each thread’s tags are 
independent of the other threads’ tags and apply only to the ordering of 
transfers within that thread. There are no ordering restrictions for transfers 
on different threads. The number of tags supported by all threads must be 
uniform, but a master need not make use of all tags on all threads.

12.5 Threads and Connections
Thread extensions add support for concurrency. Without these extensions, 
there is no way to apply flow control to one set of transfers while allowing 
another set to proceed. With threading, each transfer is associated with a 
thread, and independent flow control can be applied to each thread. 
Additionally, there are no ordering restrictions between transfers associated 
with different threads. Without threads, ordering is either strict or (if tags are 
used) somewhat looser.

12.5.1 Threads
The thread capability relies on a thread ID to identify and separate 
independent transfer streams (threads). The master labels each request with 
the thread ID that it has assigned to the thread. The thread ID is passed to 
the slave on MThreadID together with the request (MCmd). When the slave 
returns a response, it also provides the thread ID (on SThreadID) so the 
master knows which request is now complete.

The transfers in each thread must remain in-order with respect to each other 
(as in the basic OCP) or must follow the ordering rules for tagging (if tags are 
in use), but the order between threads can change between request and 
response. 

The thread capability allows a slave device to optimize its operations. For 
instance, a DRAM controller could respond to a second read request from a 
higher-priority initiator before servicing a first request from a lower-priority 
initiator on a different thread.

As routing congestion and physical effects become increasingly difficult at the 
back-end stage of the ASIC process, multithreading offers a powerful method 
of reducing wires. Many functional connections between initiator and target 
pairs do not require the full bandwidth of an OCP link, so sharing the same 
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wires between several connections, based on functional requirements and 
floor planning data, is an attractive mechanism to perform gate count versus 
performance versus wire density trade-offs.

Multi-threaded behavior is most frequently implemented using one state 
machine per thread. The only added complexity is the arbitration scheme 
between threads. This is unavoidable, since the entire purpose for building a 
multi-threaded OCP is to support concurrency, which directly implies 
contention for any shared resources.

The MDataThreadID signal simplifies the implementation of the 
datahandshake extension along with threading, by providing the thread ID 
associated with the current write data transfer. When datahandshake is 
enabled, but sdatathreadbusy is disabled, the ordering of the 
datahandshake phases must exactly match the ordering of the request 
phases.

The thread busy signals provide status information that allows the master to 
determine which threads will not accept requests. That information also 
allows the slave to determine which threads will not accept responses. These 
signals provide for cooperation between the master and the slave to ensure 
that requests are not presented on busy threads.

While multithreading support has a cost in terms of gate count (buffers are 
required on a thread-per-thread basis for maximum efficiency), the protocol 
can ensure that the multi-threaded interface is non-blocking.

Blocked OCP interfaces introduce a thread dependency. If thread X cannot 
proceed because the OCP interface is blocked by another thread, Y that is 
dependent on something downstream that cannot make progress until thread 
X makes progress, there is a classic circular wait condition that can lead to 
deadlock.

In the OCP1.0 Specification, the semantics of SThreadBusy and MThreadBusy 
allow these signals to be treated as hints. To guarantee that a multi-threaded 
interface does not block, both master and slave need to be held to tighter 
semantics.

OCP 2.2 allows cores to follow exact thread busy semantics. This process 
enables tighter protocol checking at the interface and guarantees that a 
multi-threaded OCP interface is non-blocking. Parameters to enable these 
extensions are sthreadbusy_exact, sdatathreadbusy_exact, and 
mthreadbusy_exact. There is one parameter for each of the OCP phases, 
request, datahandshake (assuming separate datahandshake) and response 
(assuming response flow control). The following conditions are true:

• On an OCP interface that satisfies sthreadbusy_exact semantics, the 
master is not allowed to issue a command to a busy thread.

• On an OCP interface that complies with sdatathreadbusy_exact 
semantics, the master is not allowed to issue write data to a busy thread.

• On an OCP interface that complies with mthreadbusy_exact semantics, 
the slave is not allowed to issue a response to a busy thread.
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These rules allow the phase accept signals (SCmdAccept, SDataAccept or 
MRespAccept) to be tied off to 1 on multi-threaded interfaces for which the 
corresponding phase handshake satisfies exact thread busy semantics. By 
eliminating an additional combinational dependency between master and 
slave, an exact thread busy based handshake can be considered as a 
substitute for the standard request/accept protocol handshake. For more 
information, see Section 12.5.1.2 on page 237.

12.5.1.1 Intra-Phase Signal Relationships on a Multithreaded OCP
This section extends the timing discussion of the “Basic OCP” section, to a 
multithreaded interface. The ordering and timing relationships between the 
signals within an OCP phase are designed to be flexible. As described in 
Section , it is legal for SCmdAccept to be driven either combinationally, 
dependent upon the current cycle’s MCmd or independently from MCmd, 
based on the characteristics of the OCP slave. Some restrictions are required 
to ensure that independently-created OCP masters and slaves will work 
together. For instance, the MCmd cannot respond to the current state of 
SCmdAccept; otherwise, a combinational cycle could occur.

Request Phase
If enabled, a slave’s SThreadBusy request phase output should not depend 
upon the current state of any other OCP signal. SThreadBusy should be 
stable early enough in the cycle so that the master can factor the current 
SThreadBusy into the decision of which thread to present a request; that is, 
all of the master’s request phase outputs may depend upon the current 
SThreadBusy. SThreadBusy is a hint so the master is not required to include 
a combinational path from SThreadBusy into MCmd, but such paths become 
unavoidable if the exact semantics apply (sthreadbusy_exact = 1). In that 
case the slave must guarantee that SThreadBusy becomes stable early in the 
OCP cycle to achieve good frequency performance. A common goal is that 
SThreadBusy be driven directly from a flip-flop in the slave.

A master’s request phase outputs should not depend upon any current slave 
output other then SThreadBusy. This ensures that there is no combinational 
loop in the case where the slave’s SCmdAccept depends upon the current 
MCmd.

If a slave’s SCmdAccept request phase output is based upon the master’s 
request phase outputs from the current cycle, there is a combinational path 
from MCmd to SCmdAccept. Otherwise, SCmdAccept may be driven directly 
from a flip-flop, or based upon some other OCP signals. It is legal for 
SCmdAccept to be derived from MRespAccept. This case arises when the slave 
delays SCmdAccept to force the master to hold the request fields for a multi-
cycle access. Once read data is available, the slave attempts to return it by 
asserting SResp. If the OCP has MRespAccept enabled, the slave then must 
wait for MRespAccept before negating SResp, so it may need to continue to 
hold off SCmdAccept until it sees MRespAccept asserted. 

While the phase relationships of the OCP specification do not allow the 
response phase to end before the request phase, it is legal for both phases to 
complete in the same OCP cycle.

The worst-case combinational path for the request phase could be:
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Clk -> SThreadBusy -> MCmd -> SResp -> MRespAccept -> SCmdAccept -> Clk

The preceding path has too much latency at typical clock frequencies, so must 
be avoided. Fortunately, a multi-threaded slave (with SThreadBusy enabled) 
is not likely to exhibit non-pipelined read behavior, so this path is unlikely to 
prove useful. Slave designers need to limit the combinational paths visible at 
the OCP. By pipelining the read request, the previous path could be:

Clk -> SThreadBusy -> MCmd -> Clk
Clk -> SCmdAccept -> Clk # Slave accepts if pipeline reg empty
Clk -> SResp -> Clk
Clk -> MRespAccept -> Clk # Master accepts independent of SResp

Response Phase
If enabled, a master’s MThreadBusy response phase output should not be 
dependent upon the current state of any other OCP signal. From the 
perspective of the OCP, MThreadBusy should become stable early enough in 
the cycle that the slave can factor the current MThreadBusy into the decision 
on which thread to present a response; that is, all of the slave’s response 
phase outputs may depend upon the current MThreadBusy. If MThreadBusy 
is simply a hint (in other words mthreadbusy_exact = 0) the slave is not 
required to include a combinational path from MThreadBusy into SResp, but 
such paths become unavoidable if the exact semantics apply 
(mthreadbusy_exact = 1). In that case the master must guarantee that 
MThreadBusy becomes stable early in the OCP cycle to achieve good 
frequency performance. A common goal is that MThreadBusy be driven 
directly from a flip-flop in the master.

The slave’s response phase outputs should not depend upon any current 
master output other than MThreadBusy. This ensures that there is no 
combinational loop in the case where the master’s MRespAccept depends 
upon the current SResp.

The master’s MRespAccept response phase output may be based upon the 
slave’s response phase outputs from the current cycle or not. If this is true, 
there is a combinational path from SResp to MRespAccept. Otherwise, 
MRespAccept can be driven directly from a flip-flop; MRespAccept should not 
be dependent upon other master outputs.

Datahandshake Phase
If enabled, a slave’s SDataThreadBusy datahandshake phase output should 
not depend upon the current state of any other OCP signal. SDataThreadBusy 
should be stable early enough in the cycle so that the master can factor the 
current SDataThreadBusy into the decision of which thread to present a data; 
that is, all of the master’s data phase outputs may depend upon the current 
SDataThreadBusy. If SDataThreadBusy is simply a hint (in other words 
sdatathreadbusy_exact = 0) the master is not required to include a 
combinational path from SDataThreadBusy into MDataValid, but such path 
becomes unavoidable if the exact semantics apply (sdatathreadbusy_exact = 
1). In that case, the slave must guarantee that SDataThreadBusy becomes 
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stable early in the OCP cycle to achieve good frequency performance. A 
common goal is that SDataThreadBusy be driven directly from a flip-flop in 
the slave.

The master’s datahandshake phase outputs should not depend upon any 
current slave output other than SThreadBusy. This ensures that there is no 
combinational loop in the case where the slave’s SDataAccept depends upon 
the current MDataValid. The slave’s SDataAccept output may or may not be 
based upon the master’s datahandshake phase outputs from the current 
cycle. In the former case, there is a combinational path from MDataValid to 
SDataAccept. In the latter case, SDataAccept should be driven directly from 
a flip-flop; SDataAccept should not be dependent upon other master outputs.

12.5.1.2 Multi-Threaded OCP Implementation
Figure 61 on page 237 shows the typical implementation of the combinational 
paths required to make a multi-threaded OCP work within the framework set 
by Level-2 timing. While the figure shows a request phase, similar logic can 
be used for the response and datahandshake phases. The top half of the 
figure shows logic in the master; the bottom half shows logic in the slave. The 
width of the figure represents a single OCP cycle.

Figure 61 Multithreaded OCP Interface Implementation

12.5.1.3 Slave
Information about space available on the per-port buffers comes out of a latch 
and is used to generate SThreadBusy information, which must be generated 
within the initial 10% of the OCP cycle (as described in Section 14.3 on 
page 316). These signals are also used to generate SCmdAccept: if a particular 
port has room, a command on the corresponding thread is accepted. The 
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correct port information is selected through a multiplexer driven by 
MThreadID at 50% of the clock cycle, making it easy to produce SCmdAccept 
by 75% of the OCP cycle. When the request group arrives at 60% of the OCP 
cycle, it is used to update the buffer status, which in turn becomes the 
SThreadBusy information for the next cycle.

12.5.1.4 Master
The master keeps information on what threads have commands ready to be 
presented (thread valid bits). When SThreadBusy arrives at 10% of the OCP 
clock, it is used to mask off requests, that is any thread that has its 
SThreadBusy signal set is not allowed to participate in arbitration for the 
OCP. The remaining thread valid bits are fed to thread arbitration, the result 
is the winning thread identifier, MThreadId. This is passed to the slave at 50% 
of the OCP clock period. It is also used to select the winning thread’s request 
group, which is then passed to the slave at 60% of the clock period. When the 
SCmdAccept signal arrives from the slave, it is used to compute the new 
thread valid bits for the next cycle.

The request phase in Figure 61 assumes a non-exact thread busy model. The 
exact model shown in Figure 62 is similar, but SCmdAccept is tied off to 1, so 
any request issued to a non-busy thread is accepted in the same cycle by the 
slave.

Figure 62 Multithreaded OCP Interface with threadbusy_exact 

12.5.2 Connections
In multi-threaded, multi-initiator systems, it is frequently useful to associate 
a transfer request with a thread operating on a particular initiator. Initiator 
identification can enable a system to restrict access to shared resources, or 

M
as

te
r

S
la

ve

Thread
Arbitration

10%
50%

Valid
Threads

MThreadID

Request
Group

Buffer
Update

SThreadBusy

Buffer has Room

60%

Buffer
Update

Request Group

New Thread
Valid Info

New
Buffer
Status



Developers Guidelines 239

OCP-IP Confidential

foster an error logging mechanism to identify an initiator whose request has 
created an error in the system. For devices where these concerns are 
important, the OCP extensions support connections.

Connections are closely related to threads, but can have end-to-end meaning 
in the system, rather than the local meaning (that is, master to slave) of a 
thread.

The connection ID and thread ID seem to provide similar functionality, so it 
is useful to consider why the OCP needs both. A thread ID is an identifier of 
local scope that simply identifies transfers between the master and slave. In 
contrast, the connection ID is an identifier of global scope that identifies 
transfers between a system initiator and a system target. A thread ID must be 
small enough (that is, a few bits) to efficiently index tables or state machines 
within the master and slave. There are usually more connection IDs in the 
system than any one slave is prepared to simultaneously accept. Using a 
connection ID in place of a thread ID requires expensive matching logic in the 
master to associate the returned connection ID (from the slave) with specific 
requests or buffer entries.

Using a networking analogy, the thread ID is a level-2 (data link layer) 
concept, whereas the connection ID is more like a level-3 (transport/session 
layer) concept. Some OCP slaves only operate at level-2, so it doesn’t make 
sense to burden them or their masters with the expense of dealing with level-
3 resources. Alternatively, some slaves need the features of level-3 
connections, so in this case it makes sense to pass the connection ID through 
to them.

A connection ID is not usually provided by an initiator core on its OCP 
interface but is allocated to that particular initiator in the interconnect logic 
of the system. The connection ID is system-specific, not core-specific; only the 
system integrator has the global knowledge of the number of initiators instan-
tiated in the application, and what the requirements are in terms of 
differentiation.

As an exception to that rule, if the global interconnect consists of multiple 
hierarchical structures, a complete subsystem can be integrated (including 
another interconnect with multiple embedded initiators). In that case, the 
OCP interface between the two interconnects should implement the connid 
extension, so that the end-to-end meaning of that OCP field can be preserved 
at the system level.

For a target core, the connid extension is included when such features as 
access control, error logging or similar initiator-related features require 
initiator identification.
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12.6 OCP Specific Features

12.6.1 Write Semantics
As detailed in Section 4.4.2 on page 51, OCP writes support posted and non-
posted models. A non-posted write model is preferred whenever the originator 
of the request must be aware of the completion of its write command, i.e., 
command commitment. An example is clearing an interrupt in a peripheral 
module using a write command. In that case the processor must be sure that 
the interrupt line has been effectively released before it can acknowledge the 
interrupt service in the chip-level interrupt controller.

The concept of the posting semantics diverges from the concept of responses 
on writes in the following ways:

• A write with a response could have posted semantics in a system (so that 
a response is returned immediately) or it could have non-posted 
semantics (so that a response is returned only after the write is completed 
at the final target, i.e., the command is committed).

• A write without a response normally has posted semantics and carries 
forward the OCP 1.0 Specification for backward compatibility.

• A write without a response can be assigned non-posted semantics by not 
accepting the command until the write has completed, but this is not 
recommended since it de-pipelines the OCP interface. Since posting 
makes sense at a system level, adopting a delayed-SCmdAccept scheme 
can only be efficient locally, with no guarantee of the non-posting 
semantics at the system level.

The writeresp_enable parameter controls whether the write-type 
commands WR and BCST have responses. The write-type commands WRNP 
and WRC, which are non-posted, always have responses. Table 46 
summarizes the behavior with respect to the writeresp_enable parameter. 

Table 46 Write Command Response Behavior 

Note that in Table 46, WR and WRNP are the general-purpose write 
commands; WRC is always associated with an RLC command.

Use of the Broadcast command must be limited to a specific category of 
designs (some interconnect designs may benefit from simultaneous update 
through distributed registers). It is not expected that standard cores will 
support the Broadcast command.

writeresp_enable

0 1

WR, BCST (without response)
WRNP, WRC (with response)

WR, BCST, WRNP, WRC (with response)
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By separating whether writes have responses (writeresp_enable) from 
whether the core has control over where the responses are generated 
(writenonpost_enable), the OCP specification provides the following 
features:

• The simple, posted model remains intact. The simplest cores only 
implement WR, and need not worry about write responses.

• Cores that can generate or use write responses should enable write 
responses, providing support for in-band error reporting on write 
commands. The read and write state machines are duplicated from the 
standpoint of flow control, producing a simpler design. Such cores would 
normally only implement the WR command. In this case, the system 
integrator is in control of where in the write path the write response is 
generated, allowing a choice of the level of posting based upon 
performance and coherence trade-offs.

• Cores that can distinguish between performance and coherence (really 
only CPUs and bridges) can enable WRNP to implement dynamic choice 
between WR and WRNP. The additional signaling gives the system 
integrator the dynamic information needed to choose the posting point as 
the CPU requests. The only practical difference between WR and WRNP at 
the protocol level is the expected latency between request and response. 
This permits some embedded CPUs to achieve high performance—
particularly as interconnects become pipelined and posting buffers are 
needed.

12.6.2 Lazy Synchronization
Most processors support semaphores through a read-modify-write type of 
instruction and swap, test-and-set, etc. Using an OCP interconnect, these 
instructions are mapped onto a pair of OCP commands. A RDEX command 
sets a lock to the memory location, followed by a WR (or WRNP) command to 
release the lock. The system must ensure that no other thread will be granted 
access to that memory location between the RDEX and the unlocking WR.

Because the Write that clears the lock must immediately follow the ReadEx 
(on the same thread), only a limited number of operations can be performed 
by a processor between RDEX and WR. Competing requests to the locked 
location are not committed until the lock is released. It is highly 
recommended that this requirement be enforced at the final target with non-
blocking flow control for multithreaded applications. Otherwise, for example, 
if the logic is implemented on the master’s side in an interconnect, part of the 
interconnect could be locked for the duration of the RDEX-WR or RDEX-
WRNP pair. This mechanism of using a RDEX-write pair, often referred to as 
locked synchronization, is efficient for handling exclusive accesses to a shared 
resource, but can result in a significant performance loss when used 
extensively.

For these reasons, some processors use non-blocking instructions for 
semaphore handling, breaking the atomicity of the exclusive read/write pair. 
For the processor, this allows other instructions to be executed by the 
processor between the read and write accesses. For the system interconnect, 
it allows requests from other threads to be inserted between the read and 
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write commands. Referred to as lazy synchronization, this mechanism 
requires read and write semantics, commonly known as LL/SC semantics, for 
Load-Linked and Store-Conditional.

OCP’s support for lazy synchronization uses the ReadLinked, and WriteCon-
ditional commands. A single OCP parameter rdlwrc_enable is set to 1, to 
enable the commands. Because some processors might use both semantics 
(locked and lazy), the OCP interface supports RDEX, RDL, WR(WRNP) and 
WRC.

The system relies upon the existence of monitor logic, that can be located 
either in the system interconnect, or in the memory controller. The 
ReadLinked command sets a reservation in the logic, associating the 
accessing thread with a particular address. The WriteConditional command, 
being transmitted on the same thread, is locally transformed into a memory 
write access only if the reservation is still set when the command is received. 
As the tagged address is not locked, the tag can be reset by competing traffic 
directed to the same location from other threads between RDL and WRC.

Consequently, the WRC command expects a response from the monitor logic, 
reflecting whether the write operation has been performed. To answer that 
requirement, OCP provides the value, FAIL for the SResp field (meaning that 
writeresp_enable is on if rdlwrc_enable is on). WRC is the only OCP 
command that makes use of the FAIL code, though new commands in future 
revisions may. FAIL responses are frequently received in a system using lazy 
synchronization that operates normally. Do not confuse FAIL with 
SResp=ERR, which effectively signals a system interconnect error or a target 
error.

Both RDL and WRC commands assume a single transaction model and 
cannot be used in a burst. 

The semantics of lazy synchronization are defined on the previous page. Some 
specific sequences resulting from the usage of the RDL and WRC semantics 
are:

• A thread can issue more than one RDL before issuing a WRC, or issue 
more than one RDL without issuing WRC. Whether the subsequent RDL 
clears the reservation or sets a new one is implementation-specific, 
depending on the number of hardware monitors. At least one monitor per 
thread is required.

• If a thread issues a WR or WRNP command to an address it previously 
tagged with a RDL command, the write access clears all reservations from 
other threads for the same address (but not its own reservation).

• If a thread issues a WRC without having issued a RDL, the WRC will fail.

• If a thread issues a RDEX between the RDL and WRC, the RDEX is 
executed, sets the lock and waits for the corresponding write to clear the 
lock. RDL-WRC reservations will not be affected by the RDEX. The WR or 
WRNP that clears the lock, also clears any reservation set by other 
initiators for the same address (with the same MAddr, MByteEn and 
MAddrSpace if applicable).
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Because competing requests of any type from other threads to a locked (by 
RDEX) location are blocked from proceeding until the lock is released, a RDEX 
command being issued between RDL and WRC commands, also blocks the 
WRC until the WR or WRNP command clearing the lock is issued. This favours 
RDEX-WR or WRNP sequence over RDL-WRC, in the sense that competing 
RDEX-WR or WRNP and RDL-WRC sequences will always result in having the 
RDEX-WR or WRNP sequence win.

Incorrect use of the two synchronization mechanisms can result in deadlock 
so for example, the sequence of commands shown in Figure 63 might result 
in a deadlock. In this example Processor 1 tries to release the semaphore 
using RDL-WRC commands, Processor 2 tries to acquire the semaphore using 
RDEX-WR or WRNP commands. The RDEX-WR or WRNP sequence always 
occurs between the RDL and WRC. Because the WR or WRNP clearing the lock 
in Processor2 will also clear the reservation for Processor 1, the RDL-WRC 
sequence will never succeed. Processor 1 will never be able to release the lock 
or Processor2 to acquire it.

Figure 63 Synchronization Deadlock 

The deadlock depicted in Figure 63 is a result of bad programming in 
Processor 2, and is very unlikely to happen in a real application environment. 
As shown in Figure 64, to achieve forward progress, Processor 2 should read 
the semaphore value and wait for the semaphore to be free before trying to 
retrieve it by issuing a RDEX-WR or WRNP.

Figure 64 Correct Synchronization Sequence 

Processor 1 uses RDL/WRC
to release the semaphore

get_sem1:
RDL

…
…
…

WRC

Processor 2 uses test-and-set
to acquire the semaphore

get_sem2:
RDEX
WR(NP)

Processor 1 uses RDL/WRC
to release the semaphore

get_sem1:
RDL

…
…
…

WRC

Processor 2 uses test and
test-and-set to acquire the semaphore

get_sem2:
RD

RDEX
WR(NP)
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12.6.3 OCP and Endianness
As described in Section 4.5 on page 51, OCP is nearly endian-neutral. While 
OCP specifies a byte address on MAddr, the address must be aligned to the 
data width of the interface. Sub-word quantities are specified using one bit for 
each enabled byte in the transfer on MByteEn or MDataByteEn. 

While the bit ordering of OCP fields is consistently described in a little-endian 
fashion, this is conventional, where even big-endian systems tend to number 
their bits little-endian. Similarly, the MByteEn numbering seems to imply a 
little-endian byte ordering, but is simply intended to maintain consistency. 
For example, MByteEn[m] refers to the byte transferred on MData/
SData[(8m+7):8m] (provided m < data width/8), regardless of the effective 
transfer endianness attributes.

If the master OCP and the slave OCP are the same data width, endianness 
does not matter. Addresses, data, and byte enables must remain consistent 
across both interfaces. (There are exceptions, since packed sub-word data 
objects should be swapped if the endianness does not match. OCP does not 
carry the required signaling to determine sub-word sizes, so full-word 
transfers must be assumed.) 

Endianness problems arise as soon as one looks to connect a master and 
slave with different data widths. The narrow side has extra (non-zero) address 
bits, since its word-aligned addresses do not force as many bits to be zero. The 
wide side has extra byte lanes to carry its wider words. The association of the 
extra address bits (narrow side) with the extra byte lanes (wide side) specifies 
an endianness.

To bridge interfaces that suffer from mismatched data widths, packing and 
unpacking is required. Data width conversion must make some assumptions 
about the correspondence between the MAddr least-significant bits and the 
MByteEn field.

If the association maps the low-order byte lanes to lower addresses, the data 
width conversion is performed in a little-endian manner. If the association 
maps the high-order byte lanes to lower addresses, the data width conversion 
is performed in a big-endian manner. This operation is absolutely not an 
endianness conversion, but rather an endianness-aware packing or 
unpacking operation, so that the transaction endianness is preserved across 
the data width converter.

There is no attempt to perform any endian conversion in hardware. Rather, 
the goal is to enable interconnects that are essentially endian-neutral, but 
become endian-adaptive to match the endianness of the attached entities. 
This implies that the native endianness of an OCP core must be specified. 
OCP captures that property using the endian parameter, which can take four 
values:

LITTLE
Qualifies little-endian only cores

BIG
Qualifies big-endian only cores
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BOTH
Qualifies cores that can change endianness: 

− Based upon an external input such as a CPU that statically selects its 
endianness at boot time 

− Based upon an internal configuration register such as a DMA engine, 
that generates OCP read and write requests in accordance with the 
endianness of the target, as stated by the DMA programmer

− Cores that support dynamic endianness 

NEUTRAL
Qualifies cores that have no inherent endianness. Examples are simple 
memory devices that only work with full OCP-word quantities, or 
peripheral devices, the endianness of which can be controlled by the 
software device driver.

While not supported by the standard set of OCP features, it is possible to 
define a dynamic, endian-aware interconnect using in-band information. By 
specifying the parameters reqinfo (for request packing / unpacking control), 
mdatainfo (for data packing / unpacking control when datahandshake is 
enabled), and respinfo (for response packing / unpacking control), the 
definition of all these qualifiers becomes platform-specific.

12.6.4 Security
To protect against software and some selective hardware attacks use the OCP 
interface to create a secure domain across the SOC. The domain might 
include CPU, memory, I/O etc. that need to be secured using a collection of 
hardware and software features such as secured interrupts, and memory, or 
special instructions to access the secure mode of the processor.

The master drives the security level of the request using MReqInfo as a 
subnet. The master provides initiator identification using MConnID. Table 47 
summarizes the relevant parameters.

Table 47 Security Parameters 

The security request is defined as a named subnet MSecure within MReqInfo, 
for example:

subnet MReqInfo M:N MSecure, where M is >= N.

Parameter Value Notes

reqinfo 1 MReqInfo is required

reqinfo_wdth Varies Minimum width is 1

connid 1 To differentiate initiators

connid_wdth Varies Minimum width is 1
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MSecure Bit Codes
With the exception of bit 0, bits are optional and the encoding is user-defined. 
Bit 0 of the MSecure field is required. The suggested encoding for the MSecure 
bits is:

A special error response is not specified. A security error can be signaled with 
response code ERR.

12.7 Sideband Signals
The sideband signals provide a means of transmitting control-oriented 
information. Since the signals are rarely performance sensitive, drive all 
sideband signals stable early in the OCP clock cycle by making the sideband 
outputs come directly out of core flip-flops. To allow sideband inputs to arrive 
late in the OCP clock cycle register the inputs immediately on the receiving 
core.

Cores that fail to implement this conservative timing may require modification 
to achieve timing convergence.

12.7.1 Reset Handling
Some anomalous events can result from OCP resets. Among the situations to 
be aware of are the following:

Power-on reset
At power-on or assertion of any hardware reset, an OCP reset may be 
asynchronously asserted. Accepting the use of asynchronous resets helps 
describe the interface behavior. 

Asynchronous assertion of a synchronous reset
Asynchronous assertion of resets in OCP may result in an asynchronous 
reset being fed to a module expecting a synchronous reset. From a design 
point of view this discrepancy could lead to a setup or hold violation. The 
required 16 clock cycles of reset guarantees enough time for recovery on 
the interface receiver side, allowing it to fall back to a safe functional state. 

Bit Value 0 Value 1

0 non-secure secure

1 user mode privileged mode

2 data request instruction request

3 user mode supervisor mode

4 non-host host

5 functional debug
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For simulation and verification, such timing violations represent a major 
hurdle since they may lead to inconsistent states in the master, slave and 
monitor interfaces. To address this problem, whenever possible, generate 
resets in a synchronous manner even if the protocol allows for their 
asynchronous assertion.

Use of OCP resets as asynchronous
OCP reset requires that a reset signal observe the setup and hold times as 
defined in the core’s timing guidelines for at least 16 rising OCP clock 
edges after reset assertion, making the signal effectively synchronous 
except at assertion time. To satisfy this requirement do not connect an 
input OCP reset signal to the asynchronous clear/set pin of a D-flip-flop 
involved in an OCP signal logic cone. Failure to comply with this rule may 
violate the OCP protocol. For instance, a glitch on an OCP reset signal that 
would be sampled as deasserted could be interpreted as asserted, 
inadvertently causing the receiver to cancel pending transactions and 
hang the interface. 

12.7.1.1 Dual Reset Signals
Many systems are fully satisfied with a single reset signal applied to both the 
master and the slave on an OCP interface. Either the master or the slave can 
drive the reset, or a third entity, such as a chip level reset manager, can 
provide it to both master and slave.

In some situations, it is more convenient for the master and slave to employ 
their own reset domains and communicate these internal resets to one 
another. The OCP interface is unable to communicate until both sides are out 
of reset since the side still in reset may be driving undetermined values (X) on 
their OCP outputs and cause problems for the side that is already out of reset. 
Examples of cases where this might arise are:

• A core with multiple OCP interfaces that are connected to different 
interconnects, which are each in different reset domains, plus the core 
has its own internal reset domain.

• Two connected interconnects that both act as initiators of transfers and 
each with their own reset domain.

Adding a second reset signal to the interface allows each master and slave to 
have both a reset output and input. The composite reset state for the OCP 
interface is established as the combination of the two resets, so that either 
side (or both) asserting reset causes the interface to be in reset. While in reset, 
the existing rules about the interface state and signal values apply.

Either MReset_n or SReset_n must be present on any OCP interface. Compat-
ibility between different reset configurations of master and slave interfaces is 
shown in Table 48.
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Table 48 Reset Configurations 

The rules describing this table can be stated as follows.

• Either mreset or sreset or both must be set to 1 for each core.

• The default (and only) tie-off value for MReset_n and SReset_n is 1.

• If mreset is set to 1 for the master and mreset is set to 0 for the slave, the 
reset configurations are incompatible.

• If sreset is set to 1 for the slave and sreset is set to 0 for the master, the 
reset configurations are incompatible.

Cores with a reset input are always interoperable with any other core. Add a 
reset output if it is needed by the core or subsystem to assure proper 
operation. Typically this is because both sides need to know about the reset 
state of the other side, or because the overall system does not function 
properly if the core or subsystem is in reset, while the OCP interface is not in 
reset.

12.7.1.2 Compatibility with OCP 1.0
OCP 1.0 cores that have a reset input or output can be converted to OCP 2 
cores by renaming the Reset_n pin in the core’s RTL configuration file without 
touching the actual HDL source of the core. The new name depends on 
whether the reset is an input or output and whether the core is a master or 
slave.

In the very unlikely situation of an OCP 1.0 core lacking a reset input or 
output, the conversion to OCP 2 is achieved by the addition of a dummy reset 
input pin that is not used inside the core.

12.7.2 Connection Protocol
The increasing importance of minimizing power and energy dissipation in 
integrated circuits drives designers to use a variety of power management 
techniques such as slowing or stopping clocks and lowering or switching off 
supply voltages on sections of the chip. It is therefore frequently desirable to 
change the power state of the OCP masters and slaves in some sections of a 
chip without adversely impacting the operation of the rest of the chip. The 

Master

Slave

sreset=1,
mreset=0

sreset=0,
mreset=1

sreset=1,
mreset=1

sreset=0,
mreset=1

Dual resets driven by the 

same 3rd party

Single reset driven by 
master

Single reset driven by 
master (SReset_n 
input tied off to 1)

sreset=1,
mreset=0

Single reset driven by 
slave

Incompatible Incompatible

sreset=1,
mreset=1

Single reset driven by 
slave (MReset_n input 
tied off to 1)

Incompatible Dual resets
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connection protocol defines a mechanism for OCP masters and slaves to 
indicate to each other that a power state transition is desired and then to 
prepare for that transition. The connection signals allow the master and slave 
to cooperate to cleanly achieve quiescence before putting the interface into a 
disconnected state where none of the other in-band nor sideband signals are 
active, except for the OCP clock. Once the interface has been disconnected, 
the system can safely transition the power state without losing any 
transactions or sideband events.

While the primary motivation behind the definition and inclusion of the 
connection protocol is to facilitate power management, there are likely other 
situations in which OCP masters and slaves may wish to disconnect, so the 
connection protocol has been defined as a general mechanism.

12.7.2.1 Goals
1. The OCP is connected only if both the master and the slave agree on this 

connected state. Either the master or the slave can independently request 
disconnection.

2. No restrictions on when either side can change its vote on the connection 
state.

3. The protocol should assure a clean disconnect. That is, no OCP 
transactions or sideband signal transitions can be corrupted during the 
disconnection process, including posted writes.

4. Connection state transitions will be performed by the master, no matter 
which side requested the transition.

5. The protocol should allow the side that is not requesting the connection 
state change to delay the state change until it is prepared to safely 
transition.

6. The protocol should permit the connection state to be determined from 
interface signals. That is, the protocol should be stateless at the interface.

7. The protocol should permit the system to distinguish between 
disconnected states initiated by only the slave request vs. those initiated 
by the master.

8. The protocol should allow an OCP-to-OCP bridge to easily manage its 
connection protocol responsibilities on both its upstream and 
downstream interfaces, without requiring that any system logic be needed 
to separately control the two interfaces.

9. The protocol should support the case of either side being powered down 
while disconnected by ensuring that a powered down side can safely 
ignore inputs and provide static protocol-defined default outputs, 
typically from isolation transceivers.

10. The protocol should ensure inter-operability with cores that do not 
implement the connection protocol.

11. The protocol should add a minimum of new configurability/complexity to 
OCP.



12. The protocol should add a minimum of new signals to the interface.

The protocol adds one new parameter to OCP, connection. When 
connection is one, four signals are added to the interface: MConnect, 
SConnect, SWait, and ConnectCap. One of these signals, ConnectCap, is 
intended to be tied-off at implementation time to support interoperability with 
cores that do not implement the connection protocol. Tie ConnectCap to logic 
0 on cores that implement the protocol to force the connection state and all 
other signals to remain connected at all times.

The state machine in Figure 65 describes the OCP connection states and the 
legal transitions between the states. As described in Section 4.3.3.2, the 
connection state is signaled by the master on the MConnect[1:0] signal. The 
master and slave are free to request changes to the connection state at any 
time, but the master is responsible to change the state safely to ensure that 
no transactions or sideband events are corrupted. Safe transitions are the 
result of some actions solely under the control of the master, and others 
which involve interactions with the slave. The system conditions that cause a 
master or slave to request a state change, and the complete list of actions 
taken to ensure a safe transition are system specific and outside the scope of 
the protocol; Figure 65 describes the transition conditions based on both the 
signals defined by the protocol and internal information from the master 
(which controls the state machine via its MConnect output).
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Figure 65 State Diagram of Connection Protocol

In addition to the connection protocol signals MConnect and SWait, Figure 65 
introduces several internal master conditions, which are described in 
Table 49 below. Note that only one of conditions cCON, cDISC and cOFF can 
be simultaneously true.

Table 49 Master Condition Description for Figure 65

cCON Master is prepared to change state to M_CON; SConnect is S_CON

cDISC Master is prepared to change state to M_DISC; SConnect is S_DISC

cOFF Master is prepared to change state to M_OFF; SConnect is a “don’t care”

mwait Master has chosen to transition through M_WAIT, independently from SWait

M_CON
MConnect=3

M_WAIT
MConnect=1

M_DISC
MConnect=2

M_OFF
MConnect=0

(cOFF | cDISC) &
(SWait | mwait)

cCON 
& ~SWait 
& ~mwait

cOFF 
& ~SWait
& ~mwait

cCON 
& ~SWait
& ~mwait

cOFF 
& ~SWait
& ~mwait

(cCON | cDISC) &
(SWait | mwait)

cDISC 
& ~SWait
& ~mwait

(cCON | cOFF) &
(SWait | mwait)

cDISC 
& ~SWait 
& ~mwait

cCON
& ~SWait
& ~mwait

cDISC &
~SWait & ~mwait

cOFF &
~SWait & ~mwait
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The conditions cCON, cDISC and cOFF should not be true unless the master 
has determined that the connection state should change to the associated 
stable state value and the master has completed its role in assuring a safe 
transition. In particular, the master must assure that all transactions that it 
has issued have completed and that it will not issue any new transactions 
before setting either cDISC or cOFF while in M_CON. Note that it is up to the 
master to determine which additional transactions to present to the slave 
before responding to SConnect of S_DISC. The master should also attempt to 
reach quiescence on its sideband signal outputs before leaving M_CON. 
Furthermore, the cCON, cDISC and cOFF conditions must also ensure that 
the master remains in each stable state for at least two OCP clock cycles 
before transitioning, as described in Section 4.3.3.2.

If the slave does not assert SWait, the master is generally free to transition 
directly between the stable states without entering M_WAIT. However, the 
master is free to enter M_WAIT independently from SWait, and this situation 
is modeled in the state machine using the mwait condition. Use of mwait is 
particularly helpful in linking the connection state machines of two OCP 
interfaces, such as in a bridging situation. For example, if the operation of the 
bridge requires the use of SWait on the upstream (bridge slave) interface, then 
the bridge can use mwait on the downstream interface (where it is master) so 
that the downstream interface can always copy the upstream interface's 
transitions to M_WAIT. This avoids the situation where the upstream 
interface has gone to M_WAIT and the downstream interface must then stay 
in its current stable state because the bridge cannot know what the next 
upstream stable state will be.

While all dataflow communication must be complete before the master may 
leave M_CON, the master cannot generally cause slave sideband communi-
cation to become quiescent. Slaves that have sideband outputs other than 
SReset_n should assert SWait to S_WAIT whenever those outputs may be 
active. S_WAIT forces the master to transition through M_WAIT, thereby 
giving the slave the opportunity to end its sideband activity before the master 
disconnects. Note that some sideband communication protocols may require 
that the master respond (via its sideband outputs) to slave sideband signals 
while in M_WAIT. This is why the connection protocol cannot require 
quiescence on master sideband outputs before leaving M_CON and why 
M_WAIT entered from M_CON is still considered connected. On the way back 
to M_CON, sideband communication is not allowed until M_CON is reached.

New transactions may not be issued in the same cycle that the interface 
transitions to M_CON. This is intended to allow the slave to sample the 
MConnect signal with the OCP clock, rather than reacting to it in the same 
cycle it is presented, which could adversely affect the operating frequency of 
the slave with little apparent benefit.

A slave initiated disconnect (MConnect of M_DISC) may frequently occur 
when a slave core is powered off, but the master side - which is likely a system 
interconnect - is still powered. In such situations, the master side may need 
to manage the situation where a system initiator attempts to communicate 
with the disconnected slave. For instance, the master could automatically 
respond to initiator transactions with errors when the connection state is 
M_DISC. Future versions of this Specification may include specific features to 
control the upstream behavior for situations involving disconnected slaves.
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12.8 Debug and Test Interface
There are three debug and test interface extensions predefined for the OCP: 
scan, clock control, and IEEE 1149. The scan extension enables internal scan 
techniques, either in a pre-designed hard-core or end user inserted into a 
soft-core. Clock control extensions assist in scan testing and debug when the 
IP core has at least one other clock domain that is not derived from the OCP 
clock. The IEEE 1149 extension is for interfacing to cores that have an IEEE 
1149.1 test access port built-in and accessible. This is primarily the case with 
cores, such as microprocessors, that were derived from standalone products.

These three extensions along with sideband signals (flags) can yield a highly 
debuggable and testable IP core and device.

12.8.1 Scan Control
The width and meaning of the Scanctrl field is user-defined. At a minimum 
this field carries a signal to specify when the device is in scan chain shifting 
mode. The signal can be used for the scan clock if scan-clock style flip-flops 
are being used. When this is a multi-bit field, another common signal to carry 
would be one specifying the scan mode. This signal can be used to put the IP 
core into any special test mode that is necessary before scanning and 
application of ATPG vectors can begin. 

12.8.2 Clock Control
The clock control test extensions are included to ease the integration of IP 
cores into full or partial scan test environments and support of debug scan 
operations in designs that use clock sources other than the OCP clock.

When an external clock source exists (for example, non-Clk derived clock), the 
ClkByp signal specifies a bypass of the external clock. In that case the TestClk 
signal usually becomes the clock source. The TestClk toggles in the correct 
sequence for applying ATPG vectors, stopping the internal clocks, and doing 
scan dumps as required by the user.
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13 Developer’s Guidelines: OCP 
Coherent System Architecture 
Examples

In this chapter we show several examples of coherent systems, and discuss 
the implementation of system-level cache coherence using the Coherence 
Extensions described in Chapters 5 and 6. Please note that multiple 
implementation choices are permitted using the coherence extensions. For 
the purpose of illustration, we detail one choice and point out alternatives in 
a few situations.

13.1 Snoop-Based Coherent Architecture
Figure 66 shows the block diagram of a snoop-based architecture with three 
coherent masters: Proc0, Proc1, and Proc2. Each master has a main master 
port, and a intervention slave port.

Proc0 generates a read miss. This in turn generates a CC_RDSH transaction 
which will eventually place the cache line in Proc0’s local cache in the shared 
(S) state. The actions resulting from this transaction are shown below:

The requesting coherent master, Proc0, initiates the CC_RDSH request 
transaction on the main OCP port to gain a sharing ownership on a 
memory address.

This request is delivered as a read to the memory slave, Memory (the 
home of the read address), on its main OCP port. 

Concurrently, the coherence request is turned into a corresponding 
coherence intervention request (I_RDSH), which is delivered to other 
coherence masters on their intervention ports. Figure 66 shows three 
intervention requests sent to Proc0, Proc1, and Proc2, respectively. Note 
the self-intervention request (Self I_RDSH) sent back to Proc0.

a

b

c



256 Open Core Protocol Specification

OCP-IP Confidential

Figure 66 Snoop-Bus-Based OCP Coherence System: Coherent Master and Slave 
Ports, Communication Flow of a CC_RDSH Transaction

Proc2, which has the cache line in M state, relinquishes its ownership 
on receipt of “Sys I_RDSH” request. Locally, it transitions to the S state.

An intervention response with data is returned on master Proc2’s 
intervention port back to the coherent slave.

The coherent slave sends a response to the Proc0 response main port. 
The coherent slave also updates the memory by sending a write 
transaction to it.

The initiating master receives, on the main port, the coherence response 
with the latest data and can update its coherence state to S for its 
cached copy of data from the memory address accordingly.
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The memory is updated with the modified value and has the latest copy. 
This flow assumes that the memory has not returned the response to 
the action in step (b). It is assumed that the memory controller will 
squash the internal read from memory on receipt of the updated 
contents at this step.

Note that we have shown one implementation choice. Other implementations 
are permitted using the set of OCP coherence extensions. 

13.2 Directory-Based Coherent System
In a directory-based coherence environment, the same “read memory address 
and obtain a sharing ownership” transaction (CC_RDSH) can trigger a 
different kind of communication such as being captured in Figure 67 below: 

The initiating master, Proc0, initiates the transaction and sends a 
coherence CC_RDSH request, on the main OCP port, to gain a sharing 
ownership on a memory address. This coherence request is delivered to 
the Directory/Memory slave (the home of the read address) on its main 
OCP port.

h

a
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Figure 67 Directory-Based OCP Coherence System: Communication Flow of a 
CC_RDSH Transaction

On the Directory/Memory slave, the directory-based coherence logic 
lookup indicates that master Proc2 has the latest dirty data. 

A self intervention request (Self I_RDSH) is returned to the initiating 
master, Proc0, using its intervention port.

At the same time, a system coherence intervention request (Sys I_RDSH) 
is sent from the intervention port of the Directory/Memory slave to the 
intervention port of master Proc2 in order to retrieve the latest dirty 
data. 

In response master Proc2 relinquishes its exclusive ownership of the 
memory address, e.g., by changing its cached line’s state from M (dirty) 
to S (shared); and returns an intervention response with data from its 
intervention port to the Directory/Memory slave.
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Upon receiving the latest dirty data, both the directory and the memory 
are updated; in addition, the Directory/Memory slave returns the 
response with data and with coherence state information (of S) back to 
the initiating master Proc0 on its main port.

The initiating master Proc0 receives the latest data response and 
updates its coherence state for the memory address accordingly.

13.2.1 Legal Coherence Dependency
Figure 68-(A) shows legal coherence communication (shown by dependency 
arrows) between two coherence masters and a coherence slave (home of 
memory addresses), and between ports on each master or slave. 

13.2.1.1 Self-Intervention
Self-intervention is important for the design of the OCP Coherence 
Extensions. If the self-intervention request is not sent back to the initiating 
master, the master must enforce the order between the initiating master’s 
main port response to a previously sent main port request and a new 
conflicting intervention request. To prevent a race between the two coherence 
masters trying to access the same cache line, the initiating master must block 
the conflicting intervention request from changing the master’s coherence 
state until after the response to its prior coherent request has been received 
on its main port. This additional blocking creates a new dependency as shown 
on top in Figure 68-(B). As shown in the diagram with the top dashed arrow 
going from MP:resp to Ip:request, this forms a circular dependency and 
violates the dependence ordering for deadlock avoidance.

Figure 68-(C) is a simplified legal dependency diagram that can be applied to 
the main and intervention ports of a single coherence master or slave where 
the self-intervention request sets the ordering of the initiator’s request with 
respect to other coherent intervention requests at the initiating master’s 
intervention port. With self-intervention, there is no circular dependency 
between ports for a coherence master or slave; therefore, self-intervention is 
critical to correct OCP coherence operation and to deadlock avoidance.

f

g
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Figure 68 Ports/Channels Dependencies in an OCP coherence system

13.3 OCP Coherence Models for Directory-
Based Designs
Abstract examples of coherent master, slave, and interconnect are shown in 
the following sections and are used to express rules on how each coherent 
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directory-based scheme and snoop-bus-based scheme are demonstrated—
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illustrate how memory coherency can be maintained.
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13.3.1 A Directory-Based OCP Coherent System
Figure 69 shows a directory-based OCP coherent system containing two dual-
CPU masters with L1/L2 caches, a with-cache coherent DMA master, a DSP 
master with a non-coherent data cache, a legacy DMA master, a coherent I/
O slave, a Memory slave, a Directory module acting as a coherent slave and a 
legacy master, and a legacy non-coherent I/O slave. This example design is 
used through out this section to demonstrate how a directory-based coherent 
system can be implemented using the OCP coherence extensions.

13.3.1.1 OCP Masters
As depicted in Figure 69, CPU1, 2, 3, 4, and Coherent DMA are coherent 
masters with caches and each uses an outgoing coherent main port and an 
incoming intervention port to communicate with cores in the system and to 
maintain system-level (hardware) cache coherence. The DSP master has only 
an outgoing coherent main port, which allows it to issue both legacy and 
coherent OCP transactions. However, the internal, non-coherent data cache 
inside the DSP module needs to be updated explicitly (for instance, by using 
software) without relying on any hardware intervention requests. The legacy 
DMA master uses only a legacy OCP port to read data from and write data to 
the system area using only legacy OCP commands.

As mentioned, the Directory module is also an OCP master, which acts as a 
proxy and uses a legacy OCP port to communicate with (coherent) slaves, 
such as I/O “A” and Memory.

13.3.1.2 OCP Slaves
Two I/O slaves exist in the design. The legacy slave, I/O “B,” has an incoming 
legacy OCP port. The coherent slave, I/O “A,” which also has an incoming 
legacy OCP port but can only receive requests from the Directory module. The 
Directory slave uses an incoming coherent OCP main port and an outgoing 
intervention port to communicate with the rest of the system in order to 
maintain system-level (hardware) cache coherence. The Directory slave is 
responsible for serializing conflicting requests going to the Directory’s 
corresponding home memory (e.g., the Memory module) and I/O module, and 
keeping the directory state up to date for all requests. The Directory module 
acts as a proxy master and reads from/writes to the Memory slave and the 
coherent I/O “A” through the legacy OCP port.
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Figure 69 Directory-Based OCP Coherent Design Example

13.3.1.3 System Coherence
In this example design, MSI-based write-back cache coherent protocols are 
used among coherent masters and the Directory module. Cache-to-cache 
forwarding is not applied in the example. The cache line size used in the 
system is assumed to be the same for all hardware coherent sub modules. 
OCP port profiles and information regarding the system-level coherence for 
the example design are described in the following sub sections.

Multiple serialization points in the example design are also illustrated in 
Figure 69 where hardware logic is used to enforce serialization among these 
places.
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• Every request reaching the serialization point will be served and 
completed before any other subsequent conflicting requests.

• In the Directory module, which is the home of cache lines provided by the 
memory module, conflicting requests are serialized (i.e., served and 
completed one by one) in the order they arrive to the directory module. 
This serialization is to prevent possible deadlock causing by two initiators 
concurrently accessing to the same cache line. Note that a request that 
hasn’t reached the serialization point has no effect on the requestor’s or 
any other coherent master’s cache line state.

• Requests are also serialized in the order they arrive to the Directory 
module for the coherent I/O A module.

13.3.1.4 System-Level Address Map, Coherent Core Identifications, 
Connectivity

System Address Map
A system address map is applied by the example design where the global 
address space is divided into address regions and holes as displayed in Figure 
70. There are 9 address regions for the design—six of them (Address Region 
0, 2, 3, 4, 6, and 8) are coherent address regions and three of them (Address 
Region 1, 5, and 7) are non-coherent address regions, which under the 
assumption that only legacy commands can be issued to non-coherent 
address regions. Also illustrated in the address map Figure 70 is the address-
region-to-slave (of proxy slave) assignments:

• Address regions 0, 2, 3, 4, 6, and 8 are coherent address regions 
associated with the Directory (proxy) slave with home data located at the 
Memory and I/O A modules.

• Requests received by the Directory proxy and targeting at address 
region 2 or 3 can be re-dispatched from the Directory module to the I/
O A module.

• Requests received by the Directory proxy and targeting at address 
region 0, 4, 6, or 8 can be re-dispatched from the Directory module to 
the Memory module.

• Address regions 1 and 7 are non coherent address regions associated with 
the Memory module directly.

• Address region 5 is for the I/O B slave only.

Note that in the example design the OCP main port requests are routed by the 
interconnect module based on the OCP MAddr field and the address-region-
to-slave (or proxy-slave) assignments mentioned above. In addition, care must 
be taken to ensure that the request re-dispatching, which also uses the 
MAddr field, between the Directory, I/O A, and Memory modules is handled 
properly without interfering with the main routing domain between masters 
and slaves.
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As for intervention port requests, since the MAddr field value is used to 
indicate which data line is of interest for an intervention transaction, the 
Coherent Core Identification is used to indicate the destination of each 
intervention request.

System Connectivity
For simplicity, in this example design, we have the following address region 
and command issuing limitations (note that these are not requirements 
imposed by the OCP coherence extensions):

• Legacy slaves can only have non-coherent address regions (such as I/O B)

• Coherent slaves can have both coherent and non-coherent address 
regions (such as the Memory slave), or have only coherent address regions 
(such as I/O A). 

• OCP coherent and coherence-aware commands can only target coherent 
address regions.

• OCP legacy commands can be sent to only non-coherent address regions.

Figure 70 System Address Map
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The following main port connectivity maps (for domains 1 and 2) between OCP 
masters and slaves are used for the example design in order to determine how 
to deliver OCP main port or legacy port requests:

Domain 1:

• CPU1/2  Address Region 0, 1, 2, 3, 4, 5, 6, 7, and 8
We need: a connection to the Directory module for regions 0, 2, 3, 4, 6, 
and 8; a connection to the Memory module directly for regions 1 and 7; 
and a connection to the non-coherent I/O B module for region 5.

• CPU3/4  Address Region 0, 4, 6, and 8
We need a connection to the Directory module.

• Coherent DMA1  Address Region 2, 3, and 4
We need a connection to the Directory module.

• DSP  Address Region 0, 1, 4, 6, 7, and 8
We need a connection to the Directory module for regions 0, 4, 6, and 8, 
and a connection to the Memory module for regions 1 and 7.

• Legacy DMA2  Address Region 1, 5, and 7
We need a connection to the Memory module for regions 1 and 7, and a 
connection to the non-coherent I/O B for region 5.

Domain 2:

• Directory  Address Region 0, 4, 6, 8 located at the Memory module.
We need a connection between the Directory proxy and the Memory 
module

• Directory  Address Region 2 and 3 located at I/O A.
We need a connection between the Directory proxy and the I/O A module.

Based on the above main port and legacy port connectivity, plus, how caches 
and intervention ports are used structurally in the example design, the 
following intervention port connectivity needs to be established in order to 
deliver system-level cache interventions:

• Directory  CPU1/2, CPU3/4, and Coherent DMA1
We need: an intervention connection between the Directory proxy and 
CPU1/2; an intervention connection between the Directory proxy and 
CPU3/4; and an intervention connection between the Directory proxy and 
Coherent DMA1.

Since no cache-to-cache transfers are allowed, no direct connectivity between 
coherent OCP masters is needed.

In the example design, the underlying OCP coherent interconnect only needs 
to provide connections as mentioned in this subsection; therefore, a fully 
connected network is not needed. Also, in contrast to a snoop-bus-based OCP 
coherent design and a design with cache-to-cache transfer, there is no need 
to:

⇔

⇔

⇔

⇔

⇔

⇔

⇔
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• Copy a main port coherent request and turn it into multiple intervention 
port requests.

• Convert an intervention port response into a main port coherent response 
delivering back to the originating coherent master.

Coherent Core Identifications (CohID)
In this example design, we use the MReqInfo signal (3 bits) on the main port 
and on the intervention port to carry the Coherent Core Identification 
information for coherent requests and for intervention requests, respectively. 
The interconnect module utilizes these info fields to route intervention port 
requests and to return intervention port responses properly. The MReqSelf 
signal on the intervention port is used to indicate whether an intervention 
port request is a self-intervention request or a system-intervention one. 
Table 50 summarizes the coherent core identification numbers, cache 
protocols, cache line sizes, and OCP data word sizes used by masters and 
slaves capable of sending and receiving coherent requests and responses in 
the example.

Table 50 Coherent Core Identifications and Caching Scheme

Return route for responses corresponding to each main port request can be 
determined by the interconnect module internally; therefore, no addition 
main port response signal is needed. Similarly, return route for responses 
corresponding to each intervention port request can also be determined by the 
interconnect module internally; thus, the coherent core identifications for the 
Directory slave may not be needed—this is an implementation choice.

Master Core 
Name

CohID # Cache OCP Word 
Size

Notes

Scheme Line Size

Interconnect 
or default

0 n/a n/a n/a Reserved

CPU1/2 1 Invalidate 
MSI

64 bytes 8 bytes

CPU3/4 2 Invalidate 
MSI

64 bytes 8 bytes

Coherent 
DMA1

3 Invalidate 
MSI

64 bytes 8 bytes

DSP 4 Invalidate 
MSI

64 bytes 8 bytes DSP has a non system coherent 
internal cache. And, we need a 
CohID for it so the coherent slave 
module can distinguish DSP 
coherent requests from others.

Directory 5 MSI 64 bytes 8 bytes May not be needed
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13.3.2 Port Profiles
Profiles for all coherent main port and intervention ports are described to 
illustrate how the OCP coherence extensions are applied in the example 
design.

13.3.2.1 Coherent Master Mp0/1/2 and Ip0/1/2 Ports
As mentioned in the previous sections, for main ports Mp0 and 2, we want to 
be able to send coherent requests, coherence-aware requests, and legacy 
requests. For main ports Mp1 and Mp3, only coherent and coherence-aware 
requests can be issued, respectively. For intervention ports Ip0, 1, and 2, all 
intervention requests can be issued. Also, coherent write data words are 
delivered on the main port. Plus, on each main or intervention port, only one 
thread is configured; and, the non-blocking flow control protocol is used.

In the following examples, writeresp_enable = 1. Coherent write 
transactions such as CC_WB have their cache state finalized only on the 
receipt of SResp on the main port. Alternative implementations where the 
cache state is finalized earlier, at the time the intervention port response is 
generated, are also feasible.

OCP Main Port
Table 51 lists important (coherent) parameters and signals used by the main 
ports Mp0, 1, and 2, for the example design. Parameters not shown here are 
using their default settings.

Table 51 Parameters/Signals Used by Mp0, Mp1, and Mp2

Parameter Value Notes Corresponding Signals

coh_enable
cohcmd_enable
cohnc_enable
cohwrinv_enable

1
1
1
1

Coherent and legacy 
commands are issued 
on Mp0 and 2. Only 
coherent commands 
are issued on Mp1.

MCohCmd, extended 
MCmd

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable
burstseq_strm_enable

1
1
1
5
1
1
1
1
1
1

Support SRMD bursts 
and cache line burst 
sequences (INCR, 
WRAP, XOR, and more)

MBurstSingleReq, 
MDataValid, 
MBurstLength, 
MBurstPrecise, 
MBurstSeq

byteen
mdatabyteen

1
1

Allow partial cache line 
transfer for reads and 
writes

MByteEn, MDataByteEn

writeresp_enable 1 Writes have responses

intport_writedata 0 Coherent write data 
words are delivered 
using the main port
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OCP Intervention Port
Table 52 lists important coherent parameters used by the intervention port 0, 
1, and 2, for the example design. Parameters not shown here are using their 
default settings.

Table 52 Parameters Used by Ip0, Ip1, and Ip2

cohstate_enable 1 SCohState

reqinfo 1 Use to carry coherent 
ID on bit 0, 1, and 2

MReqInfo

threads
sthreadbusy
sthreadbusy_exact
sdatathreadbusy
sdatathreadbusy_exact
mthreadbusy
mthreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded 
non-blocking protocol

SThreadBusy, 
SDataThreadBusy, 
MThreadBusy

Parameter Value Notes Corresponding Signals

None Required signals MReqSelf, MCmd, 
SCohState

mdata
datahandshake

0
0

No write data

reqinfo 1 Use to carry coherent 
ID on bit 0, 1, and 2

MReqInfo

intport_split_tranx 1 Allow response 
datahandshake 
protocol

SDataValid

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable

1
1
1
5
1
1
1
1
1

Support SRMD bursts 
and cache line burst 
sequences (INCR, 
WRAP, and XOR)

MBurstSingleReq, 
MDataValid, 
MBurstLength, 
MBurstPrecise, 
MBurstSeq

Parameter Value Notes Corresponding Signals
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13.3.2.2 Coherence-Aware Master Mp3 Port
The Mp3 port is used to send coherence-aware requests and legacy requests. 
Also, coherent write data words must be delivered on the main port. Plus, only 
one thread is configured; and, the non-blocking flow control protocol is used. 
Parameters not shown here use default settings.

Table 53 Parameters/Signals Used by Mp3

byteen
mdatabyteen

0
0

Read for ownership 
always return the full 
cache line

writeresp_enable 1 Writes have responses

threads
sthreadbusy
sthreadbusy_exact
mthreadbusy
mthreadbusy_exact
mdatathreadbusy
mdatathreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded 
non-blocking protocol

SThreadBusy, 
MThreadBusy, 
MDataThreadBusy 
(intport_split_tranx == 1)

Parameter Value Notes Corresponding Signals

coh_enable
cohcmd_enable
cohnc_enable
cohwrinv_enable

1
1
1
0

coherence-aware and 
legacy commands are 
issued on Mp3

MCohCmd, extended 
MCmd

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable
burstseq_strm_enable

1
1
1
5
1
1
1
1
1
1

Support SRMD bursts 
and burst sequences 
INCR, WRAP, XOR, and 
more.

MBurstSingleReq, 
MDataValid, 
MBurstLength, 
MBurstPrecise, 
MBurstSeq

byteen
mdatabyteen

1
1

Allow partial transfer for 
reads and writes

MByteEn, MDataByteEn

writeresp_enable 1 Writes have responses

intport_writedata 0 Must be 0 since there is 
no intervention port for 
this master

Parameter Value Notes Corresponding Signals
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13.3.2.3 Legacy Master OCP4 and OCP5 Ports
A regular single-threaded, non-blocking OCP connection is configured for 
OCP4 and for OCP5 here (e.g., coh_enable = 0); and it allows SRMD bursts, 
precise bursts of INCR, STRM, and UNKN sequences, byte enable signals, and 
writes with responses.

13.3.2.4 Coherent Slave Mp6 and Ip6 Ports 
As mentioned in the previous sub sections, for main ports Mp6, we want to 
be able to carry coherent requests, coherence-aware requests, and legacy 
requests. For intervention ports Ip6, all intervention requests can be issued. 
Since these ports are used by slaves, the coherent write data words must be 
delivered on the main port. Moreover, on each main or intervention port, only 
one thread is configured; and, the non-blocking flow control protocol is used.

OCP Main Port
Table 54 lists the most important (coherent) parameters and signals used by 
main ports 5 and 6 in the example design. Parameters not shown here are 
assumed to use their default settings.

cohstate_enable 0 Only issuing coherence-
aware commands

NO SCohState

reqinfo 1 Use to carry coherent ID 
on bit 0, 1, and 2

MReqInfo

threads
sthreadbusy
sthreadbusy_exact
sdatathreadbusy
sdatathreadbusy_exac
t
mthreadbusy
mthreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded 
non-blocking protocol

SThreadBusy, 
SDataThreadBusy, 
MThreadBusy

Parameter Value Notes Corresponding Signals
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Table 54 Parameters Used by Mp5 and Mp6

OCP Intervention Port Ip6
Intervention port Ip6 uses the same settings listed in Table 52.

13.3.2.5 Legacy Slave Ports: OCP6, 7, and 8
A regular single-threaded, non-blocking OCP connection is configured for 
OCP6, 7, and 8 here (e.g., coh_enable = 0); and it allows SRMD bursts, byte 
enable signals, and writes without responses. OCP6 can support precise 
bursts of INCR, WRAP, and XOR sequences. OCP7 and 8 can support precise 
bursts of INCR, STRM, and UNKN sequences.

Parameter Value Notes Corresponding Signals

coh_enable
cohcmd_enable
cohnc_enable
cohwrinv_enable

1
1
1
1

Coherent, coherence-
aware, and legacy 
commands can be 
issued on Mp6.

MCohCmd, extended 
MCmd

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable
burstseq_strm_enable
burstseq_unkn_enable

1
1
1
5
1
1
1
1
1
1
1

Support SRMD bursts 
and cache line burst 
sequences (INCR, 
WRAP, XOR, and more)

MBurstSingleReq, 
MDataValid, 
MBurstLength, 
MBurstPrecise, 
MBurstSeq.

byteen
mdatabyteen

1
1

Allow partial cache line 
transfer for reads and 
writes

MByteEn, MDataByteEn

writeresp_enable 1 Writes have responses

intport_writedata 0 Must be 0 for slaves

cohstate_enable 1* The master interconnect 
side has no coherent 
caches but it can 
deliver coh and coh-
non-cached requests.

SCohState

reqinfo 1 Use to carry coherent ID 
on bit 0, 1, and 2

MReqInfo

threads
sthreadbusy
sthreadbusy_exact
sdatathreadbusy
sdatathreadbusy_exac
t
mthreadbusy
mthreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded 
non-blocking protocol

SThreadBusy, 
SDataThreadBusy, 
MThreadBusy
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13.3.3 Master Implementation Models
The master implementation model is functionally similar to the abstract 
master model discussed in Section 5.10.

13.3.3.1 Coherent Master Model
The cache controller of a caching master (e.g., an initiator with caches) is 
responsible for (1) determining if a memory request is coherent or not (e.g., 
targeting at a cacheable/coherent address space or a non-cacheable/non-
coherent address space); and (2) issuing the corresponding request to the 
network. Table 55 below shows such a decision process and is used by 
coherent masters, CPU1/2, CPU3/4, and Coherent DMA1 in the example 
design.

Note that not all masters need to be able to issue all types of requests in the 
example design.

Table 55 Sending Coherent Master (with Caches) Main Port Requests

Master Core Type Targeting 
System Address 
Region Type

Intended 
Transactio
n

MSI Cache Mp OCP Port Request

Status State

Coherent Coherent 
Address Space

Read or LL Hit M None

Hit S None

Miss M*

* A cache miss is encountered and a dirty line is the victimized line. Thus, a CC_WB request 
is issued for the victimized line first before sending a CC request for the cache miss.

CC_WB, CC_RDSH

Miss S†

† A cache miss is encountered and a shared line is the victimized line, i.e., no writebacks are 
needed.

CC_RDSH

Miss I CC_RDSH

Write or 
SC

Hit M None

Hit S CC_UPG

Miss M* CC_WB, CC_RDOW

Miss S† CC_RDOW

Miss I CC_RDOW

Flush or 
Purge

Any Any CC_I

Non-Coherent 
Address Space

Read n/a n/a RD

LL n/a n/a RDL

Write n/a n/a WR or WRNP

SC n/a n/a WRC
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Mp Port Request Transactions
When a coherent master wants to inject a main port request, Table 55 is used 
to decide what main port request should be sent given the targeting address 
region (can be determined by the targeting cache-line address and the system 
address map), the intention (e.g., read or write), internal cache state of the 
cache line (e.g., M, S, or I), and the cache scheme used by the master. For 
instance, when the CPU1/2 master wants to write to a cache line, which is in 
the shared state, to a coherent address space, the CPU master will send a 
CC_UPG coherent request on the main port to be delivered to the home 
directory slave.

Processing Ip Port Requests and Returning Ip Port Responses
When intervention requests can be processed, the coherent master’s internal 
cache states need to be updated accordingly; then, intervention responses 
need to be returned. Table 56 is used by coherent masters in the example 
design to decide how to update their internal caches and what intervention 
port responses to be returned based on: the master type, the intervention 
request type (e.g., self or system), the intervention command (e.g., read for 
ownership or read for sharing), and the current cache line state. For instance, 
when the CPU3/4 master receives a system I_UPG intervention request and 
the targeting cache line is in the S state, the CPU master will invalidate its 
internal copies of the cached line (i.e., change state from S to I) and return an 
intervention response of SResp = OK and SCohState = I on its intervention 
port—the corresponding row in Table 56 is shown in bold face and highlighted 
blue. 

Please note that after receiving some self intervention requests, the cache may 
get into a transient state (e.g., I_to_S, SI_to_M, or MSI_to_I) as shown in 
Table 56. The cache line will get out of the transient state after receiving its 
corresponding Mp port responses. Also, the post fix letter in these transient 
states indicates the final cache line installing state.
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Table 56 Processing Intervention Requests

Upon Receiving Mp Port Responses
A main port coherent transaction is completed only after the request’s main 
port responses are received. At that point, the master needs to decide whether 
to take the ownership of the cache line returned among responses or just to 
keep a local share copy of the line. It is also possible to do nothing. Moreover, 
requests blocked previously may also need to be unblocked. Table 57 lists 
how to decide what actions to be taken by a coherent master in the example 
design.

Master Core 
Type

Ip Port 
Intervention 
Type

Received 
Transaction

MSI Cache 
(Transient) State

Generating Outgoing Ip 
Response and Installing 
Cache State (MSI)

From To

Coherent Self 
Intervention

I_RDOW M n/a n/a

I, S SI_to_M SResp = OK; SCohState = I*

* For self intervention responses, the SCohState does not get used by the directory module; 
therefore, the signal value is a “don’t care”. For these system intervention responses, the 
SCohState is also a “don’t care”.

I_RDSH M, S n/a n/a

I I_to_S SResp = OK; SCohState = I*

I_UPG M n/a n/a

S, I SI_to_M SResp = OK; SCohState = I*

I_I,I_WB M, S, I MSI_to_I SResp = OK; SCohState = I*

System 
Intervention

I_RDOW M I SResp = DVA, SData; 

SCohState = M†

† The SCohState indicates the prior cache state of the targeting cache line.

S, I I SResp = OK; SCohState = I*

I_RDSH M S SResp = DVA, SData; 

SCohState = S‡

‡ The SCohState indicates the installing (e.g., next) cache state of the targeting cache line.

S, I Same state SResp = OK; SCohState = I*

I_UPG M I SResp = DVA, SData; 

SCohState = M†

S, I I SResp = OK; SCohState = I*

I_I M, S, I I SResp = OK; SCohState = I*

I_WR M, S, I Same state SResp = OK; SCohState = I*
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Table 57 Upon Receiving Main Port Responses

13.3.3.2 Coherence-Aware DSP Model
For the DSP master, in addition to legacy requests and responses (targeting 
non-coherent address spaces) that can be injected and received on the OCP 
main port, coherence-aware requests and responses (targeting coherent 
address spaces) are also issued and received on the OCP main port. Table 58 
shows the requests generated on the main port for the intended transactions.

Table 58 Sending Coherence Aware Main Port Requests

No hardware cache updates are considered in the example design. However, 
the DSP master can still have software caches where, for instance, system 
software is used to move a large amount of data from memory to an internal 
data buffer (inside the DSP) and from the data buffer to the memory before 
and after data processing, respectively.

Master Core Type Corresponding Mp 
Port Request Type

Received Mp Port 
Response

Actions (for each 
transient state, the final 
cache line state is 
determined by the 
transient state alone)

Coherent CC_ read-type 
commands

SResp DVA, SData, 
SCohState

Send SData to Cache 
and Update Cache 

State to SCohState*. 
Unblock blocked 
fences.

* The SCohState indicates the installing (e.g., next) cache state of the targeting cache line.

CC_ write-type 
commands

SResp DVA, ScohState Update Cache State to 

SCohState*. Unblock 
blocked fences.

CC_UPG command SResp OK, SCohState; or 
SResp DVA, SCohState

Update Cache State to 

SCohState*. If DVA, also 
send SData to Cache. 
Unblock blocked 
fences.

Other CC_ commands SResp OK, SCohState Update Cache State to 

SCohState*. Unblock 
blocked fences.

Master Core Type Targeting System 
Address Region 
Type

Intended 
Transaction

Mp OCP Port 
Request

Coherence Aware Non-Coherent 
Region,
Coherent Region

Read RD

LL RDL

Write WR or WRNP

SC WRC
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When main port responses are received, the DSP master’s OCP wrapper only 
needs to return data words for reads as indicated in Table 59.

Table 59 Upon Receiving Main Port Responses From Coherent Address Space

13.3.3.3 Legacy DMA Models
Only legacy requests and responses can be injected and received on the legacy 
OCP port. In the example design, only requests targeting at non-coherent 
address spaces are issued—such as shown in Table 60. When legacy 
responses are received, the master only needs to return data words for reads 
as indicated in Table 59.

Table 60 Sending Legacy Main Port Requests

13.3.4 Slave Implementation Models
In the example design, slaves receive either main port or legacy port requests 
from the OCP coherent interconnect and return the corresponding responses 
using the main port. Coherent responses are tagged with proper installing 
cache-line states. On the other hand, coherent slaves inject system or self 
intervention requests targeting at coherent masters and then wait for 
intervention response returned on the intervention port. The installing cache-
line state tagged with a coherent response can be used, by the coherent slave, 
to maintain system-level coherence for the cache line targeted by the 
response.

13.3.4.1 Coherent Directory Model
In the example design, the coherent Directory slave keeps the outstanding 
cache locations (using a CohID-indexed vector) and cache states for all cache 
lines belonging to the Memory module and/or the coherent I/O A. Figure 71 
illustrates this concept and shows only the coherent directory slave 

Master Core Type Corresponding Mp Port 
Request Type

Received Mp Port 
Response

Actions

Coherence-aware Legacy read-type 
commands

SResp DVA, 
SData

Return SData to 
DSP or CPU

Legacy write-type 
commands

SResp DVA None

Other legacy 
commands

SResp OK None

Master Core Type Targeting System 
Address Region Type

Intended 
Transaction

Mp Ocp Port 
Request

Legacy Non-Coherent Region Read RD

Write WR or WRNP
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connecting not only to the interconnect on the top with Mp6/Ip6 but also a 
legacy port OCP5 in order to send regular OCP requests to the Memory 
module and the I/O A.

Checking Directory Status and Dispatching Interventions or 
Memory/I/O Accesses
Upon receiving a main port coherent request, the Directory slave checks its 
cache directory states first to figure out whether there are outstanding shared 
cache lines or cache owner in order to decide what actions to take. For 
instance, the Directory module realizes that the targeting memory data line 
requested for ownership by CPU1/2 is outstanding and owned by the CPU3/
4 (considering dirty). A self I_RDOW intervention request and a system 
I_RDOW intervention request will be dispatched by the Directory slave to the 
CPU1/2 master and the CPU3/4 master, respectively. Table 61 is used to 
capture the Directory module’s actions upon receiving a main port request 
and to decide whether home memory accesses, coherence I/O accesses, or 
intervention port requests (self and/or system) need to be initiated. Please 
note that not all commands’ actions are currently listed in Table 61.

Figure 71 Directory-Based OCP Coherent Memory Slave

Memory
Controller/

DRAM

OCP Main Port Connection 
(with signals going both 
directions and the 
coherence extension)

OCP Intervention Port 
Connection (with signals 
going both directions)

Directory-Based OCP wrapper

Mp6 Ip6

Legacy OCP Port 
Connection (with signals 
going both directions)

Directory

I/O A

Interconnect

OCP5
OCP6OCP8
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Table 61 Directory Module’s Request Action Table

Received Mp 
Request

Action Comment

Sending Self 
Intervention on 
Ip*

Sending System 
Intervention on 
Ip†

Send Legacy 
Requests to the 
Memory Module 
or I/O A†

CC_RDOW ActionX(I_RDOW):
• Send self 

I_RDOW request 
with proper Coh 
Core ID in MRe-
qInfo

ActionY1(I_RDOW):
• Send system 

I_RDOW with 
Coh Core ID in 
MReqInfo for 
each outstand-
ing Coh Core ID

• Wait for N Ip 
responses

If N == 0:
ActionZ1: Send RD 
to memory or I/O

There can be no 
outstanding 
Coherent Core IDs 
for the targeting 
cache line; thus, N 
is 0

CC_RDSH Take 
ActionX(I_RDSH)

ActionY2(I_RDSH):
• Send system 

I_RDSH with Coh 
Core ID in MRe-
qInfo for the out-
standing Coh 
Core ID with 
state == M

• Will wait for N 
responses (N can 
be either 1 or 0)

If N == 0:
Take ActionZ1

CC_RDDS Take 
ActionX(I_RDDS)

Take 
ActionY2(I_RDDS)

If N == 0: Take 
ActionZ1

CC_UPG Take 
ActionX(I_UPG)

Take 
ActionY1(I_UPG)

If N == 0: Take 
ActionZ1

CC_WRI + 
data words

Take 
ActionX(I_WRI)

Take 
ActionY1(I_WRI) + 
Mp data words

If N == 0:
ActionZ2: 
• Send WR + data 

words to mem-
ory or I/O

May not need to 
wait for the 
previous self 
intervention 
request to be 
completed before 
launching

CC_I Take ActionX(I_I) Take ActionY1(I_I) n/a May not need to 
wait for the 
previous self 
intervention 
request to be 
completed before 
launching

CC_WB/ 
CC_CBI + 
data words

Take 
ActionX(I_WB/
I_CBI)

n/a Take ActionZ2

CC_CB + 
data words

Take ActinX(I_CB) n/a Take ActionZ2
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After Receiving All Intervention Responses or the Memory/I/O 
Responses
The Directory module updates the directory state for an outstanding coherent 
transaction according to responses received on the intervention port. 
Responses received on the intervention port include the transaction’s self 
intervention response and one or more system intervention responses. After 
examining the directory state and all responses including possible home 
memory or I/O read responses on the legacy OCP5 port, the directory model 
generates and sends out main port responses (sometime with SData words) 
to complete the open coherent transaction. Note that other implementation 
choices are possible—in certain cases, the directory does not need all 
responses to send out the main port response.

Table 62 is used to capture the Directory module’s actions upon receiving all 
needed information before returning main port responses.

WR + data 
words to 
coherent 
address 
space

n/a Take 
ActionY1(I_RDOW)

If N == 0: Take 
ActionZ2

RD to 
coherent 
address 
space

n/a Take 
ActionY2(I_RDSH)

If N == 0: Take 
ActionZ1

WR + data 
words to 
non-
coherent 
address 
space

n/a n/a Send WR + data 
words to memory 
or I/O

RD to non-
coherent 
address 
space

n/a n/a Send RD to 
memory or I/O

* When there are no outstanding self intervention requests.
† When the corresponding self intervention requests can be sent.

Received Mp 
Request

Action Comment

Sending Self 
Intervention on 
Ip*

Sending System 
Intervention on 
Ip†

Send Legacy 
Requests to the 
Memory Module 
or I/O A†
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Table 62 Directory Module’s Response Action Table

Original Mp 
Request

After Receiving Ip 
Responses or Memory/
I/O Responses: Send 
Mp Responses

Action

Any Data Words Going 
to Memory or I/O

Directory State Changes

CC_RDOW IF Ip SResp == DVA: 
Send Mp SResp of DVA, 
Ip response data 

words, SCohState of M*

ELSE: Send Mp SResp of 
DVA, SData = memory 
or I/O data words, 

SCohState of M*

n/a Reset Directory cache 
line state and set the 
originating Coh Core ID 
slot to M

CC_RDSH IF Ip SResp == DVA: 
Send Mp SResp of DVA, 
Ip response data 

words, SCohState of S* 

ELSE: Send Mp SResp of 
DVA, SData = memory 
or I/O data words, 

SCohState of S*

Ip response SData 
words

IF (Ip SResp == DVA): Set 
Directory cache line 
state for the originating 
Coh Core ID slot to S 
and replace the old 
dirty slot’s state from M 
to S (for the dirty Coh 
Core ID)

CC_RDDS IF Ip SResp == DVA: 
Send Mp SResp of DVA, 
Ip response data 

words, SCohState of I* 

ELSE: Send Mp SResp of 
DVA, SData = memory 
or I/O data words, 

SCohState of I*

n/a n/a

CC_UPG IF Ip SResp == DVA: 
Send Mp SResp of OK, 

SCohState of M* ELSE: 
Send Mp SResp of OK, 

SCohState of M*

n/a Reset Directory cache 
line state and set the 
originating Coh Core ID 
slot to M

CC_WRI + data 
words

Send Mp SResp of OK, 

SCohState I*
Mp request MData && 
Ip response SData 
words

Reset Directory cache 
line state

CC_I Send Mp SResp of OK, 

SCohState I*
n/a Reset Directory cache 

line state

CC_WB/ CC_CBI + 
data words

Send Mp SResp of OK, 

SCohState I*
IF directory slot was M: 
Mp request MData

IF directory slot was M: 
Reset Directory cache 
line state

CC_CB + data 
words

Send Mp SResp of OK, 

SCohState S*
n/a IF directory slot was M: 

set the originating Coh 
Core ID slot to S
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13.3.4.2 Legacy I/O Model
Only legacy requests and responses can be received and returned on the 
legacy OCP port.

13.3.5 Directory-Based Interconnect System-Level Model
Delivery rules and capabilities employed by the directory-based interconnect 
include:

• Interconnect delivers all Mp requests originating by initiating masters to 
the Mp interface of either the Directory/Memory slave, the I/O A slave, or 
the I/O B slave based on the MAddr field value and the address-region-to-
slave assigned described before.

• Interconnect is capable of doing reverse routing in order to return Mp 
responses back to their initiating masters.

• Interconnect delivers all Ip requests, based on the coherent ID # 
embedded in the MReqInfo signal, from coherent slaves to coherent 
masters.

• Interconnect is capable of doing reverse routing in order to return Ip 
responses from coherent masters back to coherent slaves.

WR + data words 
targeting coherent 
address space

Send Mp SResp of OK, 

SCohState I†
Mp request MData && 
Ip response SData 
words

Reset Directory cache 

line state†

RD targeting 
coherent address 
space

IF Ip SResp == DVA: 
Send Mp SResp of DVA, 
Ip response data 

words, SCohState of I† 
ELSE: Send Mp SResp of 
DVA, SData = memory 
or I/O data words, 

SCohState of I†

Ip response SData 
words

IF (Ip SResp == DVA): 
Replace the old dirty 
slot’s state from M to S 
(for the dirty Coh Core 
ID)

WR + data words 
targeting non-
coherent address 
space

Legacy SResp DVA Mp request MData n/a

RD targeting non-
coherent address 
space

Legacy SResp DVA, 
SData = memory or I/O 
data words

n/a n/a

* The SCohState indicates the installing (i.e., next) cache state of the targeting cache line.
† For self intervention responses, the SCohState does not get used by the directory module; 

therefore, the signal value is a “don’t care.” For these system intervention responses, the 
SCohState is also a “don’t care.”

Original Mp 
Request

After Receiving Ip 
Responses or Memory/
I/O Responses: Send 
Mp Responses

Action

Any Data Words Going 
to Memory or I/O

Directory State Changes



282 Open Core Protocol Specification

OCP-IP Confidential

• When connectivity is defined, a (virtual) data stream is maintained 
between a master Mp to a slave Mp, or a slave Ip to a master Ip. 

• No burst interleaving when multiple initiator threads are turned into one 
target thread at the thread merging points in the interconnect module (we 
use only single-threaded, non-blocking protocol for all OCP ports in the 
example design).

In this example design, we do not support cache-to-cache forwarding (i.e., the 
3-way communication). However, if it is supported, additional capability 
needs to be provided by the interconnect. For instance, a virtual data stream 
between a coherent master’s Ip response channel and another coherent 
master’s Mp response channel needs to be established. This also implies that 
each coherent transaction originated on a main port may get a Data response 
and a completion response where: (1) both responses may come back in the 
same time; (2) the Data response may come back first; or (3) the completion 
response may come back first inside the interconnect. Hence, special 
attention needs to be taken care of by the interconnect or the coherent 
master.

13.3.5.1 3-Way Communication Challenges
A typical optimization that a directory-based coherent system can apply is the 
3-way communication (or 3-party transaction or cache-to-cache transfer). 3-
way communication enables a coherence master, who is forced to write back 
a dirty copy due to a system intervention, to forward the intervention response 
and data directly to the requestor. In other words, the intervention port 
response is routed from the cache line owner’s intervention port to the 
response channel of the requestor’s main port directly for improving 
performance.

Details regarding three-way forwarding will be described in Section 13.3.7.1 
on page 287.

13.3.6 Coherent and Coherent-Non-Cached Transaction 
Flows
A few transaction flows are listed in this sub section and the objective is to 
capture the relationships between masters and slaves by using transition 
tables defined in the previous sub sections.

13.3.6.1 Cache Write Back Transaction Flow
Table 72 displays the high-level data flow for a coherent CC_WB transaction 
originating from CPU 1/2. Transition tables used at each stage is also labelled 
along with Mp and Ip request and response transfers.

A space-time diagram corresponding to activities shown in Figure 72 is also 
displayed on the next page. Note that Figure 73 is intended to be used to 
capture the causality among requests and responses happened for the 
example design on the main ports, the intervention ports, and/or the legacy 
ports. The absolute timing differences between messages bear no meaning 
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here. The diagram is not intended to accurately depict the duration of any 
individual transaction or series of transactions. Conventions used in all 
space-time diagrams include:

• Time flows from top to bottom.

Figure 72 CC_WB Transaction High-Level Data Flow

• All ports of each OCP entity are shown.

• Transactions are represented by arrows between ports.

• Labels indicate the major action(s), including state change(s), that are 
performed by the transaction.
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Figure 73 CC_WB Transaction Flow

For instance, Table 73 is used to illustrate the following:

• For CPU 1/2, after it issues a CC_WB main port request and two 
datahandshake phases (MData0 and MData1), it will receive a self I_WB 
intervention request on its intervention port Ip0 and after the CPU 
responding with an intervention port response (SResp OK and SCohState 
of I), it will eventually receive a main port SResp to indicate the completion 
of it CC_WB transaction (and the cache line state goes to I).

• On the other hand, the Directory module not only sends a self intervention 
request back to CPU 1/2 (indicated by CID1), it also writes back the cache 
line (MData0 and MData1) to its home Memory module using its legacy 
OCP5 port.

13.3.6.2 Read for Share and Dirty at a Master Cache
Figure 74 displays the space-time data flow for a coherent CC_RDSH 
transaction originating from CPU 1/2 where the dirty data is located at the 
CPU 3/4 master’s cache. Note that the Directory module knows that the latest 
dirty cache line is stored at the cache of the CPU 3/4 module (CID2). 
Therefore, in addition to return a self intervention request back to the 
originating CPU 1/2 module, it also sends a system intervention request from 
the Ip6 port to the CPU 3/4 module’s intervention Ip1 port (the request’s 
MReqInfo signal carries “system” and CID2). After receiving the intervention 
I_RDSH request, the CPU 3/4 module not only changes its cache line state 
from M to S but also returns the latest cache line data words (SData0 and 
SData1) to the directory before being copied and sent to both the CPU 1/2 
module and the Memory sub system using Mp6 and Mp0 ports, and OCP5 
and OCP6 ports, respectively.
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Figure 74 CC_RDSH and Dirty at Cache

13.3.6.3 Read for Ownership and Dirty at a Master Cache
Figure 75 displays the space-time data flow for a coherent CC_RDOW 
transaction originating from CPU 1/2 where the dirty data is located at the 
CPU 3/4 master’s cache. The communication pattern is similar to Figure 74 
except that the cache installing states are different and there is no need to 
copy the cache line to memory. (Note: some implementations may choose to 
update the memory concurrently.)

Figure 75 CC_RDOW and Dirty at Cache
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13.3.6.4 Cache Upgrade When the Cache Line is Shared by Multiple 
Masters
Figure 76 displays the space-time data flow for a coherent CC_UPG 
transaction originating from CPU 1/2 where the cache line is also shared at 
the CPU 1/2 master’s cache, the CPU 3/4 master’s cache, and the DMA1 
master’s cache. Therefore, after the Directory receives the CC_UPG request, it 
sends three intervention requests, a self intervention request to the CPU 1/2 
master, two I_UPG system intervention requests to the CPU 3/4 master and 
the CPU 5/6 master each.

Figure 76 CC_UPG and Shared at All Caches

13.3.6.5 Cache Flush or Purge and Shared at Master Caches
Figure 77 displays the space-time data flow for a coherent CC_I transaction 
originating from CPU 1/2 where the cache line is shared at the CPU 3/4 and 
DMA1 master’s cache.
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Figure 77 CC_I and Shared at Others

13.3.7 Three-Way Communication
A typical optimization that a directory-based coherent system can apply is the 
three-way communication (or three-party transaction or cache-to-cache 
transfer). Three-way communication enables a coherence master, who is 
forced to write back a dirty copy due to a system intervention, to forward the 
intervention response and data directly to the requestor. In other words, the 
intervention port response is routed from the cache line owner’s intervention 
port to the response channel of the requestor’s main port. This transaction 
requires the MReqInfo signal in the intervention port request channel to 
indicate both “who to route to” and “to whom to forward to.” In addition, there 
should be a SRespInfo signal on the intervention port response side to 
indicate “who is the recipient.” The SRespInfo signal should also be included 
in a main port response as well, to indicate “to whom to respond,” if three-way 
communication is used. This main port SRespInfo signal needs to be used by 
the delivering fabric to determine how to return the main port responses and 
data words.

Three-hop protocols introduce additional complexity to the design of the main 
response port: the design needs to accommodate the receipt of two responses 
for the same transaction (see below).

13.3.7.1 Cache Answers Request
Figure 781 shows a CC_RDSH transaction is issued from a master and gets a 
dirty cache-line data from another coherence master directly. In the same 
time, the home memory slave’s directory state is updated accordingly. Steps 
to complete the coherence transaction are labeled alphabetically starting from 
a, b, c, to g, h, and i.

1 Please note that in this figure we have intentionally made the memory module an internal 
module inside the Directory slave.
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The corresponding space-time diagram to the above “CC_RDSH and cache 
answers request” transaction is displayed in Figure 79—the labels indicated 
on dashed communication activities match those from Figure 78.

Figure 78 CC_RDSH and Cache Answers Request High-Level Data Flow

 Directory/Memory

Proc1

L2

OCP wrapper

M-hit

OCP Coherence
Interconnect

Proc0

L2

OCP wrapper

Req

Req

Resp

Resp Resp Req

Resp Req Resp Req

C
C

_R
D

S
H

a

S
elf I_R

D
S

H

f

d
g

M

e

Cache Line Data 
SCohState "S"

I

c

S
ys

 I_
R

D
S

H

i

Dropped

Directory:
MAddr Where State
0x0    @Proc1    M

Three-Way 
Forwarding

b

h

Directory:
MAddr Where State
0x0  @Proc0,1   S

SS



Developer’s Guidelines: OCP Coherent System Architecture Examples 289

OCP-IP Confidential

Figure 79 CC_RDSH and Cache Answers Request Space-Time Diagram

13.3.8 Handling Race Conditions
A few of the transitions described in Table 55 on page 272 seem unnecessary 
but those transactions are indeed needed for the coherence master model in 
order to operate correctly. They are there to handle possible race conditions 
between coherence masters, for instance, for a directory-based coherence 
system. The following scenario illustrates one possible race condition between 
coherence master A and B that both want to update the coherence state of 
cache-line address X:

• At time t, coherence master A issues a coherence upgrade request 
(CC_UPG) on the main port for cache-line address MAddr X because 
master A’s processor finds the cache-line’s state in S and wants to 
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A must also record cache-line X in State S.

• At time t+1, coherence master B issues a coherence CC_RDOW request on 
its main port also for cache-line of address MAddr X because master B’s 
processor finds the cache-line’s state in I and wants to change it to M. This 
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cache-line address X is in State S. Therefore, by following the master 
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response of “SResp OK and SCohState I”; and (b) changes the coherence 
state of cache-line address X to State to I. This may ripple through caches 
on the processor side.

• More activities happen during time t+4, t+5, t+6, and t+7. That is, the 
directory returns cache line data to B and the CC_UPG coherence request 
coming from master A has been accepted by the directory.

• At time t+8, say, master A receives and accepts a self-intervention 
CC_UPG request on MAddr X for the CC_UPG request master A sent at 
time t. Master A first blocks its intervention port; then, checks its 
coherence state module and finds cache-line address X is in State I—
which is different from the State when master A was issuing the CC_UPG 
request. However, we do have a transition from State I to M for handling 
the receiving of a self-intervention CC_UPG request as shown in Table 55 
so master A can complete its remaining operations.

This example illustrates the race condition and explains the need for the 
transition row (including “Self Intervention: I_UPG” and from state I to state 
M). 

Other transitions listed in Table 55 that are used to handle race conditions 
are the “S” to “SI_to_M” transition labelled with “Self Intervention: I_RDOW” 
and the “I” to “I” transition labelled with “Self Intervention: I_I” or “Self 
Intervention: I_WB”.

13.4 Implementation Models for Snoop-Bus-
Based Designs
In this chapter examples of snoop-bus based OCP coherence designs are 
given.

13.4.1 Snoop-Bus-Based OCP Coherent Master Model
In this example, the OCP coherent master models described in the previous 
chapter (for directory-based designs) are reused. 

13.4.2 Snoop-Bus-Based OCP Coherence Interconnect Model
The interconnect has a broadcast facility. It is convenient to think of each 
coherence transaction as being composed of three in-order pipeline bus 
stages: the Request/Write Data phase, the Snoop phase, and the Response/
Read Data phase. At most one instance of each stage can exist at each cycle; 
therefore, there can be at most three in-flight transactions. Stalling one stage 
stalls all pending transactions happening before the stalling stage. 
Transactions passed the stalling stage can proceed without problems.
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13.4.2.1 Request/Write Data Phase
The arbitration logic in the interconnect grants at most one main port 
coherence request each cycle in this phase. During this phase, this coherence 
request is: (a) delivered to the memory slave on its main port based on the 
MAddr value; (b) turned into a self-intervention request (data-less) and 
delivered to the intervention port of the initiator; (c) turned into many 
intervention requests and delivered to each of the other coherence masters 
connected to the snoop-bus-based interconnect. When all requests are 
accepted by their targeting masters and slave, this phase is considered 
complete. Request type (MCmd), address (MAddr), and write data (MData), if 
any, need to be delivered in this phase.

13.4.2.2 Snoop Phase
After all intervention requests are delivered, we enter the snoop phase waiting 
for intervention port responses. In addition, one intervention request is 
expected from the slave, i.e., the “home” of the MAddr address. This 
intervention request is dropped by the interconnect.

After receiving all intervention responses, two possible scenarios can happen:

• If none of the intervention responses has dirty write-back data (i.e., 
SCohState is set to M), an aggregated intervention response is generated 
in this phase and delivered to the “home” slave on its intervention port. 
The snoop phase terminates when the aggregated intervention response 
is accepted.

• Otherwise, exactly one of the intervention responses must return the 
write-back data and the data is passed onto the next phase before the 
snoop phase terminates.

SResp, SCohState, and possible SData need to be delivered in this phase. 
Please notice that in the mean time the home slave of the MAddr address can 
be launching a memory read or write command

13.4.2.3 Response/Read Data Phase
If this is a response-only phase, the interconnect is waiting for a main port 
response coming from the home slave of the transaction’s MAddr address and 
will relay the response to the transaction’s initiating coherence master. This 
phase terminates when the main port response is accepted. For a response-
and-read-data phase, the dirty write-back data of the previous phase is 
packaged into an intervention response and sent to the home slave; in 
addition, it is also packaged into a main port response with the dirty write-
back data and sent to the transaction’s initiating coherence master. The 
phase terminates after accepting/dropping a main port response coming back 
from the home slave. Note that, in parallel, a memory write-back operation 
should also take place at the home slave.

13.4.3 Snoop-Bus-Based OCP Coherence Slave Model
We will use the abstract model presented in Figure 12 on page 89.
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13.4.4 Coherence Transactions
Figure 80 shows a CC_RDOW transaction is issued from a master and gets a 
dirty cache-line data from another coherence master directly. Figure 81 is the 
space-time diagram corresponding to the transaction shown in Figure 80. 
Figure 82 shows either a CC_RDOW or CC_RDSH transaction is issued and 
the memory slave provides the cache-line data. Figure 83 is the space-time 
diagram corresponding to the CC_RDSH transaction shown in Figure 82. A 
CC_WB transaction writes back cache-line data is illustrated in Figure 84 and 
the corresponding space-time diagram is shown in Figure 85.

In Figures 80, 82, and 84, the following abbreviations are used:

• Mp: Main port

• Ip: Intervention port

• Self Ip Req or Resp: Self intervention request or response

• Req: Requests

• Resp: Response

Figure 80 Snoop-Bus-Based Interconnect Example: Cache Answers Request
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Figure 81 Space-time diagram of Figure 80

Figure 82 Snoop-Bus-Based Interconnect Example: Memory Answers Request
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Figure 83 Space-time diagram of Figure 82’s CC_RDSH Transaction

Figure 84 Snoop-Bus-Based Interconnect Example: Writeback
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Figure 85 Space-time diagram of Figure 84

13.4.5 Snoop-Bus-Based CC_WB Race Conditions
In this subsection, several examples showing CC_WB race conditions in a 
snoop-bus-based system are discussed, and an implementation choice to 
solve each of the race conditions is also described. In the models shown in this 
section, the primary serialization point referred to in Section 5.11.2 and the 
associated serialization logic is implemented as two units: the coherent 
request serialization/select logic unit and the SResp merge logic unit.

13.4.5.1 Intport_writedata=0 Case (1), Proc0 Wins
The behaviors of the coherent masters (processors), interconnect, and 
memory subsystem are based on Tables 55–57 and Figures 80–85. 
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Implementations that follow the second approach require more complex 
mechanisms and careful design than implementations that follow the first 
approach; hence, in this document, for reasons of brevity, only examples that 
follow the first approach are shown. 

An example of the race condition of CC_WB from Proc0 and CC_RDOW from 
Proc1 at the same memory address are shown in Figures 86(a) and 86(b). 
Figure 86(a) shows the case in which Proc0 wins arbitration at the coherent 
request serialize/select logic unit in the OCP coherent interconnect: event 
(A2) appears prior to event (B2), and event (A3) appears prior to event (B3). In 
this case, only the order of event (A14) completes before event (B7) starts, 
event (A10) completes before event (B4), and no other ordering between Proc0 
and Proc1 is maintained. 

The behaviors related to the CC_WB request from Proc0 are shown in 
Figure 86(a).

(A1) Proc0 sends a Cache Coherent Write Back (CC_WB) command with data 
from its main request port.

(A2) The coherent request serialize/select logic unit in the interconnection 
network selects the CC_WB command from Proc0 and sends this 
command with its associated MData to the target, Memory 0. 

(A3) The coherent request serialize/select logic unit sends I_WB as a self 
intervention request to the intervention request port of the initiator, 
Proc0. Since CC_WB does not require a check of the cache states of 
other coherent masters, the OCP coherence interconnect does not send 
I_WB as a system intervention request to the other coherent masters.

(A4) OCP wrapper of Memory0 receives the CC_WB command with MData 
from its main request port, translates the CC_WB request into an I_WB 
request, and sends the I_WB request to its intervention request port. 
(Note: Memory0 will execute the write after it receives the intervention 
response at (A10).)

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request 
port. The OCP coherence interconnect ignores and drops this request.

(A6) Proc0 receives I_WB as a self intervention request from its intervention 
request port and checks its cache state for the requested address 
location. Proc0 changes the cache state from M to MS_to_I.

(A7) Proc0 sends its cache state, Modified, to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response Modified into 
“SResp OK, SCohState Modified,” and sends it from its intervention 
response port.

(A9) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port response (A9), generates the intervention response 
“SResp OK, SCohState Modified” for the coherent memory system, and 
sends it to the intervention port of Memory0.

(A10) OCP wrapper of Memory0 receives the intervention response “SResp 
OK, SCohState Modified” and executes “memory write” to Memory0.
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(A11) OCP wrapper of Memory0 generates the main port response “SResp 
DVA, SCohState Invalid,” and sends it to its main response port.

(A12) OCP wrapper of Memory0 sends “SResp DVA, SCohState Invalid” from 
its main response port.

(A13) SResp merge logic unit in the OCP coherence interconnect receives the 
main port response from Memory0. It sends “SResp DVA, SCohState 
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp DVA, SCohState Invalid” as the main port 
response, and changes its cache state from MS_to_I to I. The CC_WB 
command transaction ends.

Figure 86(a) CC_WB Race Condition, Proc0
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The behaviors related to the “CC_RDOW” request from Proc1 are shown in 
Figure 86(b).

(B1) Proc0 sends the Cache Read Own (CC_RDOW) command from its main 
request port.

(B2) The coherent request serialize/select logic unit in the OCP coherence 
interconnect network selects the CC_RDOW command from Proc1 and 
sends this command to the target, Memory 0. Note that at this point, 
the CC_WB command issued by Proc0 has already been sent to 
Memory0.

(B3) The coherent request serialize/select logic unit sends I_RDOW as a self 
intervention request to the intervention request port of the initiator, 
Proc1. It also sends I_RDOW as system intervention requests to all 
other coherent masters, including Proc0. Note that at this point, I_WB 
from Proc0 has already sent to Proc0.

(B4) OCP wrapper of Memory0 receives the CC_RDOW from its main request 
port, and sends “Memory Read” speculatively to Memory0. Memory0 
executes the read.

(B5) OCP wrapper of Memory0 translates the CC_RDOW request into an 
I_RDOW request and sends it to its intervention request port. 

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request 
port. OCP coherence interconnect ignores and drops this request.

(B7) Proc0 receives I_RDOW as a system intervention request from its 
intervention request port and checks its cache state at the requested 
address location. Since the cache state is I, Proc0 does not change the 
cache state.

(B8) Proc0 sends the cache state “Invalid” to its OCP wrapper.

(B9) OCP wrapper of Proc0 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid,” and sends it from its intervention 
response port.

(B10) Proc1 receives I_RDOW as a self intervention request from its 
intervention request port and checks its cache state at the requested 
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends the cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid,” and sends it from its intervention 
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port responses (B9) and (B12), generates the intervention 
response “SResp OK, SCohState Invalid” for the coherent memory 
system, and sends it to the intervention port of Memory0.

(B14) OCP wrapper of Memory0 receives the intervention response “SResp 
OK, SCohState Invalid” and sends it to its main response port. 
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(B15) Main response port of the OCP wrapper of Memory0 waits for the read 
data.

(B16) Memory0 sends the read data to its main response port.

(B17) The OCP wrapper of Memory0 sends “SResp DVA with SData, 
SCohState Modified” as the main port response.

(B18) SResp merge logic unit in OCP coherence interconnect receives the 
main port response from Memory0. It sends “SResp DVA with SData, 
SCohState Modified” as the main port response to the Proc1.

(B19) Proc1 receives “SResp DVA with SData, SCohState Modified” as the 
main port response. It updates the cache line and changes its cache 
state from SI_to_M to M. The CC_RDOW transaction ends.

Figure 86(b) CC_RDOW Race Condition, Proc1
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13.4.5.2 Intport_writedata=0 Case (2), Proc1 Wins
When assuming intport_writedata=0, no response is needed and no 
blocking is needed.

An example of the race condition of CC_WB from Proc0 and CC_RDOW from 
Proc1 at the same memory address is shown in Figures 87(a) and 87(b). 
Figure 87(a) shows the case where Proc1 wins the arbitration at the coherent 
request serialize/select logic unit in the OCP coherent interconnect, event 
(B2) appears prior to event (A2), and event (B3) appears prior to event (A3). In 
this case, only the order of the event (B7) completes before the event (A6) 
starts, and no other ordering between Proc0 and Proc1 is maintained. 

The behaviors related to the CC_WB request from Proc0 are shown in 
Figure 87(a).

(A1) Proc0 sends a Cache Coherent Write Back (CC_WB) command with data 
from its main request port.

(A2) The coherent request serialize/select logic unit in the OCP interconnect 
network selects the CC_WB command from Proc0 and sends this 
command with its MData to the target, Memory 0. Note that at this 
point, the CC_RDOW issued by Proc1 has already been sent to 
Memory0.

(A3) The coherent request serialize/select logic unit in the OCP interconnect 
network sends I_WB to the intervention request port of Proc0 as a self-
intervention. Since I_WB is not required to be sent to other coherent 
masters as system intervention, the OCP interconnect network does not 
send I_WB as system intervention requests. Note that at this point, 
I_RDOW from Proc1 has already been sent to coherent masters.

(A4) OCP wrapper of the Memory0 translates the CC_WB request into an 
I_WB request and sends it to its intervention request port.

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request 
port. The OCP coherence interconnect ignores and drops it.

(A6) Proc0 receives I_WB as a self intervention request from its intervention 
request port and checks its cache state at the requested address 
location. Since Proc0 already received I_RDOW as a system intervention 
from its intervention request port and updated its cache state, the 
cache state is I. Proc0 changes the cache state from I to MSI_to_I. (Note: 
the cache state can be I instead of MSI_to_I—this is an implementation-
dependent choice.)

(A7) Proc0 sends its cache state “Invalid” to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid”, and sends it from its intervention 
response port.

(A9) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port response (A7), generates the intervention response 
“SResp OK, SCohState Invalid” for Memory0, and sends it to the 
intervention port of Memory0.
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(A10) OCP wrapper of the Memory0 receives the response “SResp OK, 
SCohState Invalid” from its intervention response port, and it cancels 
“Memory Write” to Memory0.

(A11) OCP wrapper of Memory0 generates the intervention response “SResp 
OK, SCohState Invalid” and sends it to its main response port. (Note a 
different implementation may generate “SResp DVA, SCohState 
Invalid”—the value of SResp is implementation dependent.)

(A12) OCP wrapper of Memory0 sends “SResp OK, SCohState Invalid” from its 
main response port. Since this is a write transaction, no data is sent 
from its main response port.

(A13) SResp merge logic unit in the OCP coherence interconnect receives the 
main port response from Memory0. It sends “SResp OK, SCohState 
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp OK, SCohState Invalid” as the main port 
response. Proc0 changes the cache state from MSI_to_I to I. The CC_WB 
transaction ends.
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Figure 87(a) CC_WB Request from Proc0
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(B4) OCP wrapper of Memory0 receives the CC_RDOW command from its 
main request port, and sends “Memory Read” speculatively to Memory0. 
Memory0 executes the read.

(B5) OCP wrapper of the Memory0 translates the CC_RDOW request into an 
I_RDOW request and sends it to its intervention request port.

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request 
port. The OCP coherence interconnect ignores and drops it.

(B7) Proc0 receives I_RDOW as a system intervention request from its 
intervention request port and checks its cache state at the requested 
address location. Proc0 changes the cache state from M to I.

(B8) Proc0 send its cache state “Modified” to its OCP wrapper with the data 
of the requested cache line.

(B9) OCP wrapper of Proc0 translates the snoop response “Modified” into 
“SResp DVA with SData, SCohState Modified”, and sends it from its 
intervention response port.

(B10) Proc1 receives I_RDOW as a self intervention request from its 
intervention request port and checks its cache state at the requested 
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends its cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid”, and send it from its intervention 
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port responses (B9) and (B12), generates the intervention 
response “SResp DVA with SData, SCohState Modified” for the coherent 
memory system, and sends it to the intervention port of Memory0. 
(Note: If the main port response of Memory0 is ignored, Memory0 does 
not need the data of CC_RDOW, because CC_RDOW is issued by “store 
miss” case and the data will be updated in the initiator.) 

(B14) SResp merge logic unit in the OCP coherence interconnect generates 
the intervention response “SResp DVA with SData, SCohState Modified” 
for the initiator, Proc1, and sends it to the main port of Proc1. (Note that 
the OCP interconnect may skip (B14) and instead send the modified 
data at (B17). This is an implementation-dependent choice.)

(B15) Proc1 updates its cache and changes the cache state from SI_to_M to M.

(B16) OCP wrapper of Memory0 receives the intervention response “SResp 
DVA with SData, SCohState Modified” and sends it to its main response 
port. 

(B17) Main response port of the OCP wrapper of Memory0 waits for the read 
data.

(B18) Memory0 sends the read data to its main response port.
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(B19) The OCP wrapper of Memory0 sends “SResp OK, SCohState Modified” 
as the main port response. (Note that this response is implementation-
dependent: the OCP wrapper of Memory0 may also send “SRespDVA 
with SData, SCohState Modified” from its main response port for the 
OCP coherence interconnect to send to Proc1, instead of (B14).)

(B20) SResp merge logic unit in the OCP coherence interconnect receives the 
main port response from Memory0. It ignores/drops the response. The 
CC_RDOW transaction ends.

Figure 87(b) CC_RDOW Request from Proc1

13.4.5.3 Intport_writedata=1 Case (1), Proc0 Wins
There are two approaches for the implementer to handle this race condition:
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1. The requestor waits for self intervention and for response. The home agent 
is simple: a CC_WB command has no effect on the state of the cache line 
until the reception of a self intervention. When this happens, the 
intervention port is blocked until the reception of a response which 
invalidates the status of the cache line.

2. When the requestor sends a CC_WB command, it commits at once (cache 
line state transitions to I when generating CC_WB) and does not wait for 
a self intervention or response.In this case, the coherence master 
implementation must be more complex than in the first approach.

The coherent slave (snoop controller), which will be able to detect the race, 
drops the memory’s response (i.e., it ignores stale data) and re-reads the 
data from memory (by issuing a second request) once the processor with 
the up-to-date copy writes back.

Since the implementation of the second approach requires complex 
mechanisms and careful design, this document only shows examples of the 
first approach. 

The behaviors of the coherent masters (processors), interconnect, and 
memory subsystem are based on Tables 55–57 and Figures 80–85. 

The behaviors related to Proc0 CC_WB are shown in Figure 88(a).

(A1) Proc0 sends a Cache Coherent Write Back (CC_WB) command. Since 
intport_writedata=1, Proc1 does not send modified data.

(A2) The coherent request serialize/select logic unit in the interconnection 
network selects the CC_WB command from Proc0 and sends this 
command to the target, Memory 0. 

(A3) The coherent request serialize/select logic unit in the interconnection 
network sends I_WB to the intervention request port of Proc0 as a self-
intervention. Since I_WB is not required to be sent to other coherent 
masters as a system intervention, the OCP coherence interconnect 
network does not send I_WB as system intervention requests.

(A4) OCP wrapper of Memory0 translates the CC_WB request into an I_WB 
request and sends it to its intervention request port.

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request 
port. The OCP coherence interconnect ignores and drops it.

(A6) Proc0 receives I_WB as a self intervention request from its intervention 
request port and checks its cache state at the requested address 
location. Proc0 changes the cache state from M to MS_to_I.

(A7) Proc0 sends its cache state “Modified”, and also sends the modified data 
of the requested cache line to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response “Modified” into 
“SResp DVA with SData, SCohState Invalid,” and sends it from its 
intervention response port. (Note: this response is implementation-
dependent: SCohState can also be “Modified” as shown in Figure 86(a).)
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(A9) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port response (A8), generates the intervention response 
“SResp DVA with SData, SCohState Invalid” for Memory0, and sends it 
to the intervention port of Memory0.

(A10) OCP wrapper of the Memory0 receives the response “SResp DVA with 
SData, SCohState Invalid” from its intervention response port, and 
sends “Memory Write” to Memory0. Memory0 executes the write.

(A11) OCP wrapper of Memory0 generates the intervention response “SResp 
DVA, SCohState Invalid” and sends it to its main response port.

(A12) OCP wrapper of Memory0 sends “SResp DVA, SCohState Invalid” from 
its main response port. Since this is a write transaction, no data is sent 
from its main response port.

(A13) SResp merge logic unit in the OCP coherence interconnect receives the 
main port response from Memory0. It sends “SResp DVA, SCohState 
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp DVA, SCohState Invalid” as the main port 
response, and changes its cache state from MS_to_I to I. The CC_WB 
transaction ends.
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Figure 88(a) CC_WB Request, Proc0
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(B3) The coherent request serialize/select logic unit sends I_RDOW as a self 
intervention request to the intervention request port of the initiator, 
Proc1. It also sends I_RDOW as system intervention requests to all 
other coherent masters, including Proc0. Note that at this point, I_WB 
from Proc0 has already been sent to Proc0.

(B4) OCP wrapper of the Memory0 receives the CC_RDOW command from its 
main request port, and sends “Memory Read” speculatively to Memory0. 
Memory0 executes the read.

(B5) OCP wrapper of the Memory0 translates the CC_RDOW request into an 
I_RDOW request and sends it to its intervention request port.

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request 
port. The OCP coherence interconnect ignores and drops this request.

(B7) Proc0 receives I_RDOW as a system intervention request from its 
intervention request port and checks its cache state at the requested 
address location. Since the cache state is I, Proc0 does not change the 
cache state.

(B8) Proc0 send its cache state “Invalid” to its OCP wrapper.

(B9) OCP wrapper of Proc0 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid”, and sends it from its intervention 
response port.

(B10) Proc1 receives “I_RDOW” as a self intervention request from its 
intervention request port and checks its cache state at the requested 
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends its cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid”, and sends it from its intervention 
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port responses (B9) and (B12), generates the intervention 
response “SResp OK, SCohState Invalid” for the coherent memory 
system, and sends it to the intervention port of Memory0.

(B14) OCP wrapper of Memory0 receives the intervention response “SResp 
OK, SCohState Invalid” and sends it to its main response port. 

(B15) Main response port of the OCP wrapper of Memory0 waits for the read 
data.

(B16) Memory0 sends the read data to its main response port.

(B17) The OCP wrapper of Memory0 sends “SResp DVA with SData, 
SCohState Modified” as the main port response.

(B18) SResp merge logic unit in OCP coherence interconnect receives the 
main port response from Memory0. It sends “SResp DVA with SData, 
SCohState Modified” as the main port response to Proc1.



Developer’s Guidelines: OCP Coherent System Architecture Examples 309

OCP-IP Confidential

(B19) Proc1 receives “SResp DVA with SData, SCohState Modified” as the 
main port response. It updates the cache line and changes its cache 
state from SI_to_M to M. The CC_RDOW transaction ends.

Figure 88(b) CC_RDOW Request, Proc1
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(A3) The coherent request serialize/select logic unit in the OCP coherence 
interconnect network sends I_WB to the intervention request port of 
Proc0 as a self-intervention. Since I_WB is not required to be sent to 
other coherent masters as a system intervention, the OCP coherence 
interconnect network does not send I_WB as system intervention 
requests. Note that at this point, I_RDOW from Proc1 has already been 
sent to coherent masters.

(A4) OCP wrapper of Memory0 translates the CC_WB request into an I_WB 
request and sends it to its intervention request port.

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request 
port. The OCP coherence interconnect ignores and drops this request.

(A6) Proc0 receives I_WB as a self intervention request from its intervention 
request port and checks its cache state at the requested address 
location. Since Proc0 already received I_RDOW as a system intervention 
from its intervention request port and updated its cache state, the 
cache state is I. Proc0 changes the cache state from I to MSI_to_I.

(A7) Proc0 sends its cache state, “Invalid,” to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid”, and sends it from its intervention 
response port.

(A9) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port response (A7), generates the intervention response 
“SResp OK, SCohState Invalid” for Memory0, and sends it to the 
intervention port of Memory0.

(A10) OCP wrapper of the Memory0 receives the response “SResp OK, 
SCohState Invalid” from its intervention response port, and cancels 
“Memory Write” to Memory0.

(A11) OCP wrapper of Memory0 generates the intervention response 
“SRespOK, SCohState Invalid” and sends it to its main response port. 
(Note that the value of SResp is implementation dependent: a different 
implementation may generate the response “SResp DVA, SCohState 
Invalid”. )

(A12) OCP wrapper of Memory0 sends “SResp OK, SCohState Invalid” from its 
main response port. Since this is a write transaction, no data is sent 
from its main response port.

(A13) SResp merge logic unit in OCP coherence interconnect receives the 
main port response from Memory0. It sends “SResp OK, SCohState 
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp OK, SCohState Invalid” as the main port 
response. Proc0 changes the cache state from MSI_to_I to I. The 
“CC_WB” transaction ends.
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Figure 89(a) CC_WB Request, Proc0

The behaviors related to the CC_RDOW request from Proc1 are shown in 
Figure 89(b).

(B1) Proc1 sends the Cache Read Own (CC_RDOW) command from its main 
request port.

(B2) The coherent request serialize/select logic unit in the OCP coherence 
interconnect network selects the CC_RDOW command from Proc1 and 
sends this command to the target, Memory 0. 

(B3) The coherent request serialize/select logic unit sends I_RDOW as a self 
intervention request to the intervention request port of the initiator, 
Proc1. It also sends I_RDOW as system intervention requests to all 
other coherent masters, including Proc0.

(B4) OCP wrapper of Memory0 receives the CC_RDOW request from its main 
request port, and sends “Memory Read” speculatively to Memory0. 
Memory0 executes the read.

Cache

OCP Wrapper

Proc0

Cache

OCP Wrapper

Proc1

Memory0 

OCP Coherence 
Interconnect

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

 

Serialize

Coherent Slave
(Snoop Controller)

 Coherent Request 

Serialize/Select Logic

Merge

Coherent Slave
(Snoop Controller)

SResp Merge Logic

M
C

m
d

 C
C

_W
B

A1

A2 A3

MCmd CC_WB

MCmd I_WB (S
elf)

SResp OK

SCohState Invalid

S
R

es
p 

O
K

S
C

oh
S

ta
te

 In
va

lid

Invalid

I -> MSI_to_I

MSI_to_I -> I

A6

A7

A14

A8

A9

A4
A11

A10

OCP Wrapper
(Coherent Memory 
Subsystem)

A12

SResp OK

SCohState Invalid

A5

MCmd I_WB (S
ys)

(Ig
nored/Dropped)

Cancel “Memory Write”

A13

SResp OK

SCohState Invalid



312 Open Core Protocol Specification

OCP-IP Confidential

(B5) OCP wrapper of the Memory0 translates the CC_RDOW request into an 
I_RDOW request and sends it to its intervention request port.

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request 
port. The OCP coherence interconnect ignores and drops it.

(B7) Proc0 receives I_RDOW as a system intervention request from its 
intervention request port and checks its cache state at the requested 
address location. Proc0 changes the cache state from M to I.

(B8) Proc0 send its cache state “Modified” to its OCP wrapper with the data 
of the requested cache line.

(B9) OCP wrapper of Proc0 translates the snoop response “Modified” into 
“SResp DVA with SData, SCohState Modified,” and sends it from its 
intervention response port.

(B10) Proc1 receives I_RDOW as a self intervention request from its 
intervention request port and checks its cache state of the requested 
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends its cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into 
“SResp OK, SCohState Invalid,” and sends it from its intervention 
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the 
intervention port responses (B9) and (B12), generates the intervention 
response “SResp DVA with SData, SCohState Modified” for the coherent 
memory system, and sends it to the intervention port of Memory0.

(B14) SResp merge logic unit in the OCP coherence interconnect generates 
the intervention response “SResp DVA with SData, SCohState Modified” 
for the initiator, Proc1, and sends it to the main port of Proc1. (Note that 
the OCP coherence interconnect can skip (B14), and the modified data 
can be sent at (B17). This is implementation dependent.)

(B15) Proc1 updates its cache and changes the cache state from SI_to_M to M.

(B16) OCP wrapper of Memory0 receives the intervention response “SResp 
DVA with SData, SCohState Modified” and sends it to its main response 
port. 

(B17) Main response port of the OCP wrapper of Memory0 waits for the read 
data.

(B18) Memory0 sends the read data to its main response port.

(B19) The OCP wrapper of Memory0 sends “SResp OK, SCohState Modified” 
as the main port response. (Note that this is implementation dependent: 
the OCP wrapper of Memory0 may also send “SRespDVA with SData, 
SCohState Modified” from its main response port and have the OCP 
coherence interconnect send it to Proc1 at this time, instead of at (B14).)
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(B20) SResp merge logic unit in OCP coherence interconnect receives the 
main port response from Memory0. It ignores/drops the response. The 
CC_RDOW transaction ends.

Figure 89(b) CC_RDOW Request, Proc1
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14 Timing Guidelines

To provide core timing information to system designers, characterize each 
core into one of the following timing categories:

• Level0 identifies the core interface as having been designed without 
adhering to any specific timing guidelines. 

• Level1 timing represents conservative interface timing.

• Level2 represents high performance interface timing.

One category is not necessarily better than another. The timing categories are 
an indication of the timing characteristics of the core that allow core designers 
to communicate at a very high level about the interface timing of the core. 
Table 63 represents the inter-operability of two OCP interfaces.

Table 63 Core Interface Compatibility

X no guarantee

V guaranteed inter-operability with possible performance loss (extra 
latency)

V* high performance inter-operability but some minor changes may be 
required

The timing guidelines apply to dataflow and sideband signals only. There is 
no timing guideline for the scan and test related signals.

      Level0   Level1  Level2

Level0    X      X     X   

Level1    X     V     V

Level2    X     V     V*
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Timing numbers are specified as a percentage of the minimum supported 
clock-cycle (at maximum operating frequency). If a core is specified at 
100MHz and the c2qtime is given as 30%, the actual c2qtime is 3ns.

14.1 Level0 Timing 
Level0 timing indicates that the core developer has not followed any specific 
guideline in designing the core interface. There is no guarantee that the 
interface can operate with any other core interface. Inter-operability for the 
core will need to be determined by comparing timing specifications for two 
interfaces on a per-signal basis.

14.2 Level1 Timing 
Level1 timing indicates that a core has been developed for minimum timing 
work during system integration. The core uses no more than 25% of the clock 
period for any of its signals, either at the input (setuptime) or at the output 
(outputtime). A core interface in this category must not use any of the 
combinational paths allowed in the OCP interface.

Since inputs and outputs each only use 25%, 50% of the cycle remains 
available. This means that a Level1 core can always connect to other Level1 
and Level2 cores without requiring any additional modification.

14.3 Level2 Timing 
Level2 timing indicates that a core interface has been developed for high 
performance timing. A Level2 compliant core provides or uses signals 
according to the timing values shown in Table 64. There are separate values 
for single-threaded and multi-threaded OCP interfaces. The number for each 
signal indicates the percentage of the minimum cycle time at which the signal 
is available, that is the outputtime at the output. setuptime at the input is 
calculated by subtracting the number given from the minimum cycle time. For 
example, a time of 30% indicates that the outputtime is 30% and the 
setuptime is 70% of the minimum clock period.

In addition to meeting the timing indicated in Table 64, a Level2 compliant 
core must not use any combinational paths other than the preferred paths 
listed in Table 65.

There is no margin between outputtime and setuptime. When using Level2 
cores, extra work may be required during the physical design phase of the 
chip to meet timing requirements for a given technology/library.
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Table 64 Level2 Signal Timing

Table 65 Allowed Combinational Paths for Level2 Timing (No Pipelining)

Signal
Single-threaded 
Interface %

Multi-threaded 
Interface %

Multi-threaded 
Pipelined

Control, Status 25 25 25

ControlBusy, StatusBusy 10 10 10

ControlWr, StatusRd 25 25 25

Datahandshake Group
(excluding MDataThreadID)

30 60 30

EnableClk 20 20 20

MDataThreadID n/a 50 30

MRespAccept 50 75 50

MThreadBusy 10 10 50

MThreadID n/a 50 30

Request Group
(excluding MThreadID)

30 60 30

MReset_n, SReset_n 10 10 10

Response Group (excluding 
SThreadID)

30 60 30

SCmdAccept 50 75 50

SDataAccept 50 75 50

SDataThreadBusy 10 10 50

SError, SFlag, SInterrupt, MFlag, 
MError

40 40 40

SThreadBusy 10 10 50

SThreadID n/a 50 30

Core From To

Master SThreadBusy Request Group

SThreadBusy
SDataThreadBusy

Datahandshake Group

Response Group MRespAccept 

Slave MThreadBusy Response Group

Request Group SCmdAccept and
SDataAccept

Datahandshake Group SCmdAccept and
SDataAccept
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Table 66 Allowed Combinational Paths for Level2 Timing (Pipelined) 

Core From To

Master Request Group
Datahandshake Group

SThreadBusy
SDataThreadBusy

Response Group MRespAccept 

Slave Response Group MThreadBusy

Request Group SCmdAccept and
SDataAccept

Datahandshake Group SCmdAccept and
SDataAccept
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15 OCP Profiles

A strength of OCP is the ability to configure an interface to match a core’s 
communication requirements. While the large number of configuration 
options makes it possible to fit OCP into many different applications, it also 
results in multiple implementation possibilities. This chapter provides 
profiles that capture the OCP features associated with standard communi-
cation functions. The pre-defined profiles help map the requirements of a new 
core to OCP configuration guidelines. The expected benefits include:

• Reduced risk of incompatibility when integrating OCP based cores 
originating from different providers

• Reduced learning curve in applying OCP for standard purposes

• Simplified circuitry needed to bridge an OCP based core to another 
communication interface standard

• Improved core maintenance

• Simplified creation of reusable core test benches

Profiles address only the OCP interface, with each profile consisting of OCP 
interface signals, specific protocol features, and application guidelines. For 
cores natively equipped with OCP interfaces, profiles minimize the number of 
interface and protocol options that need to be considered. 



320 Open Core Protocol Specification

OCP-IP Confidential

Two sets of OCP profiles are provided: profiles for new IP cores implementing 
native OCP interfaces and profiles that are targeted at designers of bridges 
between OCP and other bus protocols. Since the other bus protocols may have 
several implementation flavors that require custom OCP parameter sets, the 
bridging profiles are incomplete. The bridging profiles can be used with OCP 
serving as either a master or a slave.

The native OCP profiles are designed for new IP cores implementing native 
OCP interfaces. 

Consensus profiles have been jointly defined by users of OCP and are 
intended to supersede several of the existing profiles. The consensus profiles 
define a unified set of OCP interfaces for system houses, IP providers and EDA 
vendors.

Figure 90 depicts a system built out of diverse IP blocks. Many of the blocks 
can be characterized as peripherals and are often connected with a simple 
peripheral interconnect employing relaxed requirements for latency and 
throughput.

Connecting the peripheral interconnect to the high-speed interconnect 
through the use of a bridge component will likely increase system latency. The 
high-speed interconnect services the processor subsystem including 
processors, co-processors, DMAs, and memories. For these components high 
throughput is a requirement, so they frequently use more advanced 
communication schemes. 

Figure 90 Native Profiles 
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15.1 Consensus Profiles
The profiles in this section define a unified set of OCP interfaces. The first is 
a simple slave profile that is targeted at peripheral modules and 
interconnects. The second and third profiles address components that require 
higher throughput, such as processor subsystem components. 

15.1.1 Simple Slave
This profile is intended for peripheral slaves that favor simple implementation 
over high throughput. Interrupt controllers, timers, and I/O devices shown in 
Figure 90 are typical examples of this kind of slave. The signals and the 
parameters that control them are listed in Table 67. All signals with an M 
prefix are driven by the master while all signals with an S prefix are driven by 
the slave, with the possible exception of MReset_n and SReset_n depending 
on the system.

Table 67 Simple Slave Profile Signals and Parameters 

Signal* Enabling Parameter
Width 
Parameter

Usage

Clk Required Fixed Clock input (page 14)

EnableClk enableclk Fixed Enable interface clock input 
(page 14)

MReset mreset
0/1

Fixed Slave reset input =1
Master reset output is optional 
(page 27)

SReset sreset
0/1

Fixed Master reset input =1
Slave reset output is optional 
(page 28)

Request phase signals

MAddr addr addr_wdth
32 max

Address of the transfer (byte address, 
aligned to the OCP word size)

MCmd Required Fixed Command of the transfer

read_enable Can be 0 for a master that issues only 
write operations

write_enable Can be 0 for a master that only issues 
read operations or non-posted writes

writenonpost_enable Can be 0 for a master that only issues 
read operations or posted writes

MData mdata data_wdth
16/32/64

Write data

MByteEn byteen data_wdth Byte enable

SCmdAccept cmdaccept Fixed Slave accepts the transfer and ends 
the request phase



322 Open Core Protocol Specification

OCP-IP Confidential

* See Section 15.1.4 on page 332 for additional signals

Feature Set
The simple slave profile supports only single accesses, so no burst-related 
signals are used. The accepted commands are IDLE, RD, WR, and WRNP. 
Posted writes only return a response if writeresp_enable is enabled; non-
posted writes always return a response. For non-posted writes the response 
must issue from the receiving slave. When responses are required for posted 
writes (writeresp_enable is enabled), any component between the master 
and the slave (e.g., an interconnect) can provide the response. This process 
represents a trade-off between the potential speed improvements of posted 
writes and the more reliable write completion and error tracking of the non-
posted writes. The allowed responses for SResp are NULL, DVA, and ERR.

If present, the read and write data signals SData and MData must have the 
same width. To simplify the interface, the force_aligned parameter is set to 
1, limiting byte enable patterns on the MByteEn signal to power-of-two in size 
and aligned to that size. A byte enable pattern of all 0s is legal. This means 
that the byte enable patterns generated by simple slave profile masters are 
force-aligned. In addition, slaves using this profile can assume that the 
incoming byte enable patterns are force-aligned. The size of the MByteEn is 2 
bits when data_wdth is 16, 4 bits for a data_wdth of 32, and 8 bits for a 
data_wdth of 64. The allowed MByteEn values for a data_wdth of 32 are 
indicated by the shaded rows in Table 68.

Table 68 MByteEn Patterns for data_wdth = 32 in Simple Slave Profile 

Response phase signals

SData sdata data_wdth
16/32/64

Read data

SResp resp Fixed Slave response to transfer

Additional parameters

endian
little, big, both, 
neutral

All endianness options are allowed but 
the modules are required to state their 
endianness. Little endian is 
recommended (page 51)

force_aligned = 1 Byte enables are power-of-two in size 
and aligned to that size (page 60)

writeresp_enable = 0 
or 1

Controls response to posted write 
(non-posted writes always provide a 
response). 

MByteEn[3] MByteEn[2] MByteEn1] MByteEn[0]

0 0 0 0

0 0 0 1

0 0 1 0

Signal* Enabling Parameter
Width 
Parameter

Usage
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Since resets are usually handled outside of OCP signaling, no module is 
required to have a reset output, but every module interface needs to have a 
reset input. In the OCP signal naming scheme, this requirement means that 
all masters must have SReset enabled and all slaves an MReset input. It is 
optional for slaves to have an SReset signal and for masters to have an MReset 
signal. If the cores do not drive the reset signals, they need to be driven by a 
system-component that generates the reset. The Clk and EnableClk signals 
are required inputs in both masters and slaves and they are driven by a third 
entity (neither the masters nor the slaves). 

Slaves must be able to support the entire feature set defined in this profile. 
Masters do not need to be able to issue all the commands since only one WR, 
RD or WRNP is required. If masters only issue read commands 
(write_enable and writenonpost_enable parameters set to 0), they can 
omit the MData signal and responses to writes (writeresp_enable has to be 
0 in the master parameter list). If a master issues only write commands, the 
SData signal can be omitted. Using these options does not compromise 
interoperability with Simple Slave Profile slaves.

Interoperability Issues
A slave that can accept commands on every cycle can permanently tie 
SCmdAccept high. When configured in this fashion unsupported or otherwise 
problematic commands are accepted, so all slaves would need to accept all 
commands. In case of errors, the master can be notified with the SResp signal 
(ERR).

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

MByteEn[3] MByteEn[2] MByteEn1] MByteEn[0]
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15.1.2 High Speed Profile
The high-speed profile is intended for subsystem components that require 
high throughput, for example, processors, co-processors, DMA engines, and 
memory controllers. The signals for this interface are listed in Table 69. This 
profile adds the burst-related signals MBurstSeq, MBurstLength, MReqLast, 
and SRespLast to improve throughput and the MRespAccept signal to enable 
response-phase flow control. All signals with an M prefix are driven by the 
master while all signals with an S prefix are driven by the slave, with the 
possible exception of MReset_n and SReset_n depending on the system.

Table 69 High Speed Profile Signals and Parameters 

Signal* Enabling Parameter Width Parameter Usage

Clk Required Fixed Clock input (page 14)

EnableClk enableclk Fixed Enable interface clock input 
(page 14)

MReset mreset
0/1

Fixed Slave reset input =1
Master reset output is optional 
(page 27)

SReset sreset
0/1

Fixed Master reset input =1
Slave reset output is optional 
(page 28)

Request phase signals

MAddr addr addr_wdth
64 max

Address of the transfer (byte 
address, aligned to the OCP word 
size) driven by the master (page 14)

MCmd Required

read_enable

write_enable

writenonpost_enable

Fixed Command of the transfer driven by 
the master (page 15)
Can be 0 for a master that issues 
only write operations
Can be 0 for a master that only 
issues read operations or non-
posted writes
Can be 0 for a master that only 
issues read operations or posted 
writes

MData mdata data_wdth
32/64/128

Write data driven by the master 
(page 15)

MByteEn byteen data_wdth Byte enable driven by the master 
(page 17)

MBurstSeq burstseq
burstseq_incr_enable
burstseq_strm_enable
burstseq_wrap_enable

Fixed The address sequence of the burst, 
driven by the master (page 21)

MBurstLength burstlength burstlength_wdth
6 max

Length of the burst, driven by the 
master (page 20)

MReqLast reqlast Fixed Last request in the burst, driven by 
the master (page 22)
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* See Section 15.1.4 on page 332 for additional signals

For this profile the burstprecise parameter is zero, so the MBurstPrecise 
signal is not used in the interface and all bursts are precise.

Feature Set
While the High-Speed Profile shares many features with the Simple Slave 
Profile, the force aligned requirement is eliminated since the attached 
modules can afford more complex interface logic. Two additional features are 
multiple-request multiple-data (MRMD) type bursts and the response accept 
signal (MRespAccept). MRespAccept grants capability to the master to block 
the response flow from the slave if it cannot process new responses anymore. 

Bursts offer higher transfer efficiencies when compared to single transfers by 
introducing atomicity for multiple associated requests. This atomicity 
ensures that requests in the same transaction, i.e. with spatial locality, are 
issued back-to-back. This behavior is crucial when accessing an SDRAM 
memory to attain high throughputs. Since the length of the burst is 
transmitted in the beginning (with MBurstLength) and all bursts are precise 
(MBurstLength value remains constant over the whole burst), further optimi-
zations are possible in the scheduling and arbitration processes. The address 
sequence of the burst is provided by MBurstSeq. Allowed sequences are: 

SCmdAccept cmdaccept Fixed Slave accepts the transfer and 
ends the request phase, driven by 
the slave (page 15)

Response phase signals

MRespAccept respaccept Fixed Master accepts the transfer and 
ends the response phase, driven by 
the master

SData sdata data_wdth
32/64/128

Read data driven by the slave 
(page 16)

SResp resp Fixed Slave response to transfer driven by 
the slave (page 16)

SRespLast resplast Fixed Indicates the last response in the 
burst, driven by the slave (page 22)

Additional parameters

endian
little, big, both, neutral

Modules are required to state their 
endianness. Little endian is 
recommended (page 51)

force_aligned Byte enables are power-of-two in 
size and aligned to that size 
(page 60)

writeresp_enable Posted writes expect a response. 
Can be 0 for a master that
only issues read operations or non-
posted write.

Signal* Enabling Parameter Width Parameter Usage
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Incrementing (INCR) 
The address is incremented with the OCP word size for each transfer

Wrapping (WRAP) 
Like incrementing burst but it does not have to start from the first address 
and the address wraps at the address boundary defined by 
MBurstLength*OCP word size 

Streaming (STRM) 
The address remains constant over the whole burst

MBurstSeq and MBurstLength provide the information needed to generate 
and receive MRMD bursts. Additional information can help simplify 
interconnect and slave design. OCP offers framing signals that can be used by 
the master to identify the last request (MReqLast) and by the slave to identify 
the last response (SRespLast) in the burst. These additional framing signals 
are also part of this profile.

Slaves must support the entire feature set defined in this profile. Masters 
need not be able to issue all the commands since only one WR, RD or WRNP 
is required. If masters only issue read commands (write_enable and 
writenonpost_enable parameters set to 0), they can omit the MData signal 
and responses to writes (writeresp_enable has to be 0 in the master 
parameter list). If a master issues only write commands, SData can be 
omitted. Masters must support at least one of the burst addressing modes.

Interoperability Issues
The force aligned requirement of the simple slave profile and the MRespAccept 
signal and burst features of the high-speed profile present some interopera-
bility problems between the interfaces. A bridge or some other component 
linking simple slave and high-speed profile interfaces needs to break 
transactions with misaligned byte enables (coming from the high-speed 
profile to the simple slave profile) into transactions with legal byte enable 
patterns. A similar process needs to be followed for burst accesses coming 
from a high-speed profile master to a simple slave profile slave. The MRMD 
nature of high-speed profile bursts means that the bridge can ignore the burst 
related signals on the request side, but needs to generate an SRespLast. In 
addition, if Master is High-Speed Profile, the bridge may need to limit the 
number of outstanding requests on the interface or to buffer Simple Slave 
Profile slave responses in case the master de-asserts MRespAccept. If Master 
is Simple Slave Profile, and the slave is High-Speed Profile, the bridge may tie 
MRespAccept asserted.

15.1.3 Advanced High-Speed Profile
The Advanced High-Speed profile, like the High-Speed Profile, is also aimed at 
processor subsystem modules that require high throughput, with added 
capabilities compared to the High-Speed Profile. The Advanced High-Speed 
Profile is targeted at systems which process large amounts of real-time, block-
based data, such as high definition digital TV sets. Signals in the Advanced 
High-Speed Profile interface are listed in Table 70. The Advanced High-Speed 
Profile adds the following signals relative to the High-Speed Profile: 
MDataValid, MBlockHeight, MBlockStride, MBurstSingleReq, SDataAccept, 
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MDataLast, MDataRowLast, MDataByteEn, and SRespRowLast. MReqLast is 
not used in the Advanced High-Speed Profile. In general, all signals with an 
M prefix are driven by the master while all signals with an S prefix are driven 
by the slave. Exceptions to this rule are made for the MReset_n and SReset_n 
signals, which can be driven by other entities, depending on the system.

Table 70 Advanced High-Speed Profile Signals

Name Width Usage

Clk 1 Clock input to masters and slaves

EnableClk 1 Enable interface clock input to masters and 
slaves

MReset (Slaves only) 1 Reset input to slaves

SReset (Masters only) 1 Reset input to masters

Request phase signals

MAddr 64 (max.) Address of the transfer (byte address, aligned 
to the OCP word size)

MCmd 3 Command of the transfer

MData 32, 64, 128 Write data

MDataValid 1 Write data valid

MByteEn 1 Byte enable

MDataByteEn 1 Datahandshake phase write byte enables

MBlockHeight 6 (max) Height of 2D block burst

MBlockStride 32 (max) Address offset between 2D block rows

MBurstSeq 3 The address sequence of the burst

MBurstLength 6 (max) Burst length

MBurstSingleReq 1 Burst uses single request, multiple data (SRMD) 
protocol

MDataLast 1 Last write data in burst

MDataRowLast 1 Last write data in row

SCmdAccept 1 Slave accepts the transfer and ends the 
request phase

Response phase signals

SData 32, 64, 128 Read data

SDataAccept 1 Slave accepts write data

SResp 2 Slave response to transfer

SRespLast 1 Indicates the last response in the burst

SRespRowLast 1 Last response in row

MRespAccept 1 Master accepts the transfer and ends the 
response phase
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Feature Set
With the exception of MReqLast, which is not present in this profile, the 
Advanced High-Speed Profile includes all features already available in the 
High-Speed Profile and includes a number of additional features, discussed 
below.

• Two-dimensional block bursts can be used. This burst sequence allows 
for efficient transfers of block-based data, such as macro-blocks in a 
picture or a video stream. The signals used for this feature are: 
MBlockHeight, MBlockStride, and SRespRowLast. MBurstSeq can also 
use the BLCK value on top of the already allowed INCR, WRAP, and STRM 
encodings.

• The exclusive-OR (XOR) burst sequence is supported. This address 
sequence is required for optimized accesses to some high-performance 
memories such as XDR. There are no additional signals for this feature; 
only the added allowed encoding for MBurstSeq.

• Exclusive reads (MCmd set to RDEX) are supported. Exclusive reads 
provide strong synchronization to access shared resources. There are no 
additional signals for this feature; only the added allowed encoding for 
MCmd.

• A data handshake phase is included to optimize flow control on the write 
transactions. Using this third phase allows the master to decouple the 
generation of the command from the actual emission of data. The signals 
used for this feature are MDataValid, SDataAccept, MDataByteEn, and 
MDataLast.

Single request, multiple data (SRMD) transactions are recommended for high 
bandwidth data transfers. Each transaction is associated to a single 
command independent of the number of data phases in the burst so the use 
rate of the command and address lines can be reduced. It is strongly 
recommended for a master that supports the Advanced High-Speed Profile to 
only issue SRMD commands and to tie its MBurstSingleReq signal to 1. For 
compatibility with the High-Speed Profile, slaves that support the Advanced 
High-Speed Profile are required to support both SRMD and MRMD 
transactions. Slave devices can detect the type of transaction in progress 
based on the MBurstSingleReq signal. MReqLast is not present in the 
Advanced High-Speed Profile since the usage of SRMD transactions makes it 
irrelevant—MReqLast would always be asserted.

Using RDEX
RDEX is used as a synchronization primitive required for hardware support 
of semaphores or read/modify/write sequences. These sequences are 
required when a processor needs to read from a shared resource (registers or 
memories) and then write to the same location in an atomic manner.

Example: Semaphore is used to control a shared memory resource. When a 
processor needs access to this memory, it first reads from a semaphore 
register and writes 1 to the same location using a RDEX/WRNP transaction. 
If the value read was 1, the semaphore was already taken and the processor 
cannot access the resource. In this case the value in the register is still 1. If 
the value read was 0, the semaphore was clear, and the processor can now 
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access the memory. After the RDEX/WRNP, the register value is 1 and other 
processors cannot access the memory. The atomicity of the transaction 
guarantees that no other processor may access the semaphore between the 
read and the write in the transaction, and that only one master can have 
control of the semaphore at any given time.

For transaction atomicity to be guaranteed in the system, RDEX must be 
supported at each arbitration point, starting from the processor and 
continuing down to the last arbitration point before any system target which 
can be used as a protected shared resource. For a regular target, e.g., a simple 
peripheral, RDEX support is not strictly required since the last arbitration 
point takes care of the atomicity requirement, and RDEX can be translated 
into a regular RD in this case. For some more complex targets, e.g., an 
interconnect or a multi-threaded target, RDEX support is mandatory because 
at least one arbitration point exists after this OCP interface.

To correctly support software synchronization primitives, the hardware is 
required to keep the RDEX/WRNP transaction atomic, i.e., ensure that no 
other command to the semaphore can be interleaved between the RDEX 
command and the corresponding write, as specified in the OCP protocol. No 
further action is required on the hardware side—the rest of the sharing 
protocol is handled through software. A master can, in theory, clear the lock 
set by another master, or write to a shared resource it does not have access 
rights to. This would be a violation of the overall system software protocol, and 
would result in incorrect operation, but would not be a violation of the OCP 
protocol.

Potential Interoperability Issues
The force_aligned requirement of the Simple Slave Profile can be worked 
around in the interconnect logic by splitting a non-compliant request, as 
discussed in the High-Speed Profile definition. This problem does not apply to 
transactions between devices that support the High Speed and Advanced 
High Speed Profiles. MRespAccept compatibility between the Simple Slave 
Profile and the Advanced High Speed Profile is solved the same way as for the 
High Speed Profile.

When connecting a master that supports the Advanced High-Speed Profile to 
a slave that supports either the Simple Slave Profile or the High Speed Profile, 
some glue logic is required to translate the transaction into multiple requests. 
The request phase signals are extended to issue the correct number of 
requests, with the exception of addresses which are computed at each phase 
based on the original transaction base address and on the burst sequence. 
When interfacing with Simple Slave Profile devices, all the generated requests 
are stand-alone. In the case of the High-Speed Profile, a multiple request, 
multiple data (MRMD) transaction is issued, including correct generation of 
MReqLast, unless the initial transaction is of an unsupported type, i.e., an 
XOR or BLCK. In the case of an XOR burst, the transaction is split into 
multiple single requests. For a BLCK burst, the glue logic can either issue 
multiple single requests or multiple INCR bursts, one for each line in the 2D 
block.
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When connecting a Simple Slave Profile master to a slave that supports the 
Advanced High-Speed Profile, no glue logic is required for the request group 
signals. MBurstLength shall be tied to 1 and MBurstSeq to INCR on the slave 
interface to make sure all transactions are correctly treated as single 
requests.

A write response to a non-posted write burst shall be issued to the master 
when all responses in the transaction have been received. If at least one 
response in the burst had an SResp value of ERR, it is expected that an error 
response is forwarded to the master. For a response to a posted write 
command, it is acceptable to immediately send a response to the initiator after 
acceptance of the request or after receiving the first response from the slave 
and to drop the next responses, with the drawback that an ERR value for 
SResp in the rest of the transaction would not be detected. This is true for 
both Simple Slave Profile and High-Speed Profile masters connected to an 
Advanced High-Speed Profile slave.

When connected a High-Speed Profile master to an Advanced High-Speed 
Profile slave, the MBurstSingleReq slave input shall be tied to 0 so that all 
transactions are treated as MRMD. All High-Speed Profile burst sequences are 
also supported by the Advanced High-Speed Profile, so no further logic is 
required for the request and response phases. 

The write data phase only exists within the Advanced High-Speed Profile. 
When translating a burst from an Advanced High-Speed Profile master, the 
glue logic must make sure it correctly realigns the data from the data 
handshake phase with the commands passed to the slave. This means that 
the logic must wait for the current data to be available from the master, i.e., 
for MDataValid to be asserted, before passing the associated command to the 
slave so that write data are always part of the request phase.

The RDEX transaction from Advanced High-Speed Profile to Simple Slave 
Profile or High-Speed Profile cannot be treated as an exclusive operation—it 
can only be translated into a regular RD transaction. If an Advanced High-
Speed Profile master connected to a Simple Slave Profile or High-Speed Profile 
slave wishes to perform an exclusive access to a resource, it shall do so using 
other means. For instance, specific dedicated resources can be added to the 
system for inter-processor synchronization purposes. Another possible 
solution is to design the system logic, in interconnect and/or bridges, to 
emulate exclusive access behavior.

Parameter List
Table 71 lists the set of parameters used in the Advanced High-Speed Profile 
that have non-zero values.
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Table 71 List of non-zero parameters in the Advanced High-Speed Profile

Parameter Values Description

burstseq_blck_enable 1 Block burst address sequence (BLCK) enabled

burstseq_incr_enable 1 Incrementing burst address sequence (INCR) 
enabled

burstseq_strm_enable 1 Streaming burst address sequence (STRM) 
enabled

burstseq_wrap_enable 1 Wrapping burst address sequence (WRAP) 
enabled

burstseq_xor_enable 1 Xor burst address sequence (XOR) enabled

endian little, big, 
both, neutral

Used endianness needs to be stated

read_enable 1 Read operations (MCmd=RD) are enabled

readex_enable 1

write_enable 1 Write operations (MCmd=WR) are enabled

writenonpost_enable 1 Non-posted write operations (MCmd=WRNP) 
are enabled

datahandshake 1 All writes (posted and non-posted) expect a 
response

addr 1 Address signal (MAddr) is enabled

addr_wdth 64 (max.) Address signal (MAddr) maximum size is 64 bits

blockheight 1

blockheight_wdth 6 (max)

blockstride 1

blockstride_wdth 32 (max)

burstlength 1 Burst length signal (MBurstLength) is enabled

burstlength_wdth 6 (max) Burst length signal (MBurstLength) maximum 
size is 6 bits

burstseq 1 Burst address sequence signal (MBurstSeq) 
signal enabled

burstsinglereq 1

byteen 1 Byte enable signal (MByteEn) is enabled

cmdaccept 1 Command accept signal (SCmdAccept) is 
enabled

dataaccept 1

datalast 1

datarowlast 1

data_wdth 32, 64, 128 Allowed sizes for data (MData/SData) are 32, 
64, and 128 bits
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15.1.4 Optional Features
Some OCP features are so generic that their specific use is difficult to define 
and so they are listed as optional features. This means that the features are 
not required by the profiles but can still be used in a system dependent way.

The MAddrSpace signal separates the address regions of a module. This 
signal is an extension of the regular address signal and can be used in the 
simple slave, high-speed, and advanced high-speed profiles.

It is sometimes necessary to communicate information about requests and 
responses between the master and the slave, for instance about routing or 
security. For this kind of supplemental information OCP uses the MReqInfo 
signal for the request, and SRespInfo for the response. These signals can be 
used in all three profiles. 

You can transfer information using some of the OCP sideband signals that 
can travel asynchronously from the request or response flow. The signals are 
MError to indicate a master internal error, SError to indicate a slave internal 
error, MFlag for additional information provided by the master, and SFlag for 
additional information provided by the slave. The use of these signals is 
optional in all of the profiles.

Tags and threads are identified using ID-signals. MTagID (request tag) and 
STagID (response tag) are present in the interface if the tags parameter is 
greater than 1. In addition, the advanced high-speed profile needs 
MDataTagID if tags are enabled because of datahandshaking. Similar signals 
exist for threads (MThreadID, SThreadID, and MDataThreadID). They are 
enabled if threads parameter is greater than 1 and the last one if 
datahandshake is used (datahandshake = 1).

enableclk 1 Enable clock signal (EnableClk) is enabled

mdata 1 Write data signal (MData) is enabled

mdatabyteen 1

resp 1 Response signal (SResp) is enabled

respaccept 1 Response accept signal (MRespAccept) is 
enabled

resplast 1 Last response indicator signal (SRespLast) 
enabled

resprowlast 1

sdata 1 Read data signal (SData) is enabled

mreset 0/1 Controls MReset signal: Slaves should have a 
reset input (1), reset output for masters is 
optional (0)

sreset 1/0 Controls SReset signal: Masters should have a 
reset input (1), reset output for slaves is 
optional (0)

Parameter Values Description
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MTagInOrder, STagInOrder, MConnID, MThreadBusy, SDataThreadBusy, 
and SThreadBusy are also optional signals in the high-speed and advanced 
high-speed profiles. For systems that use OCP threads and allow interleaving 
within request phases and data handshake phases, the use of threadbusy 
signals is recommended.

15.1.5 Security
Layered profiles extend the OCP interface as an add-on to any other profile, 
when additional features are required. The Security profile serves as an 
example of this concept.

To protect against software and some selective hardware attacks use the OCP 
interface to create a secure domain across the SOC. The domain might 
include CPU, memory, I/O etc. that need to be secured using a collection of 
hardware and software features such as secured interrupts, and memory, or 
special instructions to access the secure mode of the processor.

The master drives the security level of the request using MReqInfo as a 
subnet. The master provides initiator identification using MConnID.

Figure 91 Security Signal Processing 

Interface Configuration
Table 72 lists the OCP configuration parameters that need to be set along with 
the recommended values. For default values refer to Table 29, “Configuration 
Parameter Defaults,” on page 68.

Master Slave

MReqInfo, MConnID, existing request phase signals

SResp, existing response phase signals

Master Slave

MReqInfo, MConnID, existing request phase signals

SResp, existing response phase signals
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Table 72 Security Parameters 

Implementation Notes
When implementing this profile, consider the following suggestions:

• Define the security request as a named subnet MSecure within MReqInfo, 
for example: subnet MReqInfo M:N MSecure, where M is >= N.

With the exception of bit 0, other bits are optional and the encoding is 
user-defined. Bit 0 of the MSecure field is required and must use the 
specified value. The suggested encoding for the MSecure bits is:

• A special error response is not specified. A security error can be signaled 
with response code ERR.

15.1.6 Additional Profiles
In addition to the consensus profiles, a few additional profiles corresponding 
to typical application needs are defined. Each of the following OCP profiles 
defines one or more applications. The available profiles are:

• Sequential undefined length data flow 

• Register access 

• Block data flow (deprecated)

Each profile addresses distinct OCP interfaces, though most systems 
constructed using OCP will have a mix of functional elements. As different 
cores and subsystems have diverse communication characteristics and 
constraints, various profiles will prove useful at different interfaces within the 
system.

Parameter Value Notes

reqinfo 1 MReqInfo is required

reqinfo_wdth Varies Minimum width is 1

connid 1 To differentiate initiators, if 
required

connid_wdth Varies Minimum width is 1

Bit Value 0 Value 1

0 non-secure secure

1 user mode privileged mode

2 data request instruction request

3 user mode supervisor mode

4 non-host host

5 functional debug
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15.1.7 Sequential Undefined Length Data Flow Profile
This profile is a master type (read/write or read-only, or write-only) interface 
for cores that communicate data streams with memory.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Communication of an undefined amount of data elements to consecutive 
addresses

• Imprecise burst model 

• Aligned command/write data flows, decoupled read data flow

• 32 bit address

• Natural data width

• Optional use of byte enables

• Single thread

• Support for producer/consumer synchronization

Figure 92 Sequential Undefined Length Data Flow Signals Processing 

Interface Configuration
Table 73 lists the OCP configuration parameters that need to be set along with 
the recommended values. For default values refer to Table 29, “Configuration 
Parameter Defaults,” on page 68.

Master Slave

MCmd, MAddr, MBurstLength, (MByteEn)

MData, (MDataByteEn)

SData, SResp

SCmdAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost |  Read}

Master Slave

MCmd, MAddr, MBurstLength, (MByteEn)

MData, (MDataByteEn)

SData, SResp

SCmdAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost |  Read}
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Table 73 Sequential Undefined Length Data Flow Parameter Settings

Implementation Notes
When implementing this profile, consider the following suggestions:

• The core streams data to and from a memory-based buffer at sequential 
addresses. When hitting the boundaries of that buffer a non-sequential 
address is occasionally given. 

MBurstLength equals 2 while the data stream proceeds to sequential 
addresses; MBurstLength equals 1 to indicate that a non-sequential 
address follows, or that the stream terminates.

• Start read transactions as early as possible to hide read latency behind 
ongoing transactions.

• To implement a producer/consumer synchronization scheme (typically 
the case when data written by the IP core to shared memory is read by 
another core in the system), the IP core should issue a synchronization 
request (for instance through an OCP flag interface) only after receiving a 
response that the last write transaction has committed. To accomplish 
this step, perform all write transactions up to the last one as posted 
writes. Make the final write transaction a non-posted write. This will lead 
to reception of a response once the non-posted write transaction has 
committed, i.e., completed at the final destination.

• Error response should lead to an interrupt. 

Parameter Value Notes

addr_width 32

burstlength 1

burstlength_width 2

burstseq 1

byteen 1 (optional) For interfaces that are capable of partial 
access

data_width core specific Choose a data width that is natural to 
the operation of the core

read_enable 1 (optional) For read capable interface only

respaccept 1

write_enable 1 (optional) For write capable interface only

writenonpost_enable 1

writeresp_enable 1
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15.1.8 Register Access Profile
The register access profile offers a control processor the ability to program the 
operation of an attached core. This profile supports programmable register 
interfaces across a wide range of IP cores, such as simple peripherals, DMA 
engines, or register-controlled processing engines. The IP core would be an 
OCP slave on this interface, connected to a master that is a target addressed 
by a control processor.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Address mapped communication, but target decoding is handled 
upstream

• Natural data width (unconstrained, but 32 bits is most common)

• Natural address width (based on the number of internal registers X data 
width)

• No bursting

• Precise write responses indicate completion of write side-effects

• Single threaded

• Optional aligned byte enables for sub-word CPU access

• Optional response flow control

• Optional use of side-band signals for interrupt, error, and DMA ready 
signaling

Figure 93 Register Access Signals Processing
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Interface Configuration
Table 74 lists the OCP configuration parameters that need to be set along with 
the recommended values. For default values refer to Table 29, “Configuration 
Parameter Defaults,” on page 68.

Table 74 Register Access Parameter Settings 

Implementation Notes
When implementing this profile, consider the following suggestions:

• Choose a data width based on the internal register width of the core.

• Choose an address width based on the data width and number of 
registers.

• Design new cores so that all read/write side-effects can be managed 
without using byte enables.

• Design new cores so that registers are at least 32 bit aligned.

• Use force aligned byte enables for cores with side effects in multiple-use 
registers.

• Implement response flow control if convenient.

• Implement sideband signaling towards CPU (interrupts, sideband errors, 
etc.) on this interface, since it is largely controlled by the CPU.

Parameter Value Notes

addr 1 

addr_wdth Varies Num_regs * data_wdth/8

byteen Varies Not suggested for new designs

cmdaccept 1

data_wdth Varies 8, 16, 32 and 64 bits; 32 is preferred

force_aligned 1 Normally read/written by aligned CPU

interrupt Varies For cores with multiple interrupt lines use 
SFlag

mdatainfo 0

mreset Varies

respaccept 1 Include when possible!

serror Varies If core has internally-generated errors

sreset Varies If core receives own (non-interface) reset

writenonpost_enable Varies Not usually needed

writeresp_enable 1 Precise write responses needed for posted 
writes.
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• Select reset options based on the expected use of the core in a larger 
system.

• Use regular Write commands for precise completion, unless the core is 
capable of per-transfer posting decisions, where mixing Write and 
WriteNonPost helps.

15.1.8.1 Block Data Flow Profile (Deprecated)
This profile has been supplanted by the high-speed profile. 

The block data flow profile is designed for master type (read/write, read-only, 
or write-only) interfaces of cores exchanging data blocks with memory. This 
profile is particularly effective for managing pipelined access of defined-length 
traffic (for example, MPEG macroblocks) to and from memory.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Block-based communication (includes a single data element block)

• A single request/multiple data burst model using incremental or a stream 
burst sequence

• De-coupled, pipelined command and data flows

• 32 bit address

• Natural data width and block size

• Use of byte enables

• Single threaded

• Support for producer/consumer synchronization through non-posted 
writes
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Figure 94 Block Data Flow Signal Processing

Interface Configuration
Table 75 lists the OCP configuration parameters that need to be set along with 
the recommended values. For default values refer to Table 29, “Configuration 
Parameter Defaults,” on page 68.

Table 75 Block Data Flow Parameter Settings 

Parameter Value Notes

addr_width 32

burstlength 1

burstlength_width Core specific Choose a burst length that is natural to 
the operation of the core

burstseq 1 If the core is STRM burst capable

burstseq_strm_enable 1 If the core is STRM burst capable

burstsinglereq 1

byteen 1 For interfaces that are capable of 
partial access

data_width Core specific Choose a data width that is natural to 
the operation of the core

dataaccept 1

datahandshake 1

mdatabyteenable 1

read_enable 1 For read capable interface only

respaccept 1

Master Slave

MCmd, MAddr, MBurstLength, MByteEn,

MBurstSeq, MBurstSingleReq

MData, MDataByteEn, MDataValid

SData, SResp

SCmdAccept

SDataAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost |  Read}

Master Slave

MCmd, MAddr, MBurstLength, MByteEn,

MBurstSeq, MBurstSingleReq

MData, MDataByteEn, MDataValid

SData, SResp

SCmdAccept

SDataAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost |  Read}
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Implementation Notes
When implementing this profile, consider the following suggestions:

• Start read transactions as early as possible to minimize read latency 
behind ongoing transactions.

• To implement a synchronization scheme (typically the case when data 
written by the IP core to shared memory is read by another core in the 
system), the IP core should issue a synchronization request (for instance 
through an OCP flag interface) only after receiving a response that the last 
write transaction has committed. To accomplish this step, perform all 
write transactions up to the last one as posted writes. Make the final write 
transaction a non-posted write. This will lead to reception of a response 
once the non-posted write transaction has committed, i.e., completed at 
the final destination.

• Error responses should lead to an interrupt.

15.2 Bridging Profiles
The bridging profiles are designed to simplify or automate the creation of 
bridges to other interface protocols. The bridge can have an OCP master or 
slave port. There are two types:

• The simple H-bus profile is intended to provide a connection through an 
external bridge, for example to a CPU with an AMBA AHB protocol. 

• The X-bus interfaces support cacheable and non-cacheable instruction 
and data traffic between a CPU and the memories and register interfaces 
of other targets. The X-bus profiles might be used with a CPU core that 
internally uses the AMBA AXI protocols, and is externally bridged to OCP.

15.2.1 Simple H-bus Profile
This profile allows you to create OCP master wrappers to native interfaces of 
simple CPU type initiators with multiple-request/multiple-data, read and 
write transactions.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Address mapped communication

• Natural address width

write_enable 1 For write capable interface only

writenonpost_enable 1 See note on synchronization below

writeresp_enable 1 Needed for posted writes

Parameter Value Notes



• Byte enable

• Natural data width

• Constrained burst size

• Single thread

• Caching and similar extensions mapped to MReqInfo or corresponding 
OCP commands

Figure 95 Simple H-Bus Signal Processing

Interface Configuration
Table 76 lists the OCP configuration parameters that need to be set along with 
the recommended values. For default values refer to Table 29, “Configuration 
Parameter Defaults,” on page 68.

Table 76 Simple H-Bus Parameter Settings 

Parameter Value Notes

addr_wdth Varies Use native address width

burstlength 1

burstlength_wdth 5 Only short burst supported

burstprecise 0 MBurstPrecise signal is not part of the 
interface. All bursts are precise

burstseq 1 Subset of burst codes common with 
OCP and CPU

burstseq_wrap_enable 1

byteen 1

data_wdth Varies 8, 16, 32 and 64 bits

force_aligned 1

mreset 1

MCmd = { Idle | Read | ReadEx | Wr }

MCmd, Maddr, Mdata, MBurstLength, MByteEn, MReqInfo, 
MBurstSeq

SCmdAccept

SData, SResp

MRespAccept

Master Slave
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Implementation Notes
When implementing this profile, consider the following suggestions:

• If the CPU’s burst parameters such as data alignment are not supported 
in OCP, such bursts are broken into single transactions.

• All requests have a response.

• If the CPU address and write data are pipelined, the OCP bridge will align 
them.

• CPU specific information is mapped to the MReqInfo field, however, since 
this field is often used for proprietary bits by OCP users, a bit-to-bit 
mapping is not provided. For this field concatenate bit fields starting from 
bit 0. If the in-band field contains control information that has equivalent 
native OCP functionality, map the information to the corresponding OCP 
request. For example, a bit that can be buffered can be mapped to OCP 
posted or non-posted write types.

15.2.2 X-Bus Packet Write Profile
This profile is designed to create OCP master wrappers to native interfaces of 
CPU type initiators with single-request/multiple-data, write-only 
transactions.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Packet type communication

• Natural address width

• Separate command/write data handshake

• Byte enable

• Natural data width

• Multi-thread (blocking)

readex_enable 1 For CPUs with locked access

reqinfo 1

reqinfo_wdth Varies Map CPU-specific in-band info here

reqlast 1 Can be created of burst length

respaccept 1

sreset 1

writeresp_enable 1

Parameter Value Notes
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• Caching and similar extensions mapped to MReqInfo

Figure 96 X-bus Packet Write Signal Processing 

Interface Configuration
Table 77 lists the OCP configuration parameters that need to be set along with 
the recommended values. For default values refer to Table 29, “Configuration 
Parameter Defaults,” on page 68.

Table 77 X-bus Packet Write Parameter Settings 

Parameter Value Notes

addr_wdth Varies Use native address width

burstlength 1

burstlength_wdth 5 Only short burst support

burstprecise 0 MBurstPrecise signal is not part of the 
interface. All bursts are precise

burstseq 1 Subset of burst codes common with OCP 
and CPU

burstseq_strm_enable 1

burstseq_wrap_enable 1

byteen 0 Only databyteen needed for write-only

data_wdth Varies 8, 16, 32 and 64 bits

dataaccept 1

datahandshake 1

Master Slave

MCmd, MAddr, MBurstLength, MReqInfo, MBurstSeq

MData, MDataByteEn

SCmdAccept

SDataAccept

MCmd =
{ Idle | Write | WriteNonPost}

MDataValid

SResp

MRespAccept

Master Slave

MCmd, MAddr, MBurstLength, MReqInfo, MBurstSeq

MData, MDataByteEn

SCmdAccept

SDataAccept

MCmd =
{ Idle | Write | WriteNonPost}

MDataValid

SResp

MRespAccept
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Implementation Notes
When implementing this profile, consider the following suggestions:

• Data ordering among read and write port transactions is the responsibility 
of the CPU. The bridge must consider the read and write ports as single 
master with regard to exclusive access.

• Only precise bursts are supported. If CPU burst parameters do not map 
to OCP, break the burst into single accesses.

• CPU specific information is mapped as in the H-bus profile.

15.2.3 X-Bus Packet Read Profile
This profile helps you create OCP master wrappers for native interfaces of 
CPU type initiators with single-request multiple-data read-only transactions.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Packet type communication

datalast 1 Can be created of burst size

interrupt 0 Interrupts are not part of this interface

mdatabyteen 1

mreset 1

read_enable 0 Write only

reqdata_together Varies A simpler bridge can often be made if 1, 
some performance loss possible

reqinfo 1

reqinfo_wdth Varies Map CPU-specific in-band info here

reqlast 1 Superfluous for single request, datalast 
suffices

respaccept 1

resplast 1

sdata 0

sreset 1

sthreadbusy 0 Blocking threads only

threads Varies Natural number of threads

writenonpost_enable 1

writeresp_enable 1 Needed for posted writes only

Parameter Value Notes
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• Natural address width

• Single-request multiple-data read 

• Byte enable

• Natural data width

• Multi-thread (blocking)

• Caching and similar extensions mapped to MReqInfo

• Write support for ReadEx/Write synchronization

Figure 97 X-bus Packet Read Signal Processing 

Interface Configuration
Table 78 lists the OCP configuration parameters that need to be set along with 
the recommended values. For default values refer to Table 29, “Configuration 
Parameter Defaults,” on page 68.

Table 78 X-bus Packet Read Parameter Settings 

Parameter Value Notes

addr_wdth Varies Use native address width

burstlength 1

burstlength_wdth 5 Only short burst support

burstprecise 0 MBurstPrecise signal is not part of the 
interface. All bursts are precise

Master Slave

SResp, SData, SRespLast, SThreadID

SCmdAccept

MCmd =
{ Idle | Read | ReadEx | Write}

MRespAccept

MData, MDataValid, MDataThreadID

SDataAccept

MCmd, MAddr, MBurstLength, MReqInfo, MThreadID, MBurstSeq

Master Slave

SResp, SData, SRespLast, SThreadID

SCmdAccept

MCmd =
{ Idle | Read | ReadEx | Write}

MRespAccept

MData, MDataValid, MDataThreadID

SDataAccept

MCmd, MAddr, MBurstLength, MReqInfo, MThreadID, MBurstSeq
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Implementation Notes
When implementing this profile, consider the following suggestions:

• Data integrity among read and write port transactions is the responsibility 
of the CPU. The bridge must consider the read and write ports as single 
master with regard to exclusive access. Both transfers in the ReadEx/
Write pair should be issued on the X-bus packet read interface.

• Only precise bursts are supported. If the CPU burst parameters do not 
map to OCP, break the burst into single accesses.

• CPU specific information is mapped as in the H-bus profile.

burstseq 1 Subset of burst codes common with 
OCP and CPU

burstseq_strm_enable 1

burstseq_wrap_enable 1

burstsinglereq 1

byteen 1

data_wdth Varies 8, 16, 32 and 64 bits

force_aligned 0 If CPU alignment is not supported in 
OCP, such bursts are broken into 
single transactions.

interrupt 0 Interrupts are not part of this interface

mreset 1

readex_enable 1

reqinfo 1

reqinfo_wdth Varies Map CPU-specific in-band info here

respaccept 1

resplast 1

sreset 1

sthreadbusy 0 Blocking threads only

threads Varies Natural number of threads

write_enable 1 To support ReadEx

Parameter Value Notes



348 Open Core Protocol Specification

OCP-IP Confidential



OCP-IP Confidential

16 Core Performance

To make it easier for the system integrator to choose cores and architect the 
system, an IP core provider should document a core’s performance character-
istics. This chapter supplies a template for a core performance report on 
page 354, and directions on how to fill out the template.

16.1 Report Instructions
To document the core, you will need to provide the following information:

1. Core name. Identify the core by the name you assigned. 

2. Core ID. Specify the identification of the core inside the system-on-chip. 
The information consists of the vendor code, core code, and revision code.

3. Core is/is not process dependent. Specify whether the core is process-
dependent or not. This is important for the frequency, area, and power 
estimates that follow. 

If multiple processes are supported, name them here and specify 
corresponding frequency/area/power numbers separately for each core if 
they are known.

4. Frequency range for this core. Specify the frequency range that the core 
can run at. If there are conditions attached, state them clearly.

5. Area. Specify the area that the core occupies. State how the number was 
derived and be precise about the units used.

6. Power estimate. Specify an estimate of the power that the core consumes. 
This naturally depends on many factors, including the operations being 
processed by the core. State all those conditions clearly, and if possible, 
supply a file of vectors that was used to stimulate the core when the power 
estimate was made.
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7. Special reset requirements. If the core needs MReset_n/SReset_n asserted 
for more than the default (16 OCP clock cycles) list the requirement.

8. Number of interfaces.

9. Interface information. For each OCP interface that the core provides, list 
the name and type. 

The remaining sections focus on the characteristics and performance of 
these OCP interfaces.

For master OCP interfaces:
a. Issue rate (per OCP cycle for sequences of reads, writes, and 

interleaved reads/writes). State the maximum issue rate. Specify 
issue rates for sequences of reads, writes, and interleaved reads and 
writes.

b. Maximum number of operations outstanding (pipelining support). 
State the number of outstanding operations that the core can support; 
is there support for pipelining.

c. If the core has burst support, state how it makes use of bursts, and 
how the use of bursts affects the issue rates.

d. High level flow-control. If the core makes use of high-level flow control, 
such as full/empty bits, state what these mechanisms are and how 
they affect performance.

e. If multiple threads are present, explain the use of threads.

f. Connection ID support. Explain the use and meaning of connection 
information.

g. Use of side-band signals. For each sideband signal (such as 
SInterrupt, MFlag) explain the use of the signal.

h. If the OCP interface has any implementation restrictions, they need to 
be clearly documented.

For slave OCP interfaces:
a. Unloaded latency for each operation (in OCP cycles). Describe the 

unloaded latency of each type of operation.

b. Throughput of operations (per OCP cycle for sequences of reads, 
writes, and interleaved reads/writes). State the maximum throughput 
of the operations for sequences of reads, writes, and interleaved reads 
and writes.

c. Maximum number of operations outstanding (pipelining support). 
State the number of outstanding operations that the core can support, 
i.e. is there support for pipelining.
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d. Burst support and effect on latency and throughput numbers. If the 
core has burst support, state how it makes use of bursts, and how the 
use of bursts affects the latency and throughput numbers stated 
above.

e. High level flow-control. If the core makes use of high-level flow control, 
such as full/empty bits, state what these mechanisms are and how 
they affect performance.

f. If multiple threads are present, explain the use of threads.

g. Connection ID support. Explain the use and meaning of connection 
information.

h. Use of side-band signals. For each sideband signal (such as 
SInterrupt, MFlag) explain the use of the signal.

i. If the OCP interface has any implementation restrictions, they need to 
be clearly documented.

For every non-OCP interface, you will need to provide all of the same 
information as for OCP interfaces wherever it is applicable.
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16.2 Sample Report

1. Core name flashctrl

2. Core identity 
Vendor code
Core code
Revision code

0x50c5
0x002
0x1

3. Core is/is not process 
dependent

Not

4. Frequency range for this core <100Mhz with NECCBC9-VX library

5. Area 4400 gates
2input NAND equivalent gates

6. Power estimate not available

7. Special reset requirements

8. Number of interfaces 2

9. Interface information:
Name
Type

ip
slave

For master OCP interfaces:

a. Issue rate (per OCP cycle 
for sequences of reads, 
writes, and interleaved 
reads/writes)

b. Maximum number of 
operations outstanding 
(pipelining support)

c. Effect of burst support on 
issue rates

d. High level flow-control

e. Use of threads (if any)

f. Use of connection 
information

g. Use of side-band signals

h. Implementation restrictions
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For slave OCP interfaces:

a. Unloaded latency for each 
operation (in OCP cycles)

Register read or write: 1 cycle. The flash read takes SBFL_TAA 
(read access time). Can be changed by writing 
corresponding register field of emem configuration register.
The flash write operation takes about 2000 cycles since it 
has to go through the sequence of operations - writing 
command register, reading the status register twice.

i. Throughput of operations 
(per OCP cycle for 
sequences of reads, writes, 
and interleaved reads/
writes)

No overlap of operations therefore reciprocal of latency.

j. Maximum number of 
operations outstanding 
(pipelining support)

No pipelining support.

k. Effect of burst support on 
latency and throughput 
numbers

No burst support.

l. High level flow-control No high-level flow-control support.

m. Use of threads (if any) No thread support.

n. Use of connection 
information

No connection information support.

o. Use of side-band signals Reset_n, Control, SError. Control is used to provide additional 
write protection to critical blocks of flash memory.
SError is used when an illegal width of write is performed. 
Only 16 bit writes are allowed to flash memory.

p. Implementation restrictions

For every non-OCP interface
Provide all of the same 
information as for OCP 
interfaces wherever it is 
applicable.

Hitachi flash card HN29WT800
Only 1 flash ROM part is supported, therefore the CE_N is 
hardwired on the board.
The ready signal RDY_N, is not used since not all parts 
support it.
For the BYTE_N signal, only 16-bit word transfers are 
supported
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16.3 Performance Report Template
Use the following template to document a core.

1. Core name

2. Core identity 
Vendor code
Core code
Revision code

3. Core is/is not process 
dependent

4. Frequency range for this core

5. Area

6. Power estimate

7. Special reset requirements

8. Number of interfaces

9. Interface information:
Name
Type

For master OCP interfaces:

a. Issue rate (per OCP cycle 
for sequences of reads, 
writes, and interleaved 
reads/writes)

b. Maximum number of 
operations outstanding 
(pipelining support)

c. Effect of burst support on 
latency and throughput 
numbers

d. High level flow-control

e. Use of threads (if any)

f. Use of connection 
information

g. Use of side-band signals

h. Implementation restrictions
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For slave OCP interfaces:

a. Unloaded latency for each 
operation (in OCP cycles)

i. Throughput of operations 
(per OCP cycle for 
sequences of reads, writes, 
and interleaved reads/
writes)

j. Maximum number of 
operations outstanding 
(pipelining support)

k. Effect of burst support on 
latency and throughput 
numbers

l. High level flow-control

m. Use of threads (if any)

n. Use of connection 
information

o. Use of side-band signals

p. Implementation restrictions

For every non-OCP interface
Provide all of the same 
information as for OCP 
interfaces wherever it is 
applicable.
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17 Compliance

This section contains the OCP compliance checks that can help you create 
checking solutions in the language and tool of your choice.

The guidelines listed in this section are based on the “Specification” and 
“Guidelines” parts of this document and allow you to verify an IP/Verification 
IP (VIP) for OCP compliance. In all cases, “Part I, Specification” is the definitive 
reference. Any references made to “Part II, Guidelines” are not definitive as 
Part I supersedes the guidelines.

For a core to be considered OCP compliant it must satisfy the compliance 
definition as described in Section 1.2 on page 3. 

17.1 Configuration Compliance

17.1.1 Interface Configuration
The main challenge in developing an OCP VIP lies in accounting for the high 
degree of configurability of OCP. Figure 98 shows the different inputs that can 
affect OCP configurability. To properly define the OCP interfaces of an IP/VIP, 
consider the following contexts.

Open System Context
For an open system, it must be possible to setup all of the OCP interfaces 
with a file using the <core>_rtl.conf syntax, which is required for OCP 
compliance. Fixed configuration IP/VIP must be delivered with a 
core_rtl.conf file describing the configuration. The metadata properties for 
this are described in Chapter 8.
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Configurable IP/VIP supporting multiple OCP configurations must 
support the setup of any configuration using a <core>_rtl.conf file. The 
mechanisms used to fix the configuration must provide a method for 
generating a core_rtl.conf file that represents the fixed configuration and 
can be used to configure the IP/VIP directly. 

For IP providers <core>_rtl.conf generation likely occurs during the IP 
generation step. When the IP code is generated based on configuration, 
and other settings in the GUI, the <core>_rtl.conf file is generated along 
with the IP.

Closed System Context
In a closed system, the verification of an IP/VIP with one or more OCP 
interfaces may be driven from a <core>_rtl.conf file. A vendor is free to 
implement any other solution. For example, a VERA verification 
environment could use a VERA object to control the OCP stimuli 
generators instead of a <core>_rtl.conf file.

If the IP/VIP is being developed in a closed system for delivery in an open 
system context, then the verification must include the <core>_rtl.conf files 
and any applicable <core>_rtl.conf generators that are delivered with the 
IP/VIP. 

17.1.2 Configuration Parameter Extraction
Depending on the system context, the VIP must extract the OCP 
configuration parameters from the <core>_rtl.conf file (open) or from any 
alternate solution (closed). Parameters with indeterminate values must be 
retrieved using the configuration parameter defaults summarized in 
Table 29, “Configuration Parameter Defaults,” on page 68 (Table 22 of the 
OCP 2.0 Specification). Some parameters are required in certain 
configurations, and for those, no default is specified. For example: 
addr_wdth must always be specified if addr == 1.

17.2 Protocol Compliance
Once all the OCP configuration parameters are known, illegal OCP 
configurations must be flagged. Chapter 19 contains compliance checks 
for the configuration parameters. Chapter 4 contains most of the cross-
constraints. For example: if readex_enable is set to 1, write_enable or 
writenonpost_enable must be set to 1.

17.2.1 Select the Relevant Checks
Based on the OCP configuration parameters, select a subset of the checks 
in the VIP OCP library. This subset is used for the actual verification. If a 
signal used by a check is not configured in the OCP interface and if no 
other tie-off value is specified, Table 16, “OCP Signal Configuration 
Parameters,” on page 31 (Table 12 of the OCP 2.0 Specification) specifies 
the inferred default tie-off values. For example, the MBurstPrecise default 
tie-off value is 1 or precise.
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Check the compliance of the DUT OCP interfaces using static or dynamic 
verification techniques described in the next section

Figure 98 OCP Configurability 

17.3 Verification Techniques
The verification guidelines are valid for developers using static or dynamic 
verification methods. This section provides an overview of static and dynamic 
verification methods, along with guidance on how these checks can be used 
to support these verification efforts.

17.3.1 Dynamic Verification
Dynamic verification methodology consists of:

• Driving a set of stimuli through the OCP interface into the DUT.
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• Using a protocol checker on the VIP monitor traces of OCP interface 
activity to make sure that the protocol is not violated. 

• Assessing the quality of the stimuli using functional and code coverage.

The OCP configuration parameters determine which protocol checks must be 
active and how the OCP functional coverage is defined.

Stimuli
Because of the degree of difficulty of defining a golden set of stimuli for any 
OCP interface configuration, you will need to implement a smart and efficient 
set of stimuli. This may be accomplished using constraint-driven random 
stimuli generation. The quality of the stimuli must be assessed using both 
functional and code coverage as described below.

Protocol Checks
The protocol checker is a passive component that monitors a specific set of 
OCP configuration parameters to determine whether the OCP protocol is 
violated. The protocol checker can be written in a variety of languages 
including HDL, PSL, SVA, E, NSCa, or VERA. The protocol checker must be 
instantiated on each OCP interface of the DUT.

To allow this document to be easily referenced, the names of the protocol 
checks must match the names given to the compliance checks described in 
this document.

Functional Coverage
Measure the quality of the applied stimuli. The target is 100% functional 
coverage. Run code coverage on the RTL to determine whether there are any 
verification holes such as uncovered FSM states or missed branches. Based 
on the code coverage analysis, additional coverage metrics may be required.

The guidelines for OCP functional coverage are provided in Chapter 20. Any 
additional coverage metrics, based on code-coverage analysis, are design 
dependent and are out of the scope of this document.

17.3.2 Static Verification
The static verification approach is also referred to as formal verification and 
relies on the following key elements:

• OCP protocol assertions (or protocol checkers)

• OCP protocol constraints (optional)

• OCP functional coverage

This approach uses a formal tool to prove that, given the stimulus limits 
defined by the OCP protocol constraints, the OCP interface of the DUT never 
violates OCP protocol assertions. The formal proof may be exhaustive (the 
assertions are never violated) or bounded (up to a certain depth of the state 
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space the assertions are never violated). Stimuli are not needed; instead the 
tool relies on the 'all acceptable stimuli' definitions provided by the OCP 
protocol constraints. 

The OCP configuration parameters determine:

• Which protocol assertions must be active.

• How the functional coverage must be defined.

• Which protocol constraints must be active.

Protocol Assertions
Formal verification revolves around taking the protocol assertions and 
attempting to prove that they are never violated. If a violation is found, the 
formal tool provides a test sequence that illustrates the violation on the 
design. The assertions can be written in different languages such as HDL, PSL 
or SVA. 

To allow this document to be easily referenced, the names of the assertions 
must match the names given to the compliance checks described in this 
document.

Protocol Constraints
To place bounds on the stimuli that a formal engine must consider, the design 
must be connected to protocol constraints or some form of generator 
description. Constraints can be specified using the same language as is used 
for protocol assertions, typically in HDL, PSL, SVA, or OVA.

Protocol constraints are not provided and must be obtained or created for use 
with formal tools. Constraints must be specific enough to prevent invalid test 
sequences that can lead to false negative test results (as indicated by protocol 
assertion failures) but not so specific that they prevent valid test sequences. 
The latter situation can lead to false positive test results implied by protocol 
assertion success over an incomplete set of test sequences.

Using functional coverage, false positive results can be checked, however, the 
false negatives cannot be checked as easily.

Functional Coverage
You must insure that all of the protocol assertions are verified to a reasonable 
extent, and that the protocol constraints are sound. To accomplish this, some 
functional coverage must be added as a function of the OCP configuration 
parameters. The functional coverage definition should cover:

• Which assertions warrant exhaustive proofs

• Which assertions are ok with just bounded proofs, at what depth

• Detect and correct an over-constrained environment

The guidelines for the OCP functional coverage are described in Chapter 20.
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18 Protocol Compliance Checks

The compliance checks listed in this chapter are extracted from the OCP 
Specification and are intended to serve as guidelines to verify an IP for OCP 
compliance. In all cases “Part I, Specification” is the definitive reference. 

The compliance check names have been created using the following template:

<hierarchy>_<check type>_<critical signal>_<extra details>

In which:

<hierarchy> signal, request, datahs, response, burst, transfer, rdex

<check type> valid, hold, value, exact, phase_order, lock_release,
sequence, order, reorder

<critical signal> (optional) any OCP signal name that is impacted by the
compliance check

<extra details> a short additional explanation

18.1 Activation Tables
Tables 79–85 list the parameters needed for each check to be initiated. The 
following assumptions are made with respect to these tables:

• An understanding of how a combination of these parameters can lead to 
an illegal configuration.

• The tables only show the minimum parameters needed for a check to be 
fired. Each configuration needs the parameters defined for each check 
plus the parameters needed to make it a legal configuration. For example, 
a check for INCR bursts would need some command (read_enable, 
write_enable, etc.) parameters defined to test the check.
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Table 79 Dataflow Signal Checks 

Name Activation Parameters

1.1.1 signal_valid_<signal>_when_reset_inactive
MCmd    

MDataValid
MThreadBusy
SDataThreadBusy
SResp
SThreadBusy

-
datahandshake
mthreadbusy
sdatathreadbusy
resp
sthreadbusy

1.1.2 request_valid_<signal> 
MAddr
MAddrSpace
MAtomicLength
MBlockHeight
MBlockStride
MBurstLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MByteEn
MConnID
MReqLast
MThreadID
SCmdAccept

addr
addrspace
atomiclength
blockheight
blockstride
burstlength
burstprecise
burstseq
burstsinglereq
byteen
connid
reqlast
threads > 1
cmdaccept

1.1.3 datahs_valid_<signal> 
MDataByteEn

MDataLast
MDataThreadID
SDataAccept

mdatabyteen
datalast
datahandshake & threads > 1
dataaccept

1.1.4 response_valid_<signal> 
MRespAccept
SRespLast
SThreadID

respaccept
resplast
resp & threads > 1

1.1.5 request_valid_MTagInOrder Taginorder

1.1.6 response_valid_STagInOrder resp & taginorder

1.1.7 request_valid_MTagID_when_MTagInOrder_zero tags > 1

1.1.8 
datahs_valid_MDataTagID_when_MTagInOrder_zero

datahandshake & tags > 1

1.1.9 response_valid_STagID_when_STagInOrder_zero resp & tags > 1
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Table 80 Dataflow Phase Checks 

Name Activation Parameters

1.2.1 request_exact_SThreadBusy sthreadbusy & sthreadbusy_exact
& ~sthreadbusy_pipelined

1.2.2 request_pipelined_SThreadBusy sthreadbusy & sthreadbusy_exact
& sthreadbusy_pipelined

1.2.3 request_hold_<signal> 
MAddr
MAddrSpace
MAtomicLength
MBlockHeight
MBlockStride
MBurstLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MByteEn
MCmd
MConnID
MData

MDataInfo

MReqInfo
MReqLast
MThreadID

cmdaccept & addr
cmdaccept & addrspace
cmdaccept & atomiclength
cmdaccept & blockheight
cmdaccept & blockstride 
cmdaccept & burstlength
cmdaccept & burstprecise
cmdaccept & burstseq
cmdaccept & burstsinglereq
cmdaccept & byteen
cmdaccept
cmdaccept & connid
cmdaccept & mdata

& !datahandshake
cmdaccept & mdatainfo

& !datahandshake
cmdaccept & reqinfo
cmdaccept & reqlast
cmdaccept & threads > 1

1.2.4 request_value_MCmd_<command> 
BCST
RDL
WRC
RD
RDEX
WR
WRNP

!broadcast_enable
!rdlwrc_enable
!rdlwrc_enable
!read_enable
!readex_enable
!write_enable
!writenonpost_enable

1.2.5 request_value_<signal>_word_aligned
MAddr
MBlockStride

addr
blockstride

1.2.6 request_value_<signal>_0x0
MAtomicLength
MBurstLength
MBlockHeight

atomiclength
burstlength
blockheight
blockstride

1.2.7 request_value_MBurstSeq_<sequence>
BLCK
DLFT1
DLFT2
INCR
STRM
UNKN
WRAP
XOR

burstlength & !burstseq_blck_enable
burstlength & !burstseq_dflt1_enable
burstlength & !burstseq_dflt2_enable
burstlength & !burstseq_incr_enable
burstlength & !burstseq_strm_enable
burstlength & !burstseq_unkn_enable
burstlength & !burstseq_wrap_enable
burstlength & !burstseq_xor_enable

1.2.8 request_value_MByteEn_force_aligned byteen & force_aligned

1.2.9 request_value_MThreadID threads > 1
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1.2.10 datahs_exact_SDataThreadBusy datahandshake & sdatathreadbusy & 
sdatathreadbusy_exact & 
~sdatathreadbusy_pipelined

1.2.11 datahs_pipelined_SDataThreadBusy datahandshake & sdatathreadbusy & 
sdatathreadbusy_exact & 
sdatathreadbusy_pipelined

1.2.12 datahs_hold_<signal> 
MData

MDataByteEn

MDataInfo

MDataThreadID

MDataValid
MDataLast

dataaccept & mdata
& datahandshake

mdatabyteen & dataaccept
& datahandshake

dataaccept & mdatainfo
& datahandshake

datahandshake & threads > 1
& dataaccept

dataaccept & datahandshake
datalast & dataaccept

& datahandshake

1.2.13 datahs_value_MDataByteEn_force_aligned Mdatabyteen & datahandshake & 
force_aligned

1.2.14 datahs_value_MDataThreadID datahandshake & threads > 1

1.2.15 response_exact_MThreadBusy resp & mthreadbusy & 
mthreadbusy_exact & 
~mthreadbusy_pipelined

1.2.16 response_pipelined_MThreadBusy resp & mthreadbusy & 
mthreadbusy_exact & 
mthreadbusy_pipelined

1.2.17 response_hold_<signal>
SData

SDataInfo
SResp
SRespInfo
SRespLast
SThreadID

respaccept & sdata & resp
& (read_enable | 
readex_enable | rdlwrc_enable)

respaccept & sdatainfo
respaccept & resp
respaccept & resp & respinfo
respaccept & resp & resplast
respaccept & resp & threads > 1

1.2.18 response_value_SResp_FAIL_without_WRC resp & rdlwrc_enable

1.2.19 response_value_SThreadID resp & threads > 1

1.2.20 request_hold_MTagInOrder cmdaccept & taginorder & tags > 1

1.2.21 response_hold_STagInOrder resp & respaccept & taginorder 
& tags > 1

1.2.22 request_hold_MTagID_when_MTagInOrder_zero cmdaccept & tags > 1

1.2.23 
datahs_hold_MDataTagID_when_MTagInOrder_zero

datahandshake & dataaccept 
& tags > 1

1.2.24 response_hold_STagID_when_STagInOrder_zero resp & respaccept & tags > 1

1.2.25 request_value_MTagID_when_MTagInOrder_zero tags > 1

1.2.26 datahs_value_MTagID_when_MTagInOrder_zero datahandshake & tags > 1

Name Activation Parameters
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Table 81 Dataflow Burst Checks 

1.2.27 response_value_STagID_when_STagInOrder_zero resp & tags > 1

1.2.28 
datahs_order_MDataTagID_when_MTagInOrder_zero

burstlength & datahandshake
& tags > 1

1.2.29 response_reorder_STagID_tag_interleave_size burstsinglereq & resp & tags > 1

1.2.30 response_reorder_STagID_overlapping_addresses resp & tags > 1 
& (addr | addrspace | byteen)

Name Activation Parameters

1.3.1 burst_hold_MBurstLength_precise burstlength

1.3.2 burst_hold_<signal> 
MAddrSpace
MAtomicLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MCmd
MConnID
MReqInfo
SRespInfo

burstlength & addrspace
burstlength & atomiclength
burstlength & burstprecise
burstseq & burstlength
burstlength & burstsinglereq
burstlength
burstlength & connid
burstlength & reqinfo
burstlength & respinfo

1.3.3 burst_hold_<signal>_BLCK
MBlockHeight 

MBlockStride

burstlength & burstseq_blck_enable
& burstseq & blockheight

burstlength & burstseq_blck_enable
& burstseq & blockstride

1.3.4 burst_hold_<signal>_STRM 
MByteEn    

MDataByteEn

burstlength & burstseq_strm_enable
& byteen & burstseq

burstlength & burstseq_strm_enable
& datahandshake 
& mdatabyteen & burstseq

1.3.5 burst_phase_order_reqdata_together reqdata_together & datahandshake

1.3.6 burst_sequence_MAddr_BLCK burstlength & addr
& burstseq_blck_enable & burstseq

1.3.7 burst_sequence_MAddr_INCR burstlength & addr
& burstseq_incr_enable & burstseq

1.3.8 burst_sequence_MAddr_STRM burstlength & addr & 
burstseq_strm_enable & burstseq

1.3.9 burst_sequence_MAddr_WRAP burstlength & burstseq_wrap_enable & 
addr & burstseq

1.3.10 burst_sequence_MAddr_XOR burstlength & burstseq_xor_enable & 
addr & burstseq

Name Activation Parameters
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1.3.11 burst_value_<signal>_<sequence>
MByteEn STRM

MDataByteEn STRM

MByteEn DFLT2

MDataByteEn DFLT2

burstlength & burstseq_strm_enable 
& byteen & burstseq

burstseq & burstseq_strm_enable 
& mdatabyteen & datahandshake

burstlength & burstseq_dflt2_enable 
& byteen & burstseq

burstseq & burstseq_dflt2_enable 
& mdatabyteen & datahandshake

1.3.12 burst_value_MAddr_INCR_burst_aligned burstlength & burstseq_incr_enable & 
burst_aligned & burstseq

1.3.13 burst_value_MAddr_<sequence>_no_wrap
INCR

BLCK 

burstlength 
& burstseq_incr_enable & addr

burstlength 
& burstseq_blck_enable & addr

1.3.14 burst_value_MBurstLength_<sequence>
WRAP 

XOR

burstlength & burstseq &
burstseq_wrap_enable

burstlength & burstseq &
burstseq_xor_enable

1.3.15 burst_value_MBurstLength_INCR_burst_aligned burstlength & burstseq_incr_enable & 
burst_aligned & burstseq

1.3.16 burst_value_MBurstPrecise_<sequence>
WRAP 

XOR

BLCK

burstprecise & burstseq_wrap_enable
& burstlength & burstseq

burstprecise & burstseq_xor_enable
& burstlength & burstseq

burstprecise & burstseq_blck_enable
& burstlength & burstseq

1.3.17 burst_value_MBurstPrecise_INCR_burst_aligned burstaligned & burstprecise & 
burstseq_incr_enable & burstseq

1.3.18 burst_value_MBurstPrecise_SRMD burstprecise & burstsinglereq

1.3.19 burst_value_MBurstSeq_UNKN_SRMD burstsinglereq & burstreq & 
burstseq_unkn_enable

1.3.20 burst_value_MCmd_<command>
RDEX 
RDL
WRC

burstlength & readex_enable
burstlength & rdlwrc_enable
burstlength & rdlwrc_enable

1.3.21 burst_value_MReqLast_MRMD reqlast

1.3.22 burst_value_MReqLast_SRMD Reqlast & burstsinglereq

1.3.23 burst_value_MReqRowLast_MRMD mreqlast &mreqrowlast

1.3.24 burst_value_MReqRowLast_SRMD mreqlast &mreqrowlast

1.3.25 burst_value_MDataLast_MRMD datalast & mdata

1.3.26 burst_value_MDataLast_SRMD datalast & mdata

1.3.27 burst_value_MDataRowLast_MRMD mdatalast & mdatarowlast

Name Activation Parameters
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Table 82 Dataflow Transfer Checks 

Table 83 Dataflow ReadEx Checks 

1.3.28 burst_value_MDataRowLast_SRMD mdatalast & mdatarowlast

1.3.29 burst_value_SRespLast_MRMD resplast & resp

1.3.30 burst_value_SRespLast_SRMD resplast & resp & burstsinglereq

1.3.31 burst_value_SRespRowLast_MRMD sresplast & sresprowlast

1.3.32 burst_value_SRespRowLast_SRMD sresplast & sresprowlast

1.3.33 burst_hold_MTagID_when_MTagInOrder_zero burtstlength & tags > 1

1.3.34 burst_hold_MTagInOrder burstlength & tags > 1 & taginorder

Name Activation Parameters

1.4.1 transfer_phase_order_datahs_before_request_begin datahandshake

1.4.2 transfer_phase_order_datahs_before_request_end datahandshake

1.4.3 transfer_phase_order_response_before_request_begin resp

1.4.4 transfer_phase_order_response_before_request_end resp

1.4.5 transfer_phase_order_response_before_datahs_begin resp & datahandshake

1.4.6 transfer_phase_order_response_before_datahs_end resp & datahandshake

1.4.7 transfer_phase_order_response_before_last_datahs_begin 
_SRMD_wr

resp & datahandshake
& burstsinglereq

1.4.8 transfer_phase_order_response_before_last_datahs_end_ 
SRMD_wr

resp & datahandshake
& burstsinglereq

1.4.9 transfer_phase_order_reqdata_together_MRMD reqdata_together
& burstsinglereq

Name Activation Parameters

1.5.1 rdex_hold_<signal>
MAddr
MAddrSpace
MByteEn
MDataByteEn)

readex_enable & addr
readex_enable & addrspace
readex_enable & byteen
readex_enable & mdatabyteen & 
datahandshake

1.5.3 rdex_lock_release_no_burst_allowed burstlength & readex_enable

Name Activation Parameters



372 Open Core Protocol Specification

OCP-IP Confidential

Table 84 Sideband Checks 

Table 85 Connection Protocol Checks

Name Activation Parameters

1.6.1 signal_valid_<signal>
MReset_n
SReset_n

mreset
sreset

1.6.2 signal_valid_<signal>_when_reset_inactive
ControlBusy  
ControlWr
MError
SError
SInterrupt
StatusBusy
StatusRd

controlbusy
controlwr
merror
serror
interrupt
statusbusy
statusrd

1.6.3 signal_hold_<signal>_16_cycles
MReset_n
SReset_n

mreset
sreset

1.6.4 signal_hold_Control_after_reset control

1.6.5 signal_hold_Control_2_cycles control

1.6.6 signal_hold_Control_ControlBusy_active controlbusy

1.6.7 signal_hold_ControlWr_after_reset controlwr

1.6.8 signal_value_ControlWr_Control_transitioned control & controlwr

1.6.9 signal_value_ControlWr_ControlBusy_active controlbusy & controlwr

1.6.10 signal_hold_ControlWr_2_cycle controlwr

1.6.11 signal_value_ControlBusy controlwr & controlbusy

1.6.12 signal_hold_StatusRd_2_cycles statusrd

1.6.13 signal_value_StatusRd_StatusBusy_active statusrd & statusbusy

Name Activation Parameters

1.7.1 signal_valid_<signal>
MConnect
SConnect
SWait

connection 

1.7.2 signal_hold_MConnect_2_cycles connection

1.7.3 
signal_value_MCmd_MConnect_not_connected

connection

1.7.4 signal_order_MConnect_transaction connection

1.7.5 signal_value_SWait_MConnect_stable_state connection 

1.7.6 signal_value_SConnect_MConnect_connected connection

1.7.7 signal_value_SConnect_MConnect_connected connection

1.7.8 signal_value_MConnect_ConnectCap connection

1.7.9 signal_value_SConnect_ConnectCap connection

1.7.10 signal_value_SWait_ConnectCap connection
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18.2 Compliance Checks

18.2.1 Dataflow Signals Checks

Rule 1.1.1 signal_valid_<signal>_when_reset_inactive

When reset is inactive, the following signals should never have an X or Z value 
on the rising edge of the OCP clock:

MCmd MDataValid MThreadBusy
SDataThreadBusy SResp SThreadBusy

Rule 1.1.2 request_valid_<signal>
The following signals should never have an X or Z value on the rising edge of 
the OCP clock during a request phase:

MAddr MAddrSpace MAtomicLength
MBurstLength MBurstPrecise MBurstSeq
MBurstSingleReq MByteEn MConnID
MReqLast MThreadID SCmdAccept
MBlockHeight MBlockStride MReqRowLast

MBlockHeight and MBlockStride can be invalid for non-BLCK requests during 
the request phase.

Protocol hierarchy Reset activity

Signal group Dataflow 

Critical signals
MCmd, MDataValid, MThreadBusy, SDataThreadBusy, SResp, 
SThreadBusy

Assertion type X, Z

Reference Section 4.3.3.1 on page 46
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If datahandshake=1 and mdatabyteen=1 then MByteEn can be invalid for 
write accesses during the request phase 

Rule 1.1.3 datahs_valid_<signal>
The following signals should never have an X or Z value on the rising edge of 
the OCP clock during a datahandshake phase:

MDataByteEn MDataLast MDataRowLast
MDataThreadID SDataAccept

Rule 1.1.4 response_valid_<signal>
The following signals should never have an X or Z value on the rising edge of 
the OCP clock during a response phase:

MRespAccept SRespLast SRespRowLast
SThreadID

Protocol hierarchy Request phase

Signal group Dataflow

Critical signals

MAddr, MAddrSpace, MAtomicLength, MBurstLength, 
MBurstPrecise, MBurstSeq, MBurstSingleReq, MByteEn, 
MConnID, MReqLast, MThreadID, SCmdAccept, 
MBlockHeight, MBlockStride, MReqRowLast

Assertion type X, Z

References
Section 4.3.3.1 on page 46
Section 12.1.2.1 on page 215

Protocol hierarchy Datahandshake

Signal group Dataflow

Critical signals
MDataByteEn, MDataLast, MDataRowLast, MDataThreadID, 
SDataAccept

Assertion type X, Z

Reference
Section 4.3.3.1 on page 46
Section 12.1.2.3 on page 217

Protocol hierarchy Response

Signal group Dataflow

Critical signals MRespAccept, SRespLast, SRespRowLast, SThreadID

Assertion type X, Z

Reference
Section 4.3.3.1 on page 46
Section 12.1.2.2 on page 216
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Rule 1.1.5 request_valid_MTagInOrder
MTagInOrder should not be X/Z during the request phase.

Rule 1.1.6 response_valid_STagInOrder
STagInOrder should not be X/Z during the response phase.

Rule 1.1.7 request_valid_MTagID_when_MTagInOrder_zero
If MTagInOrder is 0 during the request phase, MTagID should not be X/Z 
during the request phase.

Protocol hierarchy Request

Signal group Dataflow - tag extensions

Critical signals MTagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals MTagID, MTagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232
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Rule 1.1.8 datahs_valid_MDataTagID_when_MTagInOrder_zero
If datahandshake is active and MTagInOrder is 0 (during the request phase), 
MDataTagID should not be X/Z during the datahandshake phase.

Rule 1.1.9 response_valid_STagID_when_STagInOrder_zero
If STagInOrder is 0 during the request phase, STagID should not be X/Z 
during the response phase.

18.2.2 DataFlow Phase Checks

Rule 1.2.1 request_exact_SThreadBusy
If sthreadbusy_exact = 1 and sthreadbusy_pipelined = 0, when a given 
slave thread is busy, the master must stay idle on this thread.

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, MTagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID, STagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Request 

Signal group Dataflow - thread extensions

Critical signals MCmd

Assertion type Value

References
Section 4.3.2.4 on page 44
Section 12.5.1 on page 233
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Rule 1.2.2 request_pipelined_SThreadBusy
If sthreadbusy_exact = 1 and sthreadbusy_pipelined = 1, and an 
SThreadbusy bit was set to 1 in the prior cycle, the master cannot present a 
request on a thread in the current cycle.

Rule 1.2.3 request_hold_<signal>
Once a request phase has begun, the following signals may not change their 
value until the OCP slave has accepted the request.

The following exceptions apply: 

1. If datahandshake=1 and mdatabyteen=1 then MByteEn can change for 
write accesses during the request phase.

2. For read requests the MData and MDataInfo fields can change during the 
request phase.

3. For write requests the SData and SDataInfo fields can change during the 
response phase.

4. Non-enabled data bytes in MData and bits in MDataInfo fields can change 
during the request and datahandshake phases.

5. Non-enabled data bytes in SData and bits in SDataInfo fields can change 
during the response phase.

6. MDataByteEn can change during read-type transfers.

Protocol hierarchy Request 

Signal group Dataflow - thread extensions

Critical signals MCmd

Assertion type Value

Reference Section 4.3.2.4 on page 44

Basic Signals
MAddr
MCmd
MData

Burst Extensions
MAtomicLength
MBurstLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MReqLast
Thread Extensions
MConnID
MThreadID
MBlockHeight
MBlockStride
MReqRowLast

Simple Extensions
MAddrSpace
MByteEn
MDataInfo 
MReqInfo
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7. MTagID can change if MTagInOrder is asserted, and MDataTagID can 
change for the corresponding datahandshake phase.

8. STagID can change if STagInOrder is asserted. 

Rule 1.2.4 request_value_MCmd_<command>
The following <Command> is illegal if the corresponding <Parameter> is set to 
0.

Command Parameter
BCST broadcast_enable
RD read_enable
RDEX readex_enable
RDL rdlwrc_enable
WR write_enable
WRC rdlwrc_enable
WRNP writenonpost_enable

Rule 1.2.5 request_value_MAddr_word_aligned
Signal MAddr must be OCP word aligned as follows:

Protocol hierarchy Request 

Signal group Dataflow

Critical signals

MAddr, MCmd, MData, MAddrSpace, MByteEn, MDataInfo, 
MReqInfo, MAtomicLength, MBurstLength, MBurstPrecise, 
MBurstSeq, MBurstSingleReq, MReqLast, MConnID, 
MThreadID, MBlockHeight, MBlockStride, MReqRowLast

Assertion type Hold

References Section 12.1.2.1 on page 215

Protocol hierarchy Request 

Signal group Dataflow - basic signals

Critical signals MCmd

Assertion type Value

Reference Section 4.9.1.1 on page 59
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if data_wdth = 16 then MAddr[0] = 0
if data_wdth = 32 then MAddr[1:0] = 0
if data_wdth = 64 then MAddr[2:0] = 0
if data_wdth = 128 then MAddr[3:0] = 0

Rule 1.2.6 request_value_<signal>_0x0
During a request phase:

MAtomicLength and MBurstLength must not be zero. 
If MBurstSeq != BLCK, MBlockHeight and MBlockStride values are don’t 
care.
If MBurstSeq == BLCK, MBlockHeight must be greater than zero. 
If MBurstSeq == BLCK and MBlockHeight > 1, MBlockStride must be 
greater than zero.

Rule 1.2.7 request_value_MBurstSeq_<sequence>
The following <burst type> is illegal if its corresponding <parameter > is set to 
0.

Burst type Parameter
BLCK burstseq_blck_enable
DLFT1 burstseq_dflt1_enable
DLFT2 burstseq_dflt2_enable
INCR burstseq_incr_enable
STRM burstseq_strm_enable

Protocol hierarchy Request 

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Value

Reference Section 3.1.1 on page 13

Protocol hierarchy Request 

Signal group Dataflow - burst extensions

Critical signals MAtomicLength, MBurstLength, MBlockHeight, MBlockStride

Assertion type Value

References
Section 3.1.3 on page 19
Footnotes on page 34
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UNKN burstseq_unkn_enable
WRAP burstseq_wrap_enable
XOR burstseq_xor_enable

Rule 1.2.8 request_value_MByteEn_force_aligned
If force_aligned=1, the byte enable values during a request phase are 
restricted to the following patterns for data_wdth > 32:

data_wdth=32 and MByteEn has one of the following values:

0001
0010
0100
1000
0011
1100
1111
0000

data_wdth=64 and MByteEn has one of the following values:

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
00000011
00001100
00110000
11000000
00001111
11110000
11111111
00000000

data_wdth=128 and MByteEn has one of the following values:

0000000000000001
0000000000000010
0000000000000100
0000000000001000

Protocol hierarchy Request 

Signal group Dataflow - burst extensions

Critical signals MBurstSeq

Assertion type Value

References Section 4.9.1.2 on page 59
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0000000000010000
0000000000100000
0000000001000000
0000000010000000
0000000100000000
0000001000000000
0000010000000000
0000100000000000
0001000000000000
0010000000000000
0100000000000000
1000000000000000
0000000000000011
0000000000001100
0000000000110000
0000000011000000
0000001100000000
0000110000000000
0011000000000000
1100000000000000
0000000000001111
0000000011110000
0000111100000000
1111000000000000
0000000011111111
1111111100000000
1111111111111111
0000000000000000

If datahandshake=1 and mdatabyteen=1 then MByteEn can change for write 
accesses during the request phase.

Rule 1.2.9 request_value_MThreadID
MThreadID value is always < threads.

Protocol hierarchy Request 

Signal group Dataflow - simple extensions

Critical signals MByteEn

Assertion type Value

References Section 4.9.1.3 on page 60

Protocol hierarchy Request 

Signal group Dataflow - thread extensions

Critical signals MThreadID

Assertion type Value

Reference Section 3.1.5 on page 23
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Rule 1.2.10 datahs_exact_SDataThreadBusy
If sdatathreadbusy_exact = 1 and sdatathreadbusy_pipelined = 0, when 
a given slave data thread is busy, the master must not present a data phase 
on this thread.

Rule 1.2.11 datahs_pipelined_SDataThreadBusy
If sdatathreadbusy_exact = 1 and sdatathreadbusy_pipelined = 1, and 
an SDataThreadbusy bit was set to 1 in the prior cycle, the master cannot 
present a datahandshake on a thread in the current cycle.

Rule 1.2.12 datahs_hold_<signal>
Once a datahandshake phase has begun, the following signals may not 
change their value until the OCP slave has accepted the data.

Protocol hierarchy Datahandshake 

Signal group Dataflow - thread extensions

Critical signals MDataValid

Assertion type Value

Reference Section 4.3.2.4 on page 44

Protocol hierarchy Datahandshake 

Signal group Dataflow - thread extensions

Critical signals MDataValid

Assertion type Value

Reference Section 4.3.2.4 on page 44

Basic Signals
MData
MDataValid

Burst Extensions
MDataLast
MDataRowLast

Simple Extensions
MDataByteEn
MDataInfo

Thread Extensions
MDataThreadID
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Rule 1.2.13 datahs_value_MDataByteEn_force_aligned
If force_aligned=1, the data byte enable values during a datahandshake 
phase are restricted to the following patterns for data_wdth > 32:

data_wdth=32 and MDataByteEn has one of the following values:

0001
0010
0100
1000
0011
1100
1111
0000

data_wdth=64 and MDataByteEn has one of the following values:

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
00000011
00001100
00110000
11000000
00001111
11110000
11111111
00000000

data_wdth=128 and MDataByteEn has one of the following values:

0000000000000001
0000000000000010
0000000000000100
0000000000001000
0000000000010000
0000000000100000
0000000001000000

Protocol hierarchy Datahandshake 

Signal group Dataflow 

Critical signals
MData, MDataByteEn, MDataInfo, MDataLast, 
MDataRowLast, MDataThreadID, MDataValid,

Assertion type Hold

Reference Section 12.1.2.3 on page 217
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0000000010000000
0000000100000000
0000001000000000
0000010000000000
0000100000000000
0001000000000000
0010000000000000
0100000000000000
1000000000000000
0000000000000011
0000000000001100
0000000000110000
0000000011000000
0000001100000000
0000110000000000
0011000000000000
1100000000000000
0000000000001111
0000000011110000
0000111100000000
1111000000000000
0000000011111111
1111111100000000
1111111111111111
0000000000000000

Rule 1.2.14 datahs_value_MDataThreadID
MDataThreadID value must be < threads.

Protocol hierarchy Datahandshake 

Signal group Dataflow - simple extensions

Critical signals MDataByteEn

Assertion type Value

Reference Section 4.9.1.3 on page 60

Protocol hierarchy Datahandshake 

Signal group Dataflow - thread extensions

Critical signals MDataThreadID

Assertion type Value

Reference Section 3.1.5 on page 23
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Rule 1.2.15 response_exact_MThreadBusy
If mthreadbusy_exact = 1 and mthreadbusy_pipelined = 0, when a given 
master thread is busy, the slave must not present a response on that thread.

Rule 1.2.16 response_pipelined_MThreadBusy
If sthreadbusy_exact = 1 and sthreadbusy_pipelined = 1, and an 
MThreadbusy bit was set to 1 in the prior cycle, the slave cannot present a 
response on a thread in the current cycle.

Rule 1.2.17 response_hold_<signal>
Once a response phase has begun, the following signals may not change their 
value until the master has accepted the response.

Protocol hierarchy Response 

Signal group Dataflow - thread extensions

Critical signals SResp

Assertion type Value

Reference Section 4.3.2.4 on page 44

Protocol hierarchy Response 

Signal group Dataflow - thread extensions

Critical signals SResp

Assertion type Value

Reference Section 4.3.2.4 on page 44

Basic Signals
SData
SResp

Burst Extensions
SRespLast
SRespRowLast

Simple Extensions
SDataInfo
SRespInfo

Thread Extensions
SThreadID

Protocol hierarchy Response 

Signal group Dataflow

Critical signals
SData, SDataInfo, SResp, SRespInfo, SRespLast, 
SRespRowLast, SThreadID

Assertion type Hold

Reference Section 12.1.2.2 on page 216
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Rule 1.2.18 response_value_SResp_FAIL_without_WRC
The FAIL response can occur only on a WRC request.

Rule 1.2.19 response_value_SThreadID
SThreadID value must be < threads.

Rule 1.2.20 request_hold_MTagInOrder
If taginorder = 1, the MTagInOrder signal cannot change until accepted by the 
OCP slave (SCmdAccept = 1).

Protocol hierarchy Response 

Signal group Dataflow - basic signals

Critical signals SResp

Assertion type Value

References Section 4.4 on page 49

Protocol hierarchy Response 

Signal group Dataflow - thread extensions

Critical signals SThreadID

Assertion type Value

Reference Section 3.1.5 on page 23

Protocol hierarchy Request 

Signal group Dataflow - tag extensions

Critical signals MTagInOrder

Assertion type Hold

Reference Section 12.1.2.1 on page 215
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Rule 1.2.21 response_hold_STagInOrder
If taginorder = 1, the STagInOrder signal cannot change until accepted by the 
master (MRespAccept = 1).

Rule 1.2.22 request_hold_MTagID_when_MTagInOrder_zero
If tags > 1, the MTagID signal cannot change until accepted by the OCP slave 
(SCmdAccept = 1).

Rule 1.2.23 datahs_hold_MDataTagID_when_MTagInOrder_zero
When tags > 1, during a datahandshake phase corresponding to a non in-
order request phase (MTagInOrder = 0), the MDataTagID signal cannot 
change value until accepted by the OCP slave (SDataAccept = 1).

Protocol hierarchy Response 

Signal group Dataflow - tag extensions

Critical signals STagInOrder

Assertion type Hold

Reference Section 12.1.2.2 on page 216

Protocol hierarchy Request

Signal group Dataflow - tag extensions

Critical signals MTagID, MTagInOrder

Assertion type Hold

Reference Section 12.1.2.1 on page 215

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, MTagInOrder

Assertion type Hold

Reference Section 12.1.2.3 on page 217
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Rule 1.2.24 response_hold_STagID_when_STagInOrder_zero
If tags > 1, the STagID signal cannot change until it is accepted by the master 
(MRespAccept = 1).

Rule 1.2.25 request_value_MTagID_when_MTagInOrder_zero
The MTagID signal must always be < tags.

Rule 1.2.26 datahs_value_MTagID_when_MTagInOrder_zero
The MDataTagID signal must always be < tags.

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID, STagInOrder

Assertion type Hold

Reference Section 12.1.2.2 on page 216

Protocol hierarchy Request

Signal group Dataflow - tag extensions

Critical signals MTagID, MTagInOrder

Assertion type Value

Reference Section 3.1.4 on page 22

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, MTagInOrder

Assertion type Value

Reference Section 3.1.4 on page 22
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Rule 1.2.27 response_value_STagID_when_STagInOrder_zero
The STagID signal must always be < tags.

Rule 1.2.28 datahs_order_MDataTagID_when_MTagInOrder_zero
When datahandshake = 1, for tagged write transactions, the datahandshake 
phase must observe the same order as the request phase.

Rule 1.2.29 response_reorder_STagID_tag_interleave_size
When tags > 1 and tag_interleave_size > 0 the slave must ensure that 
responses associated with packing burst sequences stay together up to the 
tag_interleave_size. When tags > 1 and tag_interleave_size == 0 no 
interleaving of responses between any packing burst sequences with different 
tags is allowed.

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID, STagInOrder

Assertion type Value

Reference Section 3.1.4 on page 22

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, (MTagInOrder

Assertion type Data_order

Reference Section 4.7.1 on page 57

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID

Assertion type Reorder

References
Section 4.7.1 on page 57
Section 4.9.1.7 on page 62
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Rule 1.2.30 response_reorder_STagID_overlapping_addresses
Responses to requests with different tags on the same thread that target 
overlapping addresses (as determined by MAddrSpace, MAddr, and MByteEn 
[or MDataByteEn, if applicable]) can be re-ordered with respect to another. 

Rule 1.2.31 request_value_MBlockStride_word_aligned
Signal MBlockStride must be OCP word aligned as follows:

if data_wdth = 16 then MBlockStride[0] = 0
if data_wdth = 32 then MBlockStride[1:0] = 0
if data_wdth = 64 then MBlockStride[2:0] = 0
if data_wdth = 128 then MBlockStride[3:0] = 0.

18.2.3 Dataflow Burst Checks

Rule 1.3.1 burst_hold_MBurstLength_precise
For precise bursts, MBurstLength must hold its value during all request 
phases of the entire burst.

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID

Assertion type Reorder

References Section 4.7.1 on page 57

Protocol hierarchy Request

Signal group Dataflow - burst extensions

Critical signals MBlockStride

Assertion type Value

References Section 3.1.3 on page 19

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MBurstLength

Assertion type Hold

References Section 4.6.3 on page 55
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Rule 1.3.2 burst_hold_<signal>
The following signals must hold the same value on all request phases of the 
entire burst:

MAddrSpace MBurstSingleReq
MAtomicLength MCmd
MBurstPrecise MConnID
MBurstSeq MReqInfo

The hold requirements for SRespInfo in a burst are different for the 2.0 versus 
2.2 specifications.

OCP 2.0 page 44 states that: 
SRespInfo must be held steady by the slave for every transfer in a burst.

OCP 2.2 page 55 states that: 
If possible, slaves should hold SRespInfo steady for every transfer in a 
burst

Rule 1.3.3 burst_hold_<signal>_BLCK
<signal> must hold for BLCK bursts. Applicable to MBlockHeight and 
MBlockStridesignals.

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals
MAddrSpace, MAtomicLength, MBurstPrecise, MBurstSeq, 
MBurstSingleReq, MCmd, MConnID, MReqInfo, (SRespInfo)

Assertion type Hold

Reference Section 4.6.3 on page 55

Protocol hierarchy Burst 

Signal group Dataflow - simple extensions

Critical signals MBlockHeight, MBlockStride

Assertion type Hold

Reference Section 4.6.3 on page 55
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Rule 1.3.4 burst_hold_<signal>_STRM
For STRM bursts, MByteEn / MDataByteEn must hold the same value on all 
request / datahandshake phases of the entire burst.

Rule 1.3.5 burst_phase_order_reqdata_together
For single request multiple data bursts, if reqdata_together = 1, the master 
must present the request and first write data in the same cycle, and the slave 
must accept the request and the first write data in the same cycle.

Rule 1.3.6 burst_sequence_MAddr_BLCK
Within a block burst, the address begins with the provided address and 
proceeds through a set of MBlockHeight subsequences, each of which follows 
the normal INCR burst sequence for MBurstLength transfers. The starting 
address of each subsequence should be the starting address of the prior 
subsequence plus MBlockStride.

Protocol hierarchy Burst 

Signal group Dataflow - simple extensions

Critical signals MByteEn, MDataByteEn

Assertion type Hold

References Section 4.6.1.1 on page 54

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MCmd, MDataValid

Assertion type Ordering

Reference Section 4.9.2 on page 63

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MBlockHeight, MBurstLength, MBlockStride

Assertion type Ordering

Reference Section 4.6.1 on page 53
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Rule 1.3.7 burst_sequence_MAddr_INCR 
Within an INCR burst, the address increases for each new master request by 
the OCP word size.

Rule 1.3.8 burst_sequence_MAddr_STRM 
Within a STRM burst, the address remains constant on all request phases of 
the burst. 

Rule 1.3.9 burst_sequence_MAddr_WRAP
Within a WRAP burst, the address increases for each new master request by 
the OCP word size, and wraps on the burst length x OCP word size.

Rule 1.3.10 burst_sequence_MAddr_XOR
Within an XOR burst, the address increases for each new OCP master request 
as follows:

BASE 
Is the lowest byte address in the burst, which must be aligned with the 
total burst size. 

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Table 23 on page 53

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Table 23 on page 53

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Table 23 on page 53
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FIRST_OFFSET 
Is the byte offset (from BASE) of the first transfer in the burst. 

CURRENT_COUNT
Is the count of current transfer in the burst starting at 0. 

WORD_SHIFT 
Is the log2 of the OCP word size in bytes.

The current address of the transfer is BASE | (FIRST_OFFSET ^ 
(CURRENT_COUNT << WORD_SHIFT)).

Rule 1.3.11 burst_value_<signal>_<sequence>
When mdatabyteen = 0, during STRM or DFLT2 bursts, MByteEn should 
never take the value 0. 

When mdatabyteen = 1, during read-type STRM or DFLT2 bursts, MByteEn 
should never take the value 0.

When mdatabyteen = 1, during write-type STRM or DFLT2 bursts, 
MDataByteEn should never take value 0.

Rule 1.3.12 burst_value_MAddr_INCR_burst_aligned
When burst_aligned=1, the first burst request of an INCR burst must have 
its address aligned. The equation below indicates which MAddr bits must be 
0.

Equation

MAddr [(size-1)+BL:0] = 0
Where:
size = ceil(log2(bytes(data_width)))for data_width > 1 byte
BL = log2(MBurstLength)for MBurstLength > 1

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Section 4.6.1 on page 53

Protocol hierarchy Burst 

Signal group Dataflow - simple extensions

Critical signals MByteEn, MDataByteEn

Assertion type Value

Reference Section 4.6.1.1 on page 54
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Example

For an interface with data_width=32, size=2 and:
MBurstLength = 2:MAddr[2:0] = 0
MBurstLength = 4:MAddr[3:0] = 0

Rule 1.3.13 burst_value_MAddr_<sequence>_no_wrap
An INCR or BLCK burst can never cross the address space boundary.

Rule 1.3.14 burst_value_MBurstLength_<sequence>
The length of a WRAP or XOR burst must be a power of two.

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Value

References Section 4.9.1.4 on page 60

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Value

Reference Section 4.6.1 on page 53

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MBurstLength

Assertion type Value

Reference Section 4.6.1 on page 53
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Rule 1.3.15 burst_value_MBurstLength_INCR_burst_aligned
When burst_aligned = 1, the length of an INCR burst must be a power of 
two. 

Rule 1.3.16 burst_value_MBurstPrecise_<sequence>
BLCK, WRAP and XOR bursts can be issued only as precise bursts.

Rule 1.3.17 burst_value_MBurstPrecise_INCR_burst_aligned
When burst_aligned = 1, INCR bursts can be issued only as precise bursts.

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MBurstLength

Assertion type Value

References Section 4.9.1.4 on page 60

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MBurstPrecise

Assertion type Value

References Section 4.6.1 on page 53

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MBurstPrecise

Assertion type Value

Reference Section 4.6.1 on page 53
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Rule 1.3.18 burst_value_MBurstPrecise_SRMD
Single request multiple data transfers can be issued only as precise bursts.

Rule 1.3.19 burst_value_MBurstSeq_UNKN_SRMD
An unknown burst sequence (value UNKN) is illegal during a single request 
multiple data transfer.

Rule 1.3.20 burst_value_MCmd_<command>
The RDEX, RDL, and WRC commands cannot be part of a burst.

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MBurstPrecise

Assertion type Value

Reference Section 4.6.5 on page 55

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MBurstSeq

Assertion type Value

Reference Section 4.3.2.1 on page 42

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MCmd

Assertion type Value

References Section 4.6 on page 52
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Rule 1.3.21 burst_value_MReqLast_MRMD
The signal MReqLast must be 0 for all request phases of a MRMD burst, 
except on the last one when it must be 1. For BLCK bursts the last request 
phase is the last request phase of the last MBlockHeight subsequence.

Rule 1.3.22 burst_value_MReqLast_SRMD
The signal MReqLast must be 1 for any single request (SRMD being active or 
not).

Rule 1.3.23 burst_value_MReqRowLast_MRMD 
For BLCK bursts the signal MReqRowLast must be 0 for all request phases 
other than the last phases in each row, when it must be 1. For non-BLCK 
bursts the signal MReqRowLast must be 0 for all request phases of a MRMD 
burst, except on the last one when it must be 1. When mreqlast and 
mreqrowlast are both enabled, whenever MReqLast is asserted 
MReqRowLast must also be asserted. 

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MReqLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MReqLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MReqRowLast

Assertion type Ordering

Reference Section 4.6.6 on page 56
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Rule 1.3.24 burst_value_MReqRowLast_SRMD 
The signal MReqRowLast must be 1 for any single request (SRMD being active 
or not).

Rule 1.3.25 burst_value_MDataLast_MRMD
The MDataLast signal must be 0 for all datahandshake phases in an MRMD 
burst, except on the last one when it must be 1. For BLCK bursts the last 
datahandshake phase is the last datahandshake phase of the last MBlock-
Height subsequence.

Rule 1.3.26 burst_value_MDataLast_SRMD
The MDataLast signal must be 0 for all datahandshake phases of an SRMD 
burst, except on the last one when it must be 1. For BLCK bursts the last 
datahandshake phase is the last datahandshake phase of the last MBlock-
Height subsequence.

Rule 1.3.27 burst_value_MDataRowLast_MRMD
For BLCK bursts the signal MDataRowLast must be 0 for all datahandshake 
phases other than the last phases in each row, when it must be 1. For non-
BLCK bursts the signal MDataRowLast must be 0 for all datahandshake 

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MReqRowLast

Assertion type Ordering

Reference Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MDataLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MDataLast

Assertion type Value

References Section 4.6.6 on page 56
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phases of a MRMD burst, except on the last one when it must be 1. If 
mdatalast and mdatarowlast are both enabled, whenever MDataLast is 
asserted MDataRowLast must also be asserted. 

Rule 1.3.28 burst_value_MDataRowLast_SRMD
For BLCK bursts the signal MDataRowLast must be 0 for all datahandshake 
phases other than the last phases in each row, when it must be 1. For non-
BLCK bursts the signal MDataRowLast must be 0 for all datahandshake 
phases of a SRMD burst, except on the last one when it must be 1. When 
mdatalast and mdatarowlast are both enabled, whenever MDataLast is 
asserted MDataRowLast must also be asserted.

Rule 1.3.29 burst_value_SRespLast_MRMD
The signal SRespLast must be 0 for all response phases of an MRMD burst, 
except on the last one where it must be 1. For BLCK bursts the last response 
phase is the last response phase of the last MBlockHeight subsequence.

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MDataRowLast, MDataLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MDataLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals SRespLast

Assertion type Value

Reference Section 4.6.6 on page 56
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Rule 1.3.30 burst_value_SRespLast_SRMD
The signal SRespLast must be 1 for any single response (with SRMD active or 
not).

Rule 1.3.31 burst_value_SRespRowLast_MRMD
For BLCK bursts the signal MRespRowLast must be 0 for all response phases 
other than the last phases in each row, when it must be 1. For non-BLCK 
bursts the signal MRespRowLast must be 0 for all response phases of a 
MRMD burst, except on the last one when it must be 1. If sresplast and 
sresprowlast are both enabled, whenever SRespLast is asserted 
SRespRowLast must also be asserted. 

Rule 1.3.32 burst_value_SRespRowLast_SRMD
The signal MRespRowLast must be 1 for any single response (SRMD being 
active or not). 

Rule 1.3.33 burst_hold_MTagID_when_MTagInOrder_zero
The MTagID signal must remain constant for all transfers of a burst when 
MTagInOrder is zero. The master cannot interleave requests (or 
datahandshake) phases with different tags within a transaction. This check 

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals SRespLast

Assertion type Value

Reference Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MRespRowLast, SRespLast

Assertion type Value

Reference Section 4.6.6 on page 56

Protocol hierarchy Burst 

Signal group Dataflow - burst extensions

Critical signals MRespRowLast

Assertion type Value

Reference Section 4.6.6 on page 56
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should only focus on the request phase. The datahandshake phase is covered 
by phase property “datahs_order_MDataTagID_when_ MTagInOrder_zero.” 
This last property checks that the datahandshake phase observes the same 
order as the request phase.

Rule 1.3.34 burst_hold_MTagInOrder
The MTagInOrder signal must remain constant for all transfers of a burst.

18.2.4 DataFlow Transfer Checks

Rule 1.4.1 transfer_phase_order_datahs_before_request_begin
For each thread, for each transaction tag, a datahandshake phase cannot 
begin before the associated request phase begins, but can begin in the same 
clock cycle.

Protocol hierarchy Burst 

Signal group Dataflow - tag extensions

Critical signals MTagID, (MTagInOrder)

Assertion type Hold

Reference Section 4.7.1 on page 57

Protocol hierarchy Burst 

Signal group Dataflow - tag extensions

Critical signals MTagInOrder

Assertion type Hold

Reference Section 4.7.1 on page 57

Protocol hierarchy Transfer 

Signal group Dataflow - basic signals

Critical signals MDataValid, MCmd

Assertion type Ordering

Reference Section 4.3.2.2 on page 43



Protocol Compliance Checks 403

OCP-IP Confidential

Rule 1.4.2 transfer_phase_order_datahs_before_request_end
For each thread, for each transaction tag, a datahandshake phase cannot end 
before the associated request phase ends, but can end in the same clock 
cycle.

Rule 1.4.3 transfer_phase_order_response_before_request_begin
For each thread, for each transaction tag, a response phase cannot begin 
before the associated request phase begins, but can begin in the same clock 
cycle.

Rule 1.4.4 transfer_phase_order_response_before_request_end
For each thread, for each transaction tag, a response phase cannot end before 
the associated request phase ends, but can end in the same clock cycle.

Protocol hierarchy Transfer 

Signal group Dataflow - basic signals

Critical signals MDataValid, MCmd

Assertion type Ordering

Reference Section 4.3.2.2 on page 43

Protocol hierarchy Transfer 

Signal group Dataflow - basic signals

Critical signals MCMd, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

Protocol hierarchy Transfer 

Signal group Dataflow - basic signals

Critical signals MCMd, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43
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Rule 1.4.5 transfer_phase_order_response_before_datahs_begin
For each thread, for each transaction tag, when datahandshake = 1, the 
response phase cannot begin before the associated datahandshake begins, 
but can begin in the same clock cycle.

Rule 1.4.6 transfer_phase_order_response_before_datahs_end
For each thread, for each transaction tag, when datahandshake = 1, the 
response phase cannot end before the associated datahandshake ends, but 
can end in the same clock cycle.

Rule 1.4.7 transfer_phase_order_response_before_last_datahs_begin
_SRMD_wr
For each thread, for each transaction tag, with a write-type SRMD, the 
response phase cannot begin before the last datahandshake phase begins, 
but it can begin in the same clock cycle. 

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

Protocol hierarchy Transfer 

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43
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Rule 1.4.8 transfer_phase_order_response_before_last_datahs_end_ 
SRMD_wr
For each thread, for each transaction tag, with a write-type SRMD, the 
response phase cannot end before the last datahandshake phase ends, but it 
can end in the same clock cycle.

Rule 1.4.9 transfer_phase_order_reqdata_together_MRMD
For multiple request multiple data bursts, if both reqdata_together and 
burstsinglereq are set to 1, the master must present the request and the 
associated write data in the same cycle for each transfer, and the slave must 
accept the request and the associated write data in the same cycle.

18.2.5 DataFlow ReadEx Checks

Rule 1.5.1 rdex_hold_<signal>
The unlocking command following a ReadEx must retain the same address 
and address space values

When mdatabyteen = 0, the unlocking command following a ReadEx must 
retain the same MByteEn value.

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

Reference Section 4.3.2.2 on page 43

Protocol hierarchy Burst 

Signal group Dataflow - basic signals

Critical signals MCmd, MDataValid

Assertion type Ordering

Reference Section 4.9.2 on page 63
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When mdatabyteen = 1, the unlocking command following a ReadEx must 
retain for MDataByteEn the value given to MByteEn during the ReadEx 
command. If MByteEn is absent, MDataByteEn must be all 1s.

Rule 1.5.2 rdex_lock_release_no_WR/WRNP
If a ReadEx is issued on an address on a particular thread, no other request 
with the same address can be issued on any other thread until the ReadEx is 
unlocked. 

The command following the ReadEx on the same thread must be a write 
command (WR or WRNP). This command unlocks the ReadEx.

Rule 1.5.3 rdex_lock_release_no_burst_allowed
The unlocking command following a RDEX must have MBurstLength = 1.

Protocol hierarchy ReadEx 

Signal group Dataflow - basic signals, simple extensions

Critical signals MAddr, MAddrSpace, MByteEn, MDataByteEn 

Assertion type Hold

References
Section 4.4 on page 49
Section 4.6 on page 52

Protocol hierarchy ReadEx 

Signal group Dataflow - basic signals

Critical signals MCmd

Assertion type Ordering

References
Section 4.4 on page 49
Section 4.6 on page 52

Protocol hierarchy ReadEx 

Signal group Dataflow - basic signals

Critical signals MBurstLength

Assertion type Value

Reference
Section 4.4 on page 49
Section 4.6 on page 52
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18.3 Sideband Checks

Rule 1.6.1 signal_valid_<signal>
Signals MReset_n and SReset_n are never X or Z.

Rule 1.6.2 signal_valid_<signal>_when_reset_inactive
When reset is inactive, the following signals should never have an X or Z value 
on the rising edge of the OCP clock:

ControlBusy ControlWr  MError
SError SInterrupt
StatusBusy StatusRd

Rule 1.6.3 signal_hold_<signal>_16_cycles
If they are active, signals MReset_n and SReset_n must stay active at least 16 
consecutive cycles.

Protocol hierarchy Reset activity

Signal group Sideband - reset

Critical signals MReset, SReset

Assertion type X, Y

Reference
Section 4.3.3.1 on page 46
Section 4.3.3.4 on page 48

Protocol hierarchy Reset activity

Signal group Sideband - reset

Critical signals
ControlBusy, ControlWr, MError, SError, SInterrupt, StatusBusy, 
StatusRd

Assertion type X, Y

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Reset activity

Signal group Sideband - reset

Critical signals MReset, SReset

Assertion type Hold

References Section 4.3.3.1 on page 46



Rule 1.6.4 signal_hold_Control_after_reset
The Control signal must be held steady for the first two cycles after reset is 
de-asserted.

Rule 1.6.5 signal_hold_Control_2_cycles
The Control signal must be held steady for a full cycle after the cycle in which 
it has transitioned.

Rule 1.6.6 signal_hold_Control_ControlBusy_active
If the ControlBusy signal was sampled active at the end of the previous cycle, 
the Control signal must not transition in the current cycle.

Protocol hierarchy Control

Signal group Sideband - control

Critical signals Control

Assertion type Hold

References Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals Control

Assertion type Hold

References Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals Control

Assertion type Value

Reference Section 4.3.3.4 on page 48



Protocol Compliance Checks 409

OCP-IP Confidential

Rule 1.6.7 signal_hold_ControlWr_after_reset
The ControlWr signal must not be asserted in the cycle following a reset.

Rule 1.6.8 signal_value_ControlWr_Control_transitioned
If signal Control transitions in a cycle, signal ControlWr must be driven active 
on that cycle.

Rule 1.6.9 signal_value_ControlWr_ControlBusy_active
The ControlWr signal must not be asserted if ControlBusy is active.

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Hold

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Hold

References Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Value

Reference Section 4.3.3.4 on page 48
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Rule 1.6.10 signal_hold_ControlWr_2_cycle
The ControlWr signal must not remain asserted for two consecutive cycles.s

Rule 1.6.11 signal_value_ControlBusy
The ControlBusy signal can only be asserted in a cycle after the ControlWr 
signal is asserted or after the reset transitions to inactive.

Rule 1.6.12 signal_hold_StatusRd_2_cycles
If the StatusRd signal was asserted in the previous cycle, it must not be 
asserted in the current cycle.

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Hold

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlBusy

Assertion type Value

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Status

Signal group Sideband - status

Critical signals StatusRd

Assertion type Hold

References Section 4.3.3.4 on page 48
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Rule 1.6.13 signal_value_StatusRd_StatusBusy_active
The StatusRd signal must not be asserted while StatusBusy is asserted.

18.4 Connection Protocol Checks

Rule 1.7.1 disconnect_signal_valid_<signal>
The disconnect signals (listed below) are always valid, including during the 
OCP reset

MConnect SConnect SWait

Rule 1.7.2 signal_hold_MConnect_2_cycles
The MConnect signal must be held steady for a full cycle after the cycle in 
which MConnect has transitioned to M_CON, M_DISC, or M_OFF.

Protocol hierarchy Status

Signal group Sideband - status

Critical signals StatusRd, StatusBusy

Assertion type Value

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Reset activity

Signal group Sideband

Critical signals MConnect, SConnect, SWait

Assertion type X, Z

Reference Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect

Assertion type Hold

References Section 4.3.3.2 on page 46
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Rule 1.7.2 signal_value_MCmd_MConnect_not_connected
The MCmd signal must be IDLE if MConnect is not in the M_CON state.

Rule 1.7.3 signal_order_MConnect_transaction
If signal MConnect transitions from M_CON in a cycle, there should not be 
any non-finshed OCP transaction at that cycle.

Rule 1.7.4 signal_value_SWait_MConnect_stable_state
If signal MConnect transitions to a stable state (M_OFF, M_DISC, M_CON) in 
a cycle, SWait must be 0 (S_OK) at that cycle.

Protocol hierarchy Control

Signal group Sideband

Critical signals MCmd, MConnect

Assertion type Value

Reference Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals Inband OCP signals

Assertion type Value

References Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect, SWait

Assertion type Value

References Section 4.3.3.2 on page 46
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Rule 1.7.5 signal_value_SConnect_MConnect_connected
If signal MConnect transitions to M_CON in a cycle, SConnect must be 1 
(S_CON) in the previous cycle.

Rule 1.7.6 signal_value_SConnect_MConnect_disconnected
If signal MConnect transitions to M_DISC in a cycle, SConnect must be 0 
(S_DISC) at that cycle.

Rule 1.7.7 signal_value_MConnect_ConnectCap
If ConnectCap is 0, Master must stay connected, so MConnect is M_CON.

Protocol hierarchy

Signal group Sideband

Critical signals MConnect, SConnect

Assertion type Value

References Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect, SConnect

Assertion type Value

References Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect

Assertion type Value

Reference Section 3.2.1 on page 26
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Rule 1.7.8 signal_value_SConnect_ConnectCap
If ConnectCap is 0, Slave must stay connected, so SConnect is S_CON.

Rule 1.7.9 signal_value_SWait_ConnectCap
If ConnectCap is 0, Slave must not stall disconnect interface, so SWait is 
S_OK.

Protocol hierarchy

Signal group Sideband

Critical signals SConnect

Assertion type Value

Reference Section 3.2.1 on page 26

Protocol hierarchy

Signal group Sideband

Critical signals SWait

Assertion type Value

Reference Section 3.2.1 on page 26
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19 Configuration Compliance 
Checks

The configuration checks listed in this chapter are extracted from the OCP 
Specification and are intended to serve as guidelines to verify an IP for OCP 
compliance. In all cases “Part I, Specification” is the definitive reference.

The configuration checks listed in this chapter are based on the “Specifi-
cation” and “Guidelines” parts of this document and allow you to verify an IP/
VIP for OCP compliance. In all cases, “Part I, Specification” is the definitive 
reference. Any references made to “Part II, Guidelines” are not definitive as 
Part I supersedes the guidelines.

The section describes the configuration checks needed for an OCP port. The 
names assigned to the configuration compliance checks have been created 
using the following template:

<hierarchy>_cfg_<critical_param>_<relationship>_<extra_details>

In which:

<hierarchy>: request, datahandshake, response, sideband, test,
master_slave

<critical_param> : any OCP parameter that is impacted by the configuration
check

<relationship>  : (optional) enable, depends, match
<extra details> : a short additional explanation

The majority of the configuration checks involve an enable relationship. For 
these enable checks ‘paramA_enable_paramB’ implies that paramA is 
somehow enabled by paramB. In these situations the individual check 
descriptions provide details on the enabling relationship between the 
parameters.



416 Open Core Protocol Specification

OCP-IP Confidential

19.1 Request Group

Rule 2.1.1 request_cfg_cmd_enable
One of the command enable parameters must be enabled. The critical 
parameters are: read_enable, readex_enable, write_enable, 
writenonpost_enable, broadcast_enable, or rdlwrc_enable.

Rule 2.1.2 request_cfg_readex_enable_write_writenonpost
readex_enable can only be enabled if write_enable or writenonpost_
enable is enabled.

Rule 2.1.3 request_cfg_addr_wdth_depends_data_wdth
data_wdth defines a minimum addr_wdth value that is based on the data 
bus byte width, and is defined as: 

Rule 2.1.4 request_cfg_blockstride_wdth_depends_data_wdth
If the blockstride parameter is enabled, then data_wdth defines a 
minimumblockstride_wdth value: 

Protocol hierarchy Request

Critical parameters
read_enable, readex_enable, write_enable, writenonpost_
enable, broadcast_enable, rdlwrc_enable 

Reference Section 3.1.1 on page 13

Protocol hierarchy Request

Critical parameters readex_enable, write_enable, writenonpost_enable

Reference Section 4.9.1.1 on page 59

Protocol hierarchy Request

Critical parameters addr_wdth, data_wdth

Reference MAddr on page 14

Protocol hierarchy Request

Critical parameters blockstride_wdth, data_wdth

Reference MBlockStride on page 20

min_addr_wdth max[1, log2 data_wdth( ) 2 ]–=

min_blockstride_wdth max[1, log2 data_wdth( ) 2 ]–=
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Rule 2.1.5 request_cfg_byteen_enable_mdata_sdata
byteen can only be enabled when either sdata or mdata is also enabled.

Rule 2.1.6 request_cfg_byteen_enable_data_wdth
byteen is only supported when data_wdth is a multiple of 8.

Rule 2.1.7 request_cfg_sthreadbusy_exact_enable_sthreadBusy
sthreadbusy_exactcan only be enabled if sthreadbusy is enabled.

Rule 2.1.8 request_cfg_sdata_enable_resp
sdata can only be enabled if resp is enabled.

Protocol hierarchy Request

Critical parameters byteen, sdata, mdata

Reference Section 3.1.2 on page 16

Protocol hierarchy Request

Critical parameters byteen, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Request

Critical parameters sthreadbusy, sthreadbusy_exact

Reference Table 26 on page 61

Protocol hierarchy Request

Critical parameters sdata, resp

Reference Table 26 on page 61
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Rule 2.1.9 request_cfg_sthreadbusy_enable_sthreadbusy_exact_
cmdaccept
sthreadbusy can only be enabled if one of sthreadbusy_exact or 
cmdaccept is enabled.

Rule 2.1.10 request_cfg_atomiclength_enable_burstlength
atomiclength can only be enabled if burstlength is enabled.

Rule 2.1.11 request_cfg_burstprecise_enable_burstlength
burstprecise can only be enabled if burstlength is enabled.

Rule 2.1.12 request_cfg_burstseq_enable_burstlength
burstseq can only be enabled if burstlength is enabled.

Protocol hierarchy Request

Critical parameters sthreadbusy, sthreadbusy_exact, cmdaccept

Reference Table 26 on page 61

Protocol hierarchy Request

Critical parameters atomiclength, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burstprecise, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burstseq, burstlength

Reference Footnotes on page 34
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Rule 2.1.13 request_cfg_burstsinglereq_enable_burstlength
burstsinglereq can only be enabled if burstlength is enabled.

Rule 2.1.14 request_cfg_reqlast_enable_burstlength
reqlast can only be enabled if burstlength is enabled.

Rule 2.1.15 request_cfg_reqrowlast_enable_burstlength
reqrowlast can only be enabled if burstlength is also enabled. 

Rule 2.1.16 request_cfg_reqrowlast_enable_reqlast_burstseq_blck_
enable
reqrowlast can only be enabled if reqlast and burstseq_blck_enable are 
enabled. 

Protocol hierarchy Request

Critical parameters burstsinglereq, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters reqlast, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters reqrowlast, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters reqlast, reqrowlast, burstseq_blck_enable

Reference Footnotes on page 34
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Rule 2.1.17 request_cfg_burstlength_enable_burstseq_enable
burstlength can only be enabled if at least one of the burst sequences is 
enabled.

Rule 2.1.18 request_cfg_burstseq_<type>_enable_burstseq
burstseq_<type>_enable can only be enabled if burstseq is enabled. 
burstseq must be enabled if two or more burst sequences (specified by 
burstseq_<type>_enable) are enabled. 

Rule 2.1.19 request_cfg_reqdata_together_enable_burstsinglereq
reqdata_together can only be enabled if burstsinglereq is enabled.

Rule 2.1.20 request_cfg_force_aligned_enable_data_wdth
force_aligned can only be enabled if data_wdth is a power of 2

Protocol hierarchy Request

Critical parameters burstlength

Reference Section 3.1.3 on page 19

Protocol hierarchy Request

Critical parameters burstseq, burstseq_<type>_enable

Reference Section 4.9.1.2 on page 59

Protocol hierarchy Request

Critical parameters reqdata_together, burstsinglereq

Reference Section  on page 63

Protocol hierarchy Request

Critical parameters force_aligned, data_wdth

Reference Section 4.9.1.3 on page 60
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Rule 2.1.21 request_cfg_mdatainfo_enable_mdata
mdatainfo can only be enabled if mdata is enabled.

Rule 2.1.22 request_cfg_sdatainfo_enable_sdata
sdatainfo can only be enabled if sdata is enabled.

Rule 2.1.23 request_cfg_atomiclength_wdth_depends_burstlengthwdth
atomiclength_wdth must be less than or equal to burstlength_wdth.

Rule 2.1.24 request_cfg_value_burstlength_wdth_0x1
burstlength_wdth must be greater than 1 if burstlength is enabled.

Rule 2.1.25 request_cfg_burst_aligned_enable_burstlength
burst_aligned can only be enabled if burstlength is enabled.

Protocol hierarchy Request

Critical parameters mdatainfo, mdata

Reference MDatInfo on page 17

Protocol hierarchy Request

Critical parameters sdatainfo, sdata

Reference MDatInfo on page 18

Protocol hierarchy Request

Critical parameters atomiclength_wdth, burstlength_wdth

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burstlength, burstlength_wdth

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burst_aligned, burstlength

Reference Section 4.9.1.4 on page 60
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Rule 2.1.26 request_cfg_burstseq_enable_addr
burstseq can only be enabled if addr is enabled.

Rule 2.1.27 request_cfg_burstsinglereq_enable_burstseq_enable
burstsinglereq must be disabled if burstseq_unkn_enable is the only 
enabled burst sequence.

Rule 2.1.28 request_cfg_taginorder_enable_tags
taginorder is only enabled if tags > 1.

Rule 2.1.29 request_cfg_tag_interleave_size_depends_
burstlength_wdth
tag_interleave_size must be 1 if burstlength_wdth is 0 and otherwise 
must be 0 or a power-of-two which is less than or equal to 2**(burstlength_
wdth-1). 

Protocol hierarchy Request

Critical parameters addr, burstseq

Reference MBurstSeq on page 21

Protocol hierarchy Request

Critical parameters burstseq_unkn_enable, burstsinglereq

Reference Section 4.6.1 on page 53

Protocol hierarchy Request

Critical parameters taginorder, tags

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters tag_interleave_size, burstlength_wdth

Reference Section 4.9.1.7 on page 62
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Rule 2.1.30 request_cfg_<block_signal>_enable_burstseq_blck_
enable
blockheight and blockstride are only enabled when burstseq_blck_
enable is also enabled.

Rule 2.1.31 request_cfg_value_blockheight_wdth_0x1
If blockheight is enabled, blockheight_wdth must be greater than 1.

Rule 2.1.32 request_cfg_<threadbusy_pipelined_cfg>_enable_
<threadbusy_exact_cfg>
The parameters mthreadbusy_pipelined, sdatathreadbusy_pipelined, 
and sthreadbusy_pipelined can be enabled to 1 only when the 
corresponding _exact parameter is enabled. 

Rule 2.1.33 request_cfg_reqdata_together_enable_cmdaccept_
dataaccept
reqdata_together can only be enabled if cmdaccept and dataaccept 
match. 

Protocol hierarchy Request

Critical parameters blockheight, blockstride, burstseq_blck_enable

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters blockheight, blockheight_wdth

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters
mthreadbusy_pipelined, sdatathreadbusy_pipelined, and 
sthreadbusy_pipelined 

Reference Section 4.3.2.4 on page 44

Protocol hierarchy Request

Critical parameters reqdata_together, cmdaccept, dataaccept

Reference Implicit
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19.2 Datahandshake Group

Rule 2.2.1 datahandshake_cfg_datalast_enable_burstlength
datalast can only be enabled if burstlength is enabled.

Rule 2.2.2 request_cfg_burstsinglereq_enable_datahandshake_cmd_
enable
burstsinglereq can only be enabled if datahandshake is enabled or none of 
the write command types are enabled. 

Rule 2.2.3 datahandshake_cfg_datahandshake_enable_mdata
datahandshake can only be enabled if mdata is also enabled. 

Rule 2.2.4 datahandshake_cfg_datalast_enable_datahandshake
datalast can only be enabled if datahandshake is also enabled. 

Protocol hierarchy Request

Critical parameters datalast, burstlength

Reference Footnotes on page 34

Protocol hierarchy Datahandshake

Critical parameters
burstsinglereq, datahandshake, write_enable, writenonpost_
enable, rdlwrc_enable

Reference Section 4.6.5 on page 55

Protocol hierarchy Datahandshake

Critical parameters datahandshake, mdata

Reference Section 3.1.1 on page 13

Protocol hierarchy Datahandshake

Critical parameters datalast, datahandshake

Reference Section 3.1.3 on page 19
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Rule 2.2.5 datahandshake_cfg_datarowlast_enable_datahandshake
datarowlast can only be enabled if datahandshake is also enabled. 

Rule 2.2.6 datahandshake_cfg_datrowalast_enable_burstlength
datarowlast can only be enabled if burstlength is also enabled. 

Rule 2.2.7 datahandshake_cfg_datarowlast_enable_datalast_
burstseq_blck_enable
datarowlast can only be enabled if datalast and burstseq_blck_enable 
are enabled.

Rule 2.2.8 datahandshake_cfg_dataaccept_enable_datahandshake
dataaccept can only be enabled if datahandshake is also enabled.

Protocol hierarchy Datahandshake

Critical parameters datarowlast, datahandshake

Reference Section 3.1.3 on page 19

Protocol hierarchy Datahandshake

Critical parameters datarowlast, burstlength

Reference Section 3.1.3 on page 19

Protocol hierarchy Datahandshake

Critical parameters
datarowlast, datalast, datahandshake, burstseq_blck_
enable

Reference Section 3.1.3 on page 19

Protocol hierarchy Datahandshake

Critical parameters dataaccept, datahandshake

Reference Section 3.1.1 on page 13
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Rule 2.2.9 datahandshake_cfg_sdatathreadbusy_enable_
datahanshake
sdatathreadbusy can only be enabled if datahandshake is also enabled.

Rule 2.2.10 datahandshake_cfg_mdatabyteen_enable_datahanshake
mdatabyteen can only be enabled if datahandshake is also enabled.

Rule 2.2.11 datahandshake_cfg_mdatabyteen_enable_mdata
mdatabyteen can only be enabled if mdata is also enabled.

Rule 2.2.12 datahandshake_cfg_mdatabyteen_depends_data_wdth
mdatabyteen can only be enabled if data_wdth is a multiple of 8.

Rule 2.2.13 datahandshake_cfg_mdatainfo_depends_data_wdth
mdatainfo can only be enabled if data_wdth is a multiple of 8.

Protocol hierarchy Datahandshake

Critical parameters sdatathreadbusy, datahandshake

Reference Section 3.1.5 on page 23

Protocol hierarchy Datahandshake

Critical parameters mdatabyteen, datahandshake

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters mdatabyteen, mdata

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters mdatabyteen, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters mdatainfo, data_wdth

Reference Section 3.1.2 on page 16
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Rule 2.2.14 datahandshake_cfg_mdatainfo_wdth_depends_
mdatainfobyte_wdth
mdatainfo_wdth must be greater than or equal to mdatainfobyte_wdth * 
data_wdth / 8.

Rule 2.2.15 datahandshake_cfg_sdatainfo_depends_data_wdth
sdatainfo can only be enabled if data_wdth is a multiple of 8.

Rule 2.2.16 datahandshake_cfg_sdatainfo_wdth_depends_s
datainfobyte_wdth
sdatainfo_wdth must be greater than or equal to sdatainfobyte_wdth * 
data_wdth /8. 

Rule 2.2.17 datahandshake_cfg_sdatathreadbusy_enable_
sdatathreadbusy_exact
sdatathreadbusy_exact can only be enabled if sdatathreadbusy is 
enabled.

Protocol hierarchy Datahandshake

Critical parameters mdatainfo_wdth, mdatainfobyte_wdth, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters sdatainfo, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters sdatainfo_wdth, sdatainfobyte_wdth, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters sdatathreadbusy, sdatathreadbusy_exact

Reference Table 26 on page 61
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Rule 2.2.18 datahandshake_cfg_sdatathreadbusy_exact_enable_
sdatathreadbusy
sdatathreadbusy_exact can onlybe enabled if sdatathreadbusy is 
enabled.

Rule 2.2.19 datahandshake_cfg_dataaccept_enable_
sdatathreadbusy_exact 
dataaccept can only be enabled if sdatathreadbusy_exact is not enabled.

Rule 2.2.20 datahandshake_cfg_reqdata_together_enable_
datahandshake
reqdata_together is only enabled if datahandshake is enabled.

19.3 Response Group

Rule 2.3.1 response_cfg_resplast_enable_burstlength
resplast can only be enabled if burstlength is enabled.

Protocol hierarchy Datahandshake

Critical parameters sdatathreadbusy_exact, sdatathreadbusy

Reference Table 26 on page 61

Protocol hierarchy Datahandshake

Critical parameters dataaccept, sdatathreadbusy_exact

Reference Table 26 on page 61

Protocol hierarchy Datahandshake

Critical parameters reqdata_together, datahandshake

Reference Table 24 on page 59

Protocol hierarchy Response

Critical parameters resplast, burstlength

Reference Footnotes on page 34
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Rule 2.3.2 response_cfg_respaccept_enable_resp
respaccept can only be enabled if resp is also enabled.

Rule 2.3.3 response_cfg_resplast_enable_resp
resplast can only be enabled if resp is also enabled.

Rule 2.3.4 response_cfg_resprowlast_enable_resp
resprowlast can only be enabled if resp is also enabled.

Rule 2.3.5 response_cfg_resprowlast_enable_burstlength
resprowlast can only be enabled if burstlength is also enabled.

Protocol hierarchy Response

Critical parameters respaccept, resp

References
Section 3.1.2 on page 16
Footnotes on page 34

Protocol hierarchy Response

Critical parameters resplast, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters resprowlast, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters resprowlast, burstlength

References
Section 3.1.3 on page 19
Footnotes on page 34
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Rule 2.3.6 response_cfg_resprowlast_enable_resplast_burstseq_blck_
enable
resprowlast can only be enabled if resplast and burstseq_blck_enable 
are enabled. 

Rule 2.3.7 response_cfg_respinfo_enable_resp
respinfo can only be enabled if resp is also enabled.

Rule 2.3.8 response_cfg_mthreadbusy_enable_resp
mthreadbusy can only be enabled if resp is enabled.

Rule 2.3.9 response_cfg_sdata_enable_resp
sdata can only be enabled if resp is also enabled.

Protocol hierarchy Response

Critical parameters resprowlast, resplast, burstseq_blck_enable

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters respinfo, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters mthreadbusy, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters sdata, resp

References
Section 3.1.2 on page 16
Footnotes on page 34
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Rule 2.3.10 response_cfg_sdatainfo_enable_resp
sdatainfo can only be enabled if resp is also enabled.

Rule 2.3.11 response_cfg_<cmd_enable>_enable_writeresp_enable
writenonpost_enable and rdlwrc_enable are only enabled if writeresp_
enable is enabled.

Rule 2.3.12 response_cfg_<cmd_enable>_enable_resp
read_enable and rdlwrc_enable are only enabled if resp is enabled.

Rule 2.3.13 response_cfg_mthreadbusy_exact_enable_mthreadbusy
mthreadbusy_exact can only be enabled if mthreadbusy is enabled.

Rule 2.3.14 response_cfg_respaccept_enable_mthreadbusy_exact
respaccept can only be enabled if mthreadbusy_exact is not enabled.

Protocol hierarchy Response

Critical parameters sdatainfo, resp

References
Section 3.1.2 on page 16
Footnotes on page 34

Protocol hierarchy Response

Critical parameters writenonpost_enable, writeresp_enable, rdlwrc_enable

Reference Section 4.9.1.1 on page 59

Protocol hierarchy Response

Critical parameters read_enable, rdlwrc_enable, resp 

References “Section 3.1.1 on page 13

Protocol hierarchy Response

Critical parameters mthreadbusy, mthreadbusy_exact

Reference Section 4.9.1.5 on page 61

Protocol hierarchy Response

Critical parameters respaccept, mthreadbusy_exact

Reference Table 26 on page 61
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Rule 2.3.15 response_cfg_mthreadbusy_enable_mthreadbusy_exact_ 
respaccept
mthreadbusy can only be enabled if exactly one of mthreadbusy_exact and 
respaccept is enabled.

19.4 Sideband Group

Rule 2.4.1 sideband_cfg_statusbusy_enable_status
statusbusy can only be enabled if status is enabled.

Rule 2.4.2 sideband_cfg_mreset_sreset
Either mreset or sreset must be enabled. 

Rule 2.4.3 sideband_cfg_controlwr_enable_control
controlwr can only be enabled if control is enabled.

Protocol hierarchy Response

Critical parameters mthreadbusy, mthreadbusy_exact respaccept

Reference Table 26 on page 61

Protocol hierarchy Sideband

Critical parameters statusbusy, status

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters mreset, sreset

Reference Section 3.2 on page 25

Protocol hierarchy Sideband

Critical parameters control, controlwr

Reference Footnotes on page 34
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Rule 2.4.4 sideband_cfg_controlbusy_enable_control
controlbusy is enabled but control is not enabled.

Rule 2.4.5 sideband_cfg_controlbusy_enable_controlwr
controlbusy is enabled but controlwr is not enabled.

Rule 2.4.6 sideband_cfg_statusrd_enable_status
statusrd can only be enabled if status is enabled.

Rule 2.4.7 sideband_cfg_statusbusy_enable_status
statusbusy can only be enabled if status is enabled. 

Protocol hierarchy Sideband

Critical parameters control, controlbusy

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters controlbusy, controlwr

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters status, statusrd

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters status, statusbusy

Reference Footnotes on page 34



434 Open Core Protocol Specification

OCP-IP Confidential

19.5 Test Group

Rule 2.5.1 test_cfg_jtagreset_enable_jtag_enable
jtagtrst_enable can only be enabled if jtag_enable is also enabled.

19.6 Interface Interoperability
The checks contained in this section identify configuration checks for 
connected devices. These checks are written under the assumption that the 
configurations accurately reflect the enabled protocol features of the 
individual devices. They do not reflect exceptions that are noted in the specifi-
cation and that are acceptable when used in conjunction with tie-offs.

Rule 2.6.1 master_slave_cfg_read_enable_match
If the slave has read_enable set to 0, the master must have read_enable set 
to 0. 

Rule 2.6.2 master_slave_cfg_readex_enable_match
If the slave has readex_enable set to 0, the master must have readex_
enable set to 0. 

Protocol hierarchy Test

Critical parameters jtagtrst_enable, jtag_enable

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters read_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters readex_enable

Reference Section 4.9.5 on page 64
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Rule 2.6.3 master_slave_cfg_rdlwrc_enable_match
If the slave has rdlwrc_enable set to 0, the master must have rdlwrc_
enable set to 0. 

Rule 2.6.4 master_slave_cfg_write_enable_match
If the slave has write_enable set to 0, the master must have write_enable 
set to 0. 

Rule 2.6.5 master_slave_cfg_writenonpost_enable_match
If the slave has writenonpost_enable set to 0, the master must have 
writenonpost_enable set to 0. 

Rule 2.6.6 master_slave_cfg_broadcast_enable_match
If the slave has broadcast_enable set to 0, the master must have 
broadcast_enable set to 0. 

Protocol hierarchy Request

Critical parameters rdlwrc_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters write_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters writenonpost_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters broadcast_enable

Reference Section 4.9.5 on page 64
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Rule 2.6.7 master_slave_cfg_burstseq_blck_enable_match
If the slave has burstseq_blck_enable set to 0, the master must have 
burstseq_blck_enable set to 0. 

Rule 2.6.8 master_slave_cfg_burstseq_incr_enable_match
If the slave has burstseq_incr_enable set to 0, the master must have 
burstseq_incr_enable set to 0. 

Rule 2.6.9 master_slave_cfg_burstseq_strm_enable_match
If the slave has burstseq_strm_enable set to 0, the master must have 
burstseq_strm_enable set to 0. 

Rule 2.6.10 master_slave_cfg_burstseq_dflt1_enable_match
If the slave has burstseq_dflt1_enable set to 0, the master must have 
burstseq_dflt1_enable set to 0. 

Protocol hierarchy Request

Critical parameters burstseq_blck_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_incr_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_strm_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_dflt1_enable

Reference Section 4.9.5 on page 64
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Rule 2.6.11 master_slave_cfg_burstseq_dflt2_enable_match
If the slave has burstseq_dflt2_enable set to 0, the master must have 
burstseq_dflt2_enable set to 0. 

Rule 2.6.12 master_slave_cfg_burstseq_wrap_enable_match
If the slave has burstseq_wrap_enable set to 0, the master must have 
burstseq_wrap_enable set to 0. 

Rule 2.6.13 master_slave_cfg_burstseq_xor_enable_match
If the slave has burstseq_xor_enable set to 0, the master must have 
burstseq_xor_enable set to 0. 

Rule 2.6.14 master_slave_cfg_burstseq_unkn_enable_match
If the slave has burstseq_unkn_enable set to 0, the master must have 
burstseq_unkn_enable set to 0. 

Protocol hierarchy Request

Critical parameters burstseq_dflt2_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_wrap_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_xor_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_unkn_enable

Reference Section 4.9.5 on page 64
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Rule 2.6.15 master_slave_cfg_force_aligned_match
If the slave has force_aligned, the master has force_aligned or it must 
limit itself to aligned byte enable patterns. 

Rule 2.6.16 master_slave_cfg_mdatabyteen_match
Configuration of the mdatabyteen parameter is identical between master and 
slave. 

Rule 2.6.17 master_slave_cfg_burst_aligned_match
If the slave has burst_aligned, the master has burst_aligned or it must 
limit itself to issue all INCR bursts using burst_aligned rules. 

Rule 2.6.18 master_slave_cfg_<threadbusy_param>_match
If the interface includes SThreadBusy, the sthreadbusy_exact and 
sthreadbusy_pipelined parameters are identical between master and 
slave. 

Protocol hierarchy Request

Critical parameters force_aligned

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters mdatabyteen

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burst_aligned

Reference Section 4.9.5 on page 64

Protocol hierarchy Response

Critical parameters sthreadbusy_exact, sthreadbusy_pipelined

Reference Section 4.9.5 on page 64
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Rule 2.6.19 master_slave_cfg_<mthreadbusy_param>_match
If the interface includes MThreadBusy, the mthreadbusy_exact and 
mthreadbusy_pipelined parameters are identical between master and 
slave. 

Rule 2.6.20 master_slave_cfg_<sdatathreadbusy_param>_match
If the interface includes SDataThreadBusy, the sdatathreadbusy_exact 
and sdatathreadbusy_pipelined parameters are identical between master 
and slave. 

Rule 2.6.21 master_slave_cfg_tag_interleave_size_match
If tags > 1, the master’s tag_interleave_size is smaller than or equal to 
the slave’s tag_interleave_size. 

Rule 2.6.22 master_slave_cfg_datahandshake_match
Configuration of the datahandshake parameter is identical between master 
and slave. 

Protocol hierarchy Response

Critical parameters mthreadbusy_exact, mthreadbusy_pipelined

Reference Section 4.9.5 on page 64

Protocol hierarchy Response

Critical parameters sdatathreadbusy_exact, sdatathreadbusy_pipelined

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters tag_interleave_size

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters datahandshake

Reference Section 4.9.5 on page 64



Rule 2.6.23 master_slave_cfg_writeresp_enable_onewaymatch
Configuration of the writeresp_enable parameter is identical between 
master and slave. If master has writeresp_enable=0 then slave must be 
configured with writeresp_enable=0. If master has writeresp_enable=1 
and slave is configured with writeresp_enable=0 then both write_
enable=0 and broadcast_enable = 0 (i.e., WR and BCST must not be 
enabled). 

Rule 2.6.24 master_slave_cfg_reqdata_together_match
Configuration of the reqdata_together parameter is identical between 
master and slave. 

Rule 2.6.25 master_slave_cfg_mreset_match
If the master has mreset enabled to 1, the slave has mreset enabled to 1. 

Rule 2.6.26 master_slave_cfg_sreset_match
If the slave has sreset enabled to 1, the master has sreset enabled to 1. 

Protocol hierarchy Request

Critical parameters writeresp_enable, write_enable, broadcast_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters reqdata_together

Reference Section 4.9.5 on page 64

Protocol hierarchy Sideband

Critical parameters mreset

Reference Section 4.9.5 on page 64

Protocol hierarchy Sideband

Critical parameters sreset

Reference Section 4.9.5 on page 64
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Rule 2.6.27 master_slave_cfg_tags_match
The master and slave tags values must match. 

Rule 2.6.28  master_slave_cfg_interoperability

If either master or slave have connection parameter set to 0, then ConnectCap 
for master and slave that have this parameter to 1 must be tied off to 0.

Rule 2.6.29 master_slave_cfg_connectcap_match
Configuration of the ConnectCap signal value is identical between master and 
slave, if both master and slave have connection set to 1.

Protocol hierarchy Request

Critical parameters tags

Reference Section 4.9.5 on page 64

Protocol hierarchy sideband

Critical parameters connection

Reference Section 3.2.1 on page 26

Protocol hierarchy sideband

Critical parameters connection

Reference Section 3.2.1 on page 26
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20 Functional Coverage

The functional coverage approach described in this chapter is bottom-up, 
meaning the analysis starts at the signal level and goes up to the transaction 
level. The transfer level has been skipped for reasons highlighted in 
Section 20.2 on page 447. Along this path several coverage types are used. 
The signal level uses toggle, state, and meta coverages, while the transaction 
level uses cross and meta coverages.

Toggle coverage
Toggle coverage provides baseline information that a system is connected 
properly, and that higher level coverage or compliance failures are not 
simply the result of connectivity issues. Toggle coverage answers the 
question: Did a bit change from a value of 0 to 1 and back from 1 to 0? 
This type of coverage does not indicate that every value of a multi-bit 
vector was seen but measures that all the individual bits of a multi-bit 
vector did toggle. In certain cases, not all bits can toggle. A system that 
only supports RD commands, (“010”) for example, will only need toggle 
coverage on MCmd bit1. MCmd bit0 and bit2 will always be 0. Therefore 
they must be filtered from the MCmd toggle coverage. 

State coverage
State coverage applies to signals that are a minimum of two bits wide. In 
most cases, the states (also commonly referred to as coverage bins) can be 
easily identified as all possible combinations of the signal. For example, 
for the SResp signal, the states could be 00 (IDLE), 01 (DVA), 10 (FAIL) 
and 11 (ERR). If the state space is too large, an intelligent classification of 
the states must be made. In the case of the MAddr signal for example, a 
possible choice of the coverage bins could be one bin to cover the lower 
address range, one bin to cover the upper address range and one bin to 
cover all other intermediary addresses.

Meta coverage
Meta coverage is collecting second-order coverage data. Possible meta 
coverage measurements include accept backpressure delays, threadbusy 
backpressure delays and inter-phase delays. Meta coverage information is 
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particularly useful to flag excessive latencies (possibly indicating dead-
locks) and to evaluate the OCP backpressure mechanisms (accept / 
threadbusy).

Cross coverage
Cross coverage measures the activity of one or multiple categories. A 
category is defined at the transaction level that typically groups multiple 
OCP signals to form a more abstract, higher-level view of a particular 
aspect of the OCP protocol. The most pertinent category example is the 
transTypes. This category combines the MCmd, MBurstLength and 
MBurstSingleReq signals into a higher-level category. Cross coverage on 
one category, for example the transTypes category, indicates which kind 
of transactions were applied to the system under test (for instance, 
MRMD-RD-4, SINGLE-WRNP, etc.). Cross coverage on multiple 
categories, for example the transTypes and transResults categories, not 
only provides information about the transactions applied to the system, 
but also on their results. In essence, cross coverage measures the types 
of transactions passing through a system. 

20.1 Signal Level
Table 86 summarizes the OCP functional coverage approach for the signal 
level. The table maps all OCP signals (non-sideband) into phase groups (req / 
datahs / resp) and provides coverage information in the two outermost right 
columns. Each coverage type field is colored either in green or in yellow. Green 
fields are mandatory for functional coverage. Yellow fields are optional for 
functional coverage.

Level 1—Baseline Coverage 
Level 1—baseline column establishes a solid baseline for the signal level 
functional coverage, so it contains only mandatory coverage. The coverage 
type is toggle coverage. Toggle coverage provides a minimum level of 
confidence to the verification engineer that the device under test is alive 
and properly connected to the rest of the system. It proves as well that no 
OCP signals are stuck at 0 or 1. In some cases, filters should be applied 
to the toggle coverage to exclude coverage of bits that can never toggle 
(refer to the MCmd example on page 443). 

Level 2 Coverage 
The level 2 coverage type column defines additional coverage. Possible 
coverage types are state or meta. State coverage defines states (bins) for a 
multi-bit vector to provide a higher level of abstraction. Meta coverage 
covers accept / threadbusy backpressure delays.

Mandatory fields must be covered and are with their respective coverage 
type:

MAddr/MCmd/SResp :state coverage

MAddrSpace/MByteEn/MDataByteEn :state coverage

MAtomicLength/MBurstLength/MBurstSeq :state coverage

MBlockHeight/MBlockStride :state coverage
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Optional column level 2 fields and their coverage types are:

Signals that are only one bit wide only have toggle coverage:

Table 86 Signal Level Functional Coverage 

MTagID/MDataTagID/STagID :state coverage

MThreadID/MDataThreadID/SthreadID :state coverage

MData/SData :state coverage

MDataValid :meta coverage

SCmdAccept/SDataAccept/MRespAccept :meta coverage

MReqInfo/MDataInfo/SDataInfo/SRespInfo :state coverage

MConnID :state coverage

SThreadBusy/SDataThreadBusy/MThreadBusy :meta coverage

MBurstPrecise/MBurstSingleReq

MReqLast/MDataLast/SRespLast

MTagInOrder/STagInOrder

MReqRowLast/MDataRowLast/SRespRowLast

Phase Groups Coverage Type

Signal Group Signal Req Datahs Resp
Level 1
Baseline

Level 2

Basic MAddr X Toggle State

MCmd X Toggle State

MData X Toggle State

MDataValid X Toggle Meta

MRespAccept X Toggle Meta

SCmdAccept X Toggle Meta

SData X Toggle State

SDataAccept X Toggle Meta

SResp X Toggle State
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Simple MAddrSpace X Toggle State

MByteEn X Toggle State

MDataByteEn X Toggle State

MDataInfo X Toggle State

MReqInfo X Toggle State

SDataInfo X Toggle State

SRespInfo X Toggle State

Burst MAtomicLength X Toggle State

MBlockStride X Toggle State

MBlockHeight X Toggle State

MBurstLength X Toggle State

MBurstPrecise X Toggle

MBurstSeq X Toggle State

MBurstSingleReq X Toggle

MDataLast X Toggle

MDataRowLast X Toggle

MReqLast X Toggle

MReqRowLast X Toggle

SRespLast X Toggle

SRespRowLast X Toggle

Tag MDataTagID X Toggle State

MTagID X Toggle State

MTagInOrder X Toggle

STagID X Toggle State

STagInOrder X Toggle

Thread MConnID X Toggle State

MDataThreadID X Toggle State

MThreadBusy X Toggle Meta

MThreadID X Toggle State

SDataThreadBusy X Toggle Meta

SThreadBusy X Toggle Meta

SThreadID X Toggle State

Phase Groups Coverage Type

Signal Group Signal Req Datahs Resp
Level 1
Baseline

Level 2
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Table 87 outlines options for signal level meta coverage. For each phase group 
(req/datahs/resp), two meta coverage types are identified: accept 
backpressure delay and threadbusy backpressure delay. Other meta coverage 
types could be identified.

Table 87 Signal Level Meta Coverage Examples 

20.2 Transfer Level
The transfer level for functional coverage is being skipped. The underlying 
reasons are:

• The most obvious order for the OCP functional coverage definition is to 
follow the OCP hierarchy: signal, phase, transfer, transaction. However, 
such reasoning does not work well for SRMD bursts. SRMD bursts can be 
constructed as 1 req + n datahs + 1 resp. As such, the transfer concept 
does not apply 100% because the number of phases per transfer is not 
constant. Since it is desirable to have a uniform functional coverage 
definition, which applies to all OCP transactions (MRMD, SRMD, or 
SINGLE), it makes sense to skip the transfer level.

• Even if the transfer level was included, there are no valuable coverage 
points. The combination of phases into transfers is a pure protocol check 
related matter. Meta coverage to measure inter-phase delays may be 
useful and is discussed at the transaction level. 

Sideband MConnect Toggle State

SConnect Toggle

SWait Toggle

Phase Group Coverage Types Details 

Request phase Accept backpressure delay MCmd – SCmdAccept delay

Thread busy backpressure 
delay

SThreadBusy backpressure delay 
(per bit)

Datahs phase Accept backpressure delay MDataValid – SDataAccept delay

Thread busy backpressure 
delay

SDataThreadBusy backpressure 
delay (per bit)

Response phase Accept backpressure delay SResp – MRespAccept delay

Thread busy backpressure 
delay

MThreadBusy backpressure delay 
(per bit)

Phase Groups Coverage Type

Signal Group Signal Req Datahs Resp
Level 1
Baseline

Level 2
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20.3 Transaction Level

transTypes Concept
Before discussing coverage at the transaction level, clarification is required 
concerning the process of getting from the signal level to the transaction level. 
In essence, signals are combined into phases that are then combined into 
transactions. The unique transaction types represented in this table are 
referred to as transTypes. Table 88 below summarizes this process and is 
based on the phases in a transfer described in Section 4.3.2.1 on page 42.

Table 88 transTypes 

Notes to Table 88:

1. The table shows how phases are combined into SINGLE transfers, MRMD 
bursts and SRMD bursts. SINGLE transfers can be de-generated from 
either MRMD or SRMD bursts.

2. L stands for the MBlockLength (one in the case of a SINGLE transfer) and 
H stands for MBlockHeight.

3. transTypes are controlled by the signals MBurstSingleReq, MCmd and 
MBlockHeight(H), MBurstLength (L) and the parameters datahandshake 
and writeresp_enable.

4. RDEX, RDL, and WRC commands only apply to SINGLE transfers. 

MBurstSingleReq MCmd

Phases Enabling Condition

Req Datahs Resp Datahandshake Writeresp_enable

0
MRMD
SINGLE transfer

RD/RDEX/RDL H*L H*L

WR/BCST H*L 0 0

WR/BCST H*L H*L 0 1

WRNP/WRC H*L H*L 0 don’t care

WR/BCST H*L H*L 1 0

WR/BCST H*L H*L H*L 1 1

WRNP/WRC H*L H*L H*L 1 don’t care

1
SRMD
SINGLE transfer

RD 1 H*L

WR/BCST 1 H*L 1 0

WR/BCST 1 H*L 1 1 1

WRNP 1 H*L 1 1 don’t care
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5. RD, RDEX, and RDL are not controlled by the datahandshake and 
writeresp_enable parameters.

6. WRNP and WRC are not controlled by the writeresp_enable parameter.

7. The possible transTypes are:

• SINGLE transfers RD, WR, BCST, WRNP, RDEX, RDL, and WRC 

• MRMD bursts RD, WR, BCST, and WRNP

• SRMD bursts RD, WR, BCST, snf WRNP

The following example illustrates this.

If MBurstSingleReq supports values 0 and 1 and
If MCmd only supports RD,WR,WRNP,RDEX and
If datahandshake == 1 and writeresp_enable == 1 
then the transTypes will be:
a) SINGLE transfers, RD/WR/WRNP/RDEX
b) MRMD bursts, RD/WR/WRNP
c) SRMD bursts, RD/WR/WRNP

Category Concept
A category groups one or more OCP signals and serves as a building block for 
cross coverage. A category also represents a higher level view of the OCP 
protocol, allowing intelligent crosses to be made of one or more categories. 
Table 89 lists and describes the proposed categories:

Table 89 Categories 

Notes to Table 89:

1. The transBurstProps category may be split into multiple categories 
enabling a higher granularity for cross coverage.

2. The flowTagTypes category combines the TagInOrder and TagID signals. 
The tag type is encoded as follows:

Name Description

transTypes Category containing the transaction types based on Table 88

transTargets Category containing the transaction targets (MAddr / 
MAddrSpace)

transResults Category containing the transaction results (SResp)

transBurstProps Category containing the burst properties (AtomicLength / 
MBurstPrecise / MBurstSeq)

transByteens Category containing the transaction byte enables (MByteEn / 
MDataByteEn)

flowThreads Category containing the flows as function of the ThreadID

flowTagTypes Category containing the flows as function of the TagInOrder / TagID
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• If TagInOrder, then tag type == tag-in-order (1 enumerated value)

• If not, then tag type == the TagID (multiple enumerated values)

If the TagID range is too large, sub-ranges should be defined. As such, the 
tag type will have 1 + x enumerated values. 

20.4 Mapping Signals into Categories
Table 90 shows the OCP signals (non-sideband) mapped into the categories 
described in the previous section. Only signals that are not optional in the 
level 2 column of Table 86, and are not MReqLast, MDataLast, or SRespLast, 
are mapped.

Table 90 Signal Mapping into Categories 

Signal

Categories
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MAddr X

MAddrSpace X

MAtomicLength X

MBlockHeight X

MBurstLength X

MBurstPrecise X

MBurstSeq X

MBurstSingleReq X

MByteEn X

MCmd X

MDataByteEn X

MDataTagID X

MDataThreadID X

MTagID X

MTagInOrder X

MThreadID X

SResp X
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20.4.1 Cross Coverage of One Category 
Cross coverage can be applied to just one category. Since this kind of cross 
coverage only makes sense if a category contains more then one signal, the 
transResults and transByteens categories are excluded from this type of cross 
coverage.

Cross coverage of one category can be useful in measuring what kind of 
transTypes flowed through a design regardless of the signals contained in 
other categories (for example, the transResults). A more useful coverage result 
from applying crosses among several categories. Cross coverage of one 
category is considered optional while cross coverage on multiple categories is 
considered mandatory.

20.4.2 Cross Coverage on Multiple Categories 
Cross coverage can also be applied to combinations of categories. Theoret-
ically, many crosses are possible (128 in total), but only some will make sense 
for a specific OCP interface configuration and design architecture.

The crosses between the transTypes category and other categories are 
considered mandatory and establish a solid base for cross coverage at the 
transaction level. Table 91 shows some of the mandatory crosses that form a 
sub-set of the theoretical possibilities. It is up to the user to declare additional 
crosses that exclude the transTypes category, but are important for the 
system under test. Such crosses are considered optional.

STagID X

STagInOrder X

SThreadID X

Signal
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Table 91 Mandatory Crosses of Multiple Categories (Including transType) 

20.5 Meta Coverage
Table 92 outlines possibilities for the transaction level meta coverage. Three 
meta coverage types are identified: accept backpressure delays relative to the 
position in a transaction, threadbusy backpressure delays relative to the 
position in a transaction and several inter-phase delays. Other interesting 
meta coverage types could be identified.

Table 92 Transaction Level Meta Coverage Examples 

20.6 Sideband Signals Coverage
Toggle coverage

Toggle coverage must be applied to each individual bit of the sideband 
signals to establish a solid coverage baseline.

Categories
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Cross Description

X X Cross all transaction types with all targets

X X Cross all transaction types for all threads

X X Cross all transaction types with all transaction 
results

X X X Cross all transaction types for all bursts with all 
byte enable patterns

X X X Cross all transaction types for all bursts with the 
transaction results

Meta Coverage Types Coverage Details

Inter-phase delays req to req / datahs to datahs / resp to resp delays

req to datahs / req to resp / datahs to resp delays

First req accepted delay / last req accepted delay 
for MRMD bursts

Accept backpressure delays 
relative to the position in the 
transaction

Measure when accept backpressure occurs in a 
transaction

Threadbusy backpressure 
delays relative to the position in 
the transaction

Measure when threadbusy backpressure occurs in 
a transaction
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State coverage
Sideband signals that consist of multiple bits can have state coverage 
similar to the dataflow signals.

Meta coverage
Meta coverage can be added for the control and status signals. Some 
examples of meta coverage that might be added for the control signals 
handshake are:

• The delay between two ControlWr signal assertions.

• The length of the ControlBusy signal assertion.

• The ControlBusy assertion relative to the previous ControlWr 
assertion. 

Some examples of meta coverage that might be added for the status 
signals handshake are:

• The delay between two StatusRd signal assertions.

• The length of the StatusBusy signal assertion.

20.7 Naming Conventions
This section describes he naming conventions for functional coverage. 

Signal Level (Dataflow Signals) 
Naming template:

signal_<coverage type>_<signal name | meta name>_<bin>

In which:

<coverage type>: toggle
state
meta

<signal name>: OCP signal
<meta name>: SCmdAcceptDelay

SDataAcceptDelay
MRespAcceptDelay
SThreadBusyDelay
SDataThreadBusyDelay
MThreadBusyDelay

<bin>: if enumerated types are defined in OCP use them
for example: SResp in [ERR,DVA,FAIL,IDLE]
else be free to choose a clear name

Examples:

signal_toggle_MAddr_bit0_0to1
signal_state_MByteEn_allOnes
signal_meta_SThreadBusyDelay_2
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Transaction Level (Dataflow Signals) 
Naming template:

trans_<coverage type>_<cross name | meta name>[_<bin>]

In which:

<coverage type>:cross
meta

<cross name>:for cross coverage of 1 category:
transTypes
transTargets
transBurstProps
flowThreads
flowTagTypes

for cross coverage of multiple categories:
trans_<list of …>_flow_<list of …>
TypesThreads
ResultsTagTypes
Targets
BurstProps
Byteens

<meta name>:ScmdAcceptDelay
SDataAcceptDelay
MRespAcceptDelay
SThreadBusyDelay
SDataThreadBusyDelay
MThreadBusyDelay
ReqReqPhaseDelay
ReqRespPhaseDelay

…
[<bin>]: The bin naming is optional for cross coverage.

In most cases the bins will automatically be chosen by 
the verification tool itself. However if the cross includes
signals which have specific OCP enumerated values defined
(as DVA for SResp), it’s advisable to use them.

Examples:

trans_cross_transTypes
trans_cross_trans_TypesResults
trans_cross_flow_ThreadsTagTypes
trans_cross_trans_TypesResults_flow_Threads
trans_meta_ReqReqPhaseDelay_4

Sideband Signals
Naming template:

sideband_<coverage type>_<signal name | meta name>_<bin>
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In which:

<coverage type>:toggle
state
meta

<signal name>:OCP signal
<meta name>:ControlWrControlWrDelay

ControlBusyDuration
ControlWrControlBusyDelay
StatusRdStatusRdDelay
StatusRdDuration

<bin>: be free to choose a clear name

Examples:

sideband_toggle_ControlWr
sideband_state_Control_3
sideband_meta_StatusRdDuration_5
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A OCP Trace File

The OCP trace file consists of data recorded by an SVA monitor during 
simulation. The name of the file generated by the OCP monitor is 
<ocpName>.ocp. Because of the variable configuration of OCP connections, 
SVA trace files may appear to have different formats. However, two OCP 
connections with identical configurations generate trace files with identical 
formats. The SVA trace file consists of header and trace data sections, as 
described below. 

A.1 Header
The header section defines the parameters of the OCP connection from which 
the trace data originated. Example 2 shows a sample OCP trace file. 

Example 2 Sample OCP Trace File

# ocpversion=ocp2.2-1.6
# name=ocp20_ocpmon2
# mreset=1
# addr_wdth=32
# data_wdth=64
##

10.0 0 0 xxxxxxxx x xxxxxxxxxxxxxxxx 0 xxxxxxxxxxxxxxxx
110.0 1 0 xxxxxxxx x xxxxxxxxxxxxxxxx 0 xxxxxxxxxxxxxxxx
120.0
210.0 1 1 00000000 1 0000000087654321 0 xxxxxxxxxxxxxxxx
220.0
230.0
370.0 1 0 xxxxxxxx x xxxxxxxxxxxxxxxx 1 0000000087654321
380.0 1 0 xxxxxxxx x xxxxxxxxxxxxxxxx 0 xxxxxxxxxxxxxxxx

...
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Parameters in the header section show the parameter name and the assigned 
value. The ocpversion is derived from the install tree and provides the OCPIP 
revision number and release number. For example, ocpversion=ocp2.2-
1.6. 

The name parameter identifies the OCP monitor from which the trace data was 
recorded. For example, name=ocp20_ocpmon2 indicates the OCP monitor 
name was ocp20_ocpmon2.

If a parameter is not specified in the header, the default value listed in 
Table 29 on page 68 is used. If signals are enabled, width parameters are 
required for the corresponding signals, but width parameters do not have 
explicit defaults. Typically, trace files generated by monitors specify all 
parameter values.

Since mreset and sreset do not have defaults, values must be specified for 
each.

The header of the trace file always ends with a double pound sign (##). 
Optional comment lines preceded by a pound sign may appear following the 
header and contain information about the program that generated the file.

A.2 Trace Data
Each line of trace data represents the values of the OCP signals for a cycle of 
data. The trace data is organized so that data remains in fixed fields with a 
blank space between them. The first field is the simulation time during which 
the sample was recorded. Some lines of data only have an entry for the 
simulation time. This means that the OCP signals have not changed value in 
that cycle. The first line of trace data must have more data than just the entry 
for the simulation time; that is, there is no default signal state. If the 
simulation time is not the only field that has an entry then all fields must have 
an entry. Each entry must have enough data to fill all the bits of the signal for 
that entry. If there is more data than there are bits, the extra most significant 
bits will be truncated. 

Each line in the data section maps to a snapshot of the OCP connection at the 
rising edge of the simulation clock. 

Table 93 describes each of the fields that exist in the trace data. Following the 
field descriptions down this table is equivalent to following trace data columns 
from left to right. The table indicates the required condition for the field to 
appear in the trace file (specifically, if the required OCP parameter condition 
is not met, the field will not be present in the trace data.). The table also 
indicates how many bits of data are required by the field and the format of the 
field. 

For the hexadecimal format, it is possible to have value with Xs and Zs 
intermixed with 0s and 1s. Such a value would have brackets, {}, around 4 
digits to represent a binary encoding for a byte. For example, a 12-bit binary 
number of 10001X011010 would be represented as 8{1X01}A. When all four 
bits of a byte are X, a simple X represents the entire byte. When all four bits 
of a byte are Z, a simple Z represents the entire byte.
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Table 93 OCP Trace File, Line Field Decoding 

Field Parameter Condition Field Width in Bits Format 

Simulation Time None (not applicable) floating point

MReset_n mreset parameter is 1 Always 1 hexadecimal

SReset_n sreset parameter is Always 1 hexadecimal

MCmd None Always 3 hexadecimal

MAddr addr is 1 addr_wdth hexadecimal

MAddrSpace addrspace is 1 addrspace_wdth hexadecimal

MByteEn byteen data_wdth / 8 hexadecimal

MConnID connid is 1 connid_wdth hexadecimal

MReqInfo reqinfo is 1 reqinfo_wdth hexadecimal

MThreadID threads > 1 threadid_wdth1 hexadecimal

MTagID tags > 0 tagid_wdth2 hexadecimal

MTagInOrder taginorder is 1 Always 1 hexadecimal

MAtomicLength atomiclength is 1 atomiclength_wdth hexadecimal

MBurstLength burstlength is 1 burstlength_wdth hexadecimal

MBlockHeight3 blockheight is 1 blockheight_wdth hexadecimal

MBlockStride3 blockstride is 1 blockstride_wdth hexadecimal

MBurstPrecise burstprecise is 1 Always 1 hexadecimal

MBurstSeq burstseq is 1 Always 3 hexadecimal

MBurstSingleReq burstsinglereq is 1 Always 1 hexadecimal

MReqLast reqlast is 1 Always 1 hexadecimal

MReqRowLast 3 reqrowlast is 1 Always 1 hexadecimal

SCmdAccept cmdaccept is 1 Always 1 hexadecimal

SThreadBusy sthreadbusy is 1 threads hexadecimal

MData mdata is 1 data_wdth hexadecimal

MDataInfo mdatainfo is 1 mdatainfo_wdth hexadecimal

MDataValid datahandshake is 1 Always 1 hexadecimal

MDataByteEn mdatabyteen is 1 data_wdth / 8 hexadecimal

MDataThreadID threads > 1 and 
datahandshake is 1

threadid_wdth1 hexadecimal

MDataTagID tags > 1 and 
datahandshake is 1

tagid_wdth2 hexadecimal

MDataLast datalast is 1 Always 1 hexadecimal

MDataRowLast 3 datarowlast is 1 Always 1 hexadecimal
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SDataAccept dataaccept is 1 Always 1 hexadecimal

SDataThreadBusy sdatathreadbusy is 1 threads hexadecimal

SResp resp is 1 Always 2 hexadecimal

SRespInfo respinfo is 1 respinfo_wdth hexadecimal

SThreadID threads > 1 and resp is 1 threadid_wdth 1 hexadecimal

STagID tags > 1 and resp is 1 tagid_wdth 2 hexadecimal

SData sdata is 1 data_wdth hexadecimal

SDataInfo sdatainfo is 1 sdatainfo_wdth hexadecimal

SRespLast resplast is 1 Always 1 hexadecimal

SRespRowLast 3 resprowlast is 1 Always 1 hexadecimal

MRespAccept respaccept is 1 Always 1 hexadecimal

MThreadBusy mthreadbusy is 1 threads hexadecimal

MFlag mflag is 1 mflag_wdth binary

MError merror is 1 Always 1 binary

SFlag sflag is 1 Always 1 binary

SError serror is 1 Always 1 binary

SInterrupt interrupt is 1 Always 1 binary

Control control is 1 control_wdth hexadecimal

ControlWr controlwr is 1 Always 1 binary

ControlBusy controlbusy is 1 Always 1 binary

Status status is 1 status_wdth hexadecimal

StatusRd statusrd is 1 Always 1 binary

StatusBusy statusbusy is 1 Always 1 binary

1. The threadid_wdth parameter is internal and calculated as follows: 
threadid_wdth = max(1, log2(threads))

2. The tagid_wdth parameter is internally derived, and is calculated as follows: 
tagid_wdth = max(1, log2(tags))

3. No signals are associated with *threadbusy_pipelined parameters. The existing Thread Signals are used 
in that case.

Field Parameter Condition Field Width in Bits Format 
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conditions 229
definition 52
read 178
write 181

state machine 222
support

reporting instructions 350, 351
signals 19

tagged 187
transfers

atomic unit 20
total 20

types 52
wrapping 174
write

last 21

burst_aligned parameter 60, 68

burstlength parameter 20, 69
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mismatch 66

wireloadcapacitance
description 151
See also wireloaddelay
timing 143

wireloaddelay
description 151
timing 143

wireloadresistance
description 151
timing 143

word
corresponding bytes 17
packing 54
padding 54
partial 50
power-of-2 15
size 9, 15
stripping 54

transfer 9, 50
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