

Open Core Protocol

Specification

Release 3.0

Open Core Protocol
Specification

Document Revision 1.0

© 2013 Accellera Systems Initiative Inc., All Rights Reserved.

Open Core Protocol Specification 3.0
Document Revision 1.0

This document, including all software described in it, is furnished under the terms of the Open Core Protocol
Specification License Agreement (the “License”) and may only be used or copied in accordance with the terms of
the License. The information in this document is a work in progress, jointly developed by the members of OCP-
IP Association (“OCP-IP”) and is furnished for informational use only.

In September 2013, Accellera Systems Initiative (Accellera) acquired certain assets of OCP-IP. These assets
include the current OCP 3.0 standard and the supporting infrastructure. OCP 3.0 was released by Accellera in
October 2013.

Notice

Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. Accellera Systems Initiative is not
responsible for identifying Essential Patent Claims for which a license may be required, for
conducting inquiries into the legal validity or scope of Patent Claims or determining whether any
licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any,
or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are
expressly advised that determination of the validity of any patent rights, and the risk of infringement
of such rights, is entirely their own responsibility. Further information may be obtained from the
Accellera Systems Initiative IP Rights Committee.

The trademarks, logos, and service marks displayed in this document are the registered and unregistered
trademarks of Accellera, its members and its licensors. The following trademarks of Sonics, Inc. have been licensed
to OCP-IP and subsequently to Accellera: FastForward, CoreCreator, SiliconBackplane, SiliconBackplane Agent,
InitiatorAgent Module, TargetAgent Module, ServiceAgent Module, SOCCreator, and Open Core Protocol.

The copyright and trademarks owned by Accellera, whether registered or unregistered, may not be used in
connection with any product or service that is not owned, approved or distributed by Accellera, and may not be
used in any manner that is likely to cause customer confusion or that disparages Accellera. Nothing contained in
this document should be construed as granting by implication, estoppel, or otherwise, any license or right to use
any copyright without the express written consent of Accellera, its licensors or a third party owner of any such
trademark.

Accellera reserves the right to make changes to OCP and this manual in subsequent revisions and makes no
warranties whatsoever with respect to the completeness, accuracy, or applicability of the information in this
manual, when used for production design and/or development.

Suggestions for improvements to OCP and/or to this manual are welcome. They should be sent to the OCP email
reflector or to the address below.

The current Working Group’s website address is

 http://www.accellera.org/apps/org/workgroup/ocp_specification-wg/

Information about Accellera and membership enrollment can be obtained by inquiring at www.accellera.org or at
the address below.

Accellera Systems Initiative Inc.
1370 Trancas Street, #163
Napa, CA 94558
Phone: (707) 251-9977
Fax: (707) 251-9877

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera standards documents are developed within Accellera and the Technical Committee of Accellera
Systems Initiative Inc. Accellera develops its standards through a consensus development process, approved
by its members and board of directors, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the
consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury,
property or other damage, of any nature whatsoever, whether special, indirect, consequential, or
compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other
Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent
infringement. Accellera Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to
determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a
consensus of concerned interests, it is important to ensure that any interpretation has also received the
concurrence of a balance of interests. For this reason, Accellera and the members of its Technical Committee
are not able to provide an instant response to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of
membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Comments on standards and
requests for interpretations should be addressed to:

Accellera Systems Initiative
1370 Trancas Street #163
Napa, CA 94558
USA
www.accellera.org

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or
trademarks to indicate compliance with the materials set forth herein.

Authorization to copy portions of any individual standard for internal or personal use must be granted by
Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange for
authorization please contact Lynn Bannister, Accellera, 1370 Trancas Street #163, Napa, CA 94558, phone
(707) 251-9977, e-mail lynn@accellera.org. Permission to copy portions of any individual standard for
educational classroom use can also be obtained from Accellera.

Contents

 1 Overview 1

1.1 OCP Characteristics . 1

1.2 Compliance . 3

Part I Specification 5

 2 Theory of Operation 7

 3 Signals and Encoding 13

3.1 Dataflow Signals . 13

3.1.1 Basic Signals . 13

3.1.2 Simple Extensions. . 16

3.1.3 Burst Extensions . 19

3.1.4 Tag Extensions . 22

3.1.5 Thread Extensions. . 23

3.2 Sideband Signals . 25

3.2.1 Connection, Reset, Interrupt, Error, and Core-Specific Flag Signals 26

3.2.2 Control and Status Signals . 28

3.3 Test Signals . 29

3.3.1 Scan Interface . 29

3.3.2 Clock Control Interface . 30

3.3.3 Debug and Test Interface . 30

3.4 Signal Configuration . 31

3.4.1 Signal Directions . 35

 4 Protocol Semantics 37

4.1 Signal Groups . 38

4.2 Combinational Dependencies . 39

4.3 Signal Timing and Protocol Phases . 40

4.3.1 OCP Clock . 40

4.3.2 Dataflow Signals . 41

4.3.3 Sideband and Test Signals . 46

4.4 Transfer Effects . 49

4.4.1 Partial Word Transfers . 50

4.4.2 Posting Semantics . 51

viii Open Core Protocol Specification

4.4.3 Transaction Completion, Transaction Commitment 51

4.5 Endianness . 51

4.6 Burst Definition . 52

4.6.1 Burst Address Sequences . 53

4.6.2 Burst Length, Precise and Imprecise Bursts . 54

4.6.3 Constant Fields in Bursts . 55

4.6.4 Atomicity . 55

4.6.5 Single Request / Multiple Data Bursts (Packets) 55

4.6.6 MReqLast, MDataLast, SRespLast . 56

4.6.7 MReqRowLast, MDataRowLast, SRespRowLast 56

4.7 Tags . 57

4.7.1 Ordering Restrictions . 57

4.8 Threads and Connections . 58

4.9 OCP Configuration . 59

4.9.1 Protocol Options . 59

4.9.2 Phase Options . 63

4.9.3 Signal Options. . 64

4.9.4 Minimum Implementation . 64

4.9.5 OCP Interface Interoperability . 64

4.9.6 Configuration Parameter Defaults . 67

 5 OCP Coherence Extensions: Theory of Operation 73

5.1 Cache Coherence . 74

5.2 Local View vs. System View . 74

5.3 Coherent System Transactions . 75

5.3.1 Cache Line and Cache States . 75

5.3.2 Three Hop and Four Hop Protocols . 76

5.4 Address Space . 77

5.5 Entities and Ports . 77

5.6 Commands . 79

5.7 Self Intervention and Serialization . 80

5.8 Interconnect or Bridge Agent . 81

5.9 Port Characteristics . 81

5.10 Master Models . 84

5.10.1 Coherent Master . 84

5.10.2 Coherence-Aware Master . 86

5.10.3 Legacy Master . 86

Contents ix

5.11 Slave Models . 86

5.11.1 Coherent Slave: Directory Based . 86

5.11.2 Coherent Slave: Snoop Based . 88

5.11.3 Legacy Slave. . 89

5.12 Multi-threading and Tags . 89

5.13 Burst Support . 90

5.14 Memory Consistency . 90

5.15 Race Condition, Deadlock, Livelock, and Starvation 90

5.16 Heterogeneous Coherence System . 91

 6 OCP Coherence Extensions: Signals and Encodings 93

6.1 Definitions . 93

6.1.1 New Transaction Types . 93

6.2 Main Port: Parameters, Signals, and Encodings . 94

6.2.1 Introduction . 94

6.2.2 Main Port Parameters . 95

6.2.3 Signals and Encodings . 96

6.2.4 Transfer Phases . 107

6.2.5 Transfer Effects . 108

6.3 Intervention Port: Parameters, Signals, and Encodings 110

6.3.1 Introduction . 110

6.3.2 Port Parameters . 111

6.3.3 Signals and Encodings . 112

6.3.4 Signal Groups . 119

6.3.5 Transfer Phases . 121

6.3.6 Phase Ordering within a Transfer . 121

6.3.7 Transfer Effects . 122

 7 Interface Configuration File 123

7.1 Lexical Grammar . 123

7.2 Syntax . 124

 8 Core RTL Configuration File 129

8.1 Syntax . 129

8.2 Components . 130

8.3 Sample RTL Configuration File . 138

x Open Core Protocol Specification

 9 Core Timing 141

9.1 Timing Parameters . 142

9.1.1 Minimum Parameters . 142

9.1.2 Hold-time Parameters . 142

9.1.3 Technology Variables . 143

9.1.4 Connecting Two OCP Cores . 144

9.2 Core Synthesis Configuration File . 146

9.2.1 Syntax Conventions . 146

9.2.2 Version Section . 148

9.2.3 Clock Section . 148

9.2.4 Area Section. 148

9.2.5 Port Constraints Section. 149

9.2.6 Max Delay Constraints . 154

9.2.7 False Path Constraints. 154

9.2.8 Sample Core Synthesis Configuration File . 155

Part II Guidelines 157

 10 Timing Diagrams 159

10.1 Simple Write and Read Transfer . 159

10.2 Request Handshake . 161

10.3 Request Handshake and Separate Response . 162

10.4 Write with Response . 163

10.5 Non-Posted Write . 164

10.6 Burst Write . 165

10.7 Non-Pipelined Read . 167

10.8 Pipelined Request and Response . 168

10.9 Response Accept . 169

10.10 Incrementing Precise Burst Read . 170

10.11 Incrementing Imprecise Burst Read . 172

10.12 Wrapping Burst Read . 174

10.13 Incrementing Burst Read with IDLE Request Cycle 175

10.14 Incrementing Burst Read with NULL Response Cycle 177

10.15 Single Request Burst Read . 178

10.16 Datahandshake Extension . 180

10.17 Burst Write with Combined Request and Data . 181

10.18 2-Dimensional Block Read . 183

10.19 Tagged Reads . 185

Contents xi

10.20 Tagged Bursts . 187

10.21 Threaded Read . 189

10.22 Threaded Read with Thread Busy . 190

10.23 Threaded Read with Thread Busy Exact . 192

10.24 Threaded Read with Pipelined Thread Busy . 193

10.25 Reset . 195

10.26 Reset with Clock Enable . 195

10.27 Basic Read with Clock Enable . 196

10.28 Slave Disconnect . 197

10.29 Connection Transitions with Slave Pacing . 198

 11 OCP Coherence Extensions: Timing Diagrams 201

 12 Developers Guidelines 213

12.1 Basic OCP . 213

12.1.1 Divided Clocks. 214

12.1.2 Signal Timing . 215

12.1.3 State Machine Examples. 217

12.1.4 OCP Subsets . 222

12.2 Simple OCP Extensions . 223

12.2.1 Byte Enables . 223

12.2.2 Multiple Address Spaces. 224

12.2.3 In-Band Information . 225

12.3 Burst Extensions . 226

12.3.1 OCP Burst Capabilities . 226

12.3.2 Compatibility with the OCP 1.0 Burst Model 230

12.4 Tags . 232

12.5 Threads and Connections . 233

12.5.1 Threads. 233

12.5.2 Connections . 238

12.6 OCP Specific Features . 240

12.6.1 Write Semantics . 240

12.6.2 Lazy Synchronization . 241

12.6.3 OCP and Endianness. 244

12.6.4 Security . 245

12.7 Sideband Signals . 246

12.7.1 Reset Handling. 246

12.7.2 Connection Protocol . 248

xii Open Core Protocol Specification

12.8 Debug and Test Interface . 253

12.8.1 Scan Control . 253

12.8.2 Clock Control . 253

 13 Developer’s Guidelines: OCP Coherent System Architecture Examples 255

13.1 Snoop-Based Coherent Architecture . 255

13.2 Directory-Based Coherent System . 257

13.2.1 Legal Coherence Dependency . 259

13.3 OCP Coherence Models for Directory-Based Designs 260

13.3.1 A Directory-Based OCP Coherent System . 261

13.3.2 Port Profiles . 267

13.3.3 Master Implementation Models . 272

13.3.4 Slave Implementation Models . 276

13.3.5 Directory-Based Interconnect System-Level Model 281

13.3.6 Coherent and Coherent-Non-Cached Transaction Flows 282

13.3.7 Three-Way Communication . 287

13.3.8 Handling Race Conditions . 289

13.4 Implementation Models for Snoop-Bus-Based Designs 290

13.4.1 Snoop-Bus-Based OCP Coherent Master Model 290

13.4.2 Snoop-Bus-Based OCP Coherence Interconnect Model 290

13.4.3 Snoop-Bus-Based OCP Coherence Slave Model 291

13.4.4 Coherence Transactions . 292

13.4.5 Snoop-Bus-Based CC_WB Race Conditions 295

 14 Timing Guidelines 315

14.1 Level0 Timing . 316

14.2 Level1 Timing . 316

14.3 Level2 Timing . 316

 15 OCP Profiles 319

15.1 Consensus Profiles . 321

15.1.1 Simple Slave . 321

15.1.2 High Speed Profile . 324

15.1.3 Advanced High-Speed Profile . 326

15.1.4 Optional Features . 332

15.1.5 Security . 333

15.1.6 Additional Profiles . 334

15.1.7 Sequential Undefined Length Data Flow Profile 335

Contents xiii

15.1.8 Register Access Profile . 337

15.2 Bridging Profiles . 341

15.2.1 Simple H-bus Profile. 341

15.2.2 X-Bus Packet Write Profile . 343

15.2.3 X-Bus Packet Read Profile . 345

 16 Core Performance 349

16.1 Report Instructions . 349

16.2 Sample Report . 352

16.3 Performance Report Template . 354

Part III Protocol Compliance 357

 17 Compliance 359

17.1 Configuration Compliance . 359

17.1.1 Interface Configuration . 359

17.1.2 Configuration Parameter Extraction . 360

17.2 Protocol Compliance . 360

17.2.1 Select the Relevant Checks . 360

17.3 Verification Techniques . 361

17.3.1 Dynamic Verification . 361

17.3.2 Static Verification . 362

 18 Protocol Compliance Checks 365

18.1 Activation Tables . 365

18.2 Compliance Checks . 373

18.2.1 Dataflow Signals Checks . 373

18.2.2 DataFlow Phase Checks . 376

18.2.3 Dataflow Burst Checks . 390

18.2.4 DataFlow Transfer Checks . 402

18.2.5 DataFlow ReadEx Checks . 405

18.3 Sideband Checks . 407

18.4 Connection Protocol Checks . 411

 19 Configuration Compliance Checks 415

19.1 Request Group . 416

19.2 Datahandshake Group . 424

19.3 Response Group . 428

19.4 Sideband Group . 432

xiv Open Core Protocol Specification

19.5 Test Group . 434

19.6 Interface Interoperability . 434

 20 Functional Coverage 443

20.1 Signal Level . 444

20.2 Transfer Level . 447

20.3 Transaction Level . 448

20.4 Mapping Signals into Categories . 450

20.4.1 Cross Coverage of One Category . 451

20.4.2 Cross Coverage on Multiple Categories . 451

20.5 Meta Coverage . 452

20.6 Sideband Signals Coverage . 452

20.7 Naming Conventions . 453

A.1 Header . 457

A.2 Trace Data . 458

Index 461

OCP-IP Confidential

Introduction

The Open Core Protocol™ (OCP™) delivers the only non-proprietary, openly
licensed, core-centric protocol that comprehensively describes the system-
level integration requirements of intellectual property (IP) cores.

While other bus and component interfaces address only the data flow aspects
of core communications, the OCP unifies all inter-core communications,
including sideband control and test harness signals. OCP’s synchronous
unidirectional signaling produces simplified core implementation,
integration, and timing analysis.

OCP eliminates the task of repeatedly defining, verifying, documenting, and
supporting proprietary interface protocols. The OCP readily adapts to support
new core capabilities while limiting test suite modifications for core upgrades.

Clearly delineated design boundaries enable cores to be designed indepen-
dently of other system cores yielding definitive, reusable IP cores with
reusable verification and test suites.

Any on-chip interconnect can be interfaced to the OCP rendering it
appropriate for many forms of on-chip communications:

• Dedicated peer-to-peer communications, as in many pipelined signal
processing applications such as MPEG2 decoding.

• Simple slave-only applications such as slow peripheral interfaces.

• High-performance, latency-sensitive, multi-threaded applications, such
as multi-bank DRAM architectures.

The OCP supports very high performance data transfer models ranging from
simple request-grants through pipelined and multi-threaded objects. Higher
complexity SOC communication models are supported using thread
identifiers to manage out-of-order completion of multiple concurrent transfer
sequences.

xvi Open Core Protocol Specification

OCP-IP Confidential

The CoreCreator™ tool automates the tasks of building, simulating, verifying
and packaging OCP-compatible cores. IP core products can be fully
“componentized” by consolidating core models, timing parameters, synthesis
scripts, verification suites, and test vectors in accordance with the OCP
Specification. CoreCreator does not constrain the user to either a specific
methodology or design tool.

Support
The OCP Specification is maintained by the Open Core Protocol International
Partnership (OCP-IP™), a trade organization solely dedicated to OCP,
supporting products and services. For all technical support inquiries, please
contact techsupport@ocpip.org. For any other information or comments,
please contact admin@ocpip.org.

xvii

OCP-IP Confidential

Changes for Version 3.0
Changes for Version 3.0 include:

• Coherence Extensions.

• Updated semantics for the write response enable.

• Support for new sideband signals that enable the master to control the
connection state of the interface based upon the input of both master and
slave. The new MConnect, SConnect, SWait and ConnectCap signals
implement the connection protocol and the connection parameter
configures these signals.

• Advanced High-Speed Profile.

Acknowledgments
The following companies were instrumental in the development of the Open
Core Protocol Specification, Release 3.0.

All OCP-IP Specification Working Group members, including participants
from:

• MIPS Technologies Inc.

• Nokia

• Sonics Inc.

• Texas Instruments Incorporated

• Toshiba Corporation Semiconductor Company

• Cadence

OCP-IP Confidential

1 Overview

The Open Core Protocol™ (OCP) defines a high-performance, bus-
independent interface between IP cores that reduces design time, design risk,
and manufacturing costs for SOC designs.

An IP core can be a simple peripheral core, a high-performance micropro-
cessor, or an on-chip communication subsystem such as a wrapped on-chip
bus. The Open Core Protocol:

• Achieves the goal of IP design reuse. The OCP transforms IP cores, making
them independent of the architecture and design of the systems in which
they are used.

• Optimizes die area by configuring into the OCP interfaces only those
features needed by the communicating cores.

• Simplifies system verification and testing by providing a firm boundary
around each IP core that can be observed, controlled, and validated.

The approach adopted by the Virtual Socket Interface Alliance’s (VSIA) Design
Working Group on On-Chip Buses (DWGOCB) is to specify a bus wrapper to
provide a bus-independent Transaction Protocol-level interface to IP cores.

The OCP is equivalent to VSIA’s Virtual Component Interface (VCI). While the
VCI addresses only data flow aspects of core communications, the OCP is a
superset of VCI that additionally supports configurable sideband control
signaling and test harness signals. The OCP is the only standard that defines
protocols to unify all of the inter-core communication.

1.1 OCP Characteristics
The OCP defines a point-to-point interface between two communicating
entities, such as IP cores and bus interface modules (bus wrappers). One
entity acts as the master of the OCP instance and the other as the slave. Only

2 Open Core Protocol Specification

OCP-IP Confidential

the master can present commands and is the controlling entity. The slave
responds to commands presented to it, either by accepting data from the
master, or presenting data to the master. For two entities to communicate in
a peer-to-peer fashion, there need to be two instances of the OCP connecting
them—one where the first entity is a master, and one where the first entity is
a slave.

Figure 1 shows a simple system containing a wrapped bus and three IP core
entities: one that is a system target, one that is a system initiator, and an
entity that is both.

Figure 1 System Showing Wrapped Bus and OCP Instances

The characteristics of the IP core determine whether the core needs master,
slave, or both sides of the OCP; the wrapper interface modules must act as
the complementary side of the OCP for each connected entity. A transfer
across this system occurs as follows. A system initiator (as the OCP master)
presents command, control, and possibly data to its connected slave (a bus
wrapper interface module). The interface module plays the request across the
on-chip bus system. The OCP does not specify the embedded bus
functionality. Instead, the interface designer converts the OCP request into an
embedded bus transfer. The receiving bus wrapper interface module (as the
OCP master) converts the embedded bus operation into a legal OCP
command. The system target (OCP slave) receives the command and takes the
requested action.

Each instance of the OCP is configured (by choosing signals or bit widths of a
particular signal) based on the requirements of the connected entities and is
independent of the others. For instance, system initiators may require more
address bits in their OCP instances than do the system targets; the extra
address bits might be used by the embedded bus to select which bus target
is addressed by the system initiator.

The OCP is flexible. There are several useful models for how existing IP cores
communicate with one another. Some employ pipelining to improve
bandwidth and latency characteristics. Others use multiple-cycle access
models, where signals are held static for several clock cycles to simplify timing

Core Core Core

On-Chip Bus

Master Master

MasterSlave Slave Master

Slave Slave

OCP Request
Response

System Initiator/Target System TargetSystem Initiator

Bus Initiator Bus Initiator/Target Bus Target

Bus wrapper
interface
module

{

Overview 3

OCP-IP Confidential

analysis and reduce implementation area. Support for this wide range of
behavior is possible through the use of synchronous handshaking signals
that allow both the master and slave to control when signals are allowed to
change.

1.2 Compliance
1. The core must include at least one OCP interface.

2. The core and OCP interfaces must be described using an RTL
configuration file with the syntax specified in Chapter 8 on page 129.

3. Each OCP interface on the core must:

• Comply with all aspects of the OCP interface specification

• Have its timing described using a synthesis configuration file following
the syntax specified in Chapter 9 on page 141.

4. The following practices are recommended but not required:

a. Each non-OCP interface on the core should:

• Be described using an interface configuration file with the syntax
specified in Chapter 7 on page 123.

• Have its timing described using a synthesis configuration file with
the syntax specified in Chapter 9 on page 141.

b. A performance report as specified in Chapter 16 on page 349 (or an
equivalent report) should be included for the core.

Part I Specification

OCP-IP Confidential

2 Theory of Operation

The Open Core Protocol interface addresses communications between the
functional units (or IP cores) that comprise a system on a chip. The OCP
provides independence from bus protocols without having to sacrifice high-
performance access to on-chip interconnects. By designing to the interface
boundary defined by the OCP, you can develop reusable IP cores without
regard for the ultimate target system.

Given the wide range of IP core functionality, performance and interface
requirements, a fixed definition interface protocol cannot address the full
spectrum of requirements. The need to support verification and test
requirements adds an even higher level of complexity to the interface. To
address this spectrum of interface definitions, the OCP defines a highly
configurable interface. The OCP’s structured methodology includes all of the
signals required to describe an IP cores’ communications including data flow,
control, and verification and test signals.

This chapter provides an overview of the concepts behind the Open Core
Protocol, introduces the terminology used to describe the interface, and offers
a high-level view of the protocol.

8 Open Core Protocol Specification

OCP-IP Confidential

Point-to-Point Synchronous Interface
To simplify timing analysis, physical design, and general comprehension, the
OCP is composed of uni-directional signals driven with respect to, and
sampled by, the rising edge of the OCP clock. The OCP is fully synchronous
(with the exception of reset) and contains no multi-cycle timing paths with
respect to the OCP clock. All signals other than the clock signal are strictly
point-to-point.

Bus Independence
A core utilizing the OCP can be interfaced to any bus. A test of any bus-
independent interface is to connect a master to a slave without an intervening
on-chip bus. This test not only drives the specification towards a fully
symmetric interface but helps to clarify other issues. For instance, device
selection techniques vary greatly among on-chip buses. Some use address
decoders, while generate independent device-select signals (analogous to a
board-level chip select). This complexity should be hidden from IP cores,
especially since in the directly-connected case there is no decode/selection
logic. OCP-compliant slaves receive device selection information integrated
into the basic command field.

Arbitration schemes vary widely. Since there is virtually no arbitration in the
directly-connected case, arbitration for any shared resource is the sole
responsibility of the logic on the bus side of the OCP. This permits OCP-
compliant masters to pass a command field across the OCP that the bus
interface logic converts into an arbitration request sequence.

Commands
There are two basic commands—Read and Write—and five command
extensions: WriteNonPost, Broadcast, ReadExclusive, ReadLinked, and
WriteConditional. The WriteNonPost and Broadcast commands have
semantics that are similar to the Write command. A WriteNonPost command
explicitly instructs the slave not to post a write. For the Broadcast command,
the master indicates that it is attempting to write to several or all remote
target devices that are connected on the other side of the slave. As such,
Broadcast is typically useful only for slaves that are in turn a master on
another communication medium (such as an attached bus).

The other command extensions—ReadExclusive, ReadLinked and WriteCon-
ditional—are used for synchronization between system initiators.
ReadExclusive is paired with Write or WriteNonPost, and has blocking
semantics. ReadLinked, used in conjunction with WriteConditional has non-
blocking (lazy) semantics. These synchronization primitives correspond to
those available natively in the instruction sets of different processors.

Theory of Operation 9

OCP-IP Confidential

Address/Data
Wide widths, characteristic of shared on-chip address and data buses, make
tuning the OCP address and data widths essential for area-efficient
implementation. Only those address bits that are significant to the IP core
should cross the OCP to the slave. The OCP address space is flat and
composed of 8-bit bytes (octets).

To increase transfer efficiencies, many IP cores have data field widths signifi-
cantly greater than an octet. The OCP supports a configurable data width to
allow multiple bytes to be transferred simultaneously. The OCP refers to the
chosen data field width as the word size of the OCP. The term word is used in
the traditional computer system context; that is, a word is the natural
transfer unit of the block. OCP supports word sizes of power-of-two and non-
power-of-two (as would be needed for a 12-bit DSP core). The OCP address is
a byte address that is word aligned.

Transfers of less than a full word of data are supported by providing byte
enable information that specifies which octets are to be transferred. Byte
enables are linked to specific data bits (byte lanes). Byte lanes are not
associated with particular byte addresses. This makes the OCP endian-
neutral, able to support both big and little-endian cores.

Pipelining
The OCP allows pipelining of transfers. To support this feature, the return of
read data and the provision of write data may be delayed after the presen-
tation of the associated request.

Response
The OCP separates requests from responses. A slave can accept a command
request from a master on one cycle and respond in a later cycle. The division
of request from response permits pipelining. The OCP provides the option of
having responses for Write commands, or completing them immediately
without an explicit response.

Burst
Burst support is essential for many IP cores, to provide high transfer
efficiency. The extended OCP supports annotation of transfers with burst
information. Bursts can either include addressing information for each
successive command (which simplifies the requirements for address
sequencing/burst count processing in the slave), or include addressing
information only once for the entire burst.

In-Band Information
Cores can pass core-specific information in-band in company with the other
information being exchanged. In-band extensions exist for requests and
responses, as well as read and write data. A typical use of in-band extensions
is to pass cacheable information or data parity.

10 Open Core Protocol Specification

OCP-IP Confidential

Tags
Tags are available in the OCP interface to control the ordering of responses.
Without tags, a slave must return responses in the order that the requests
were issued by the master. Similarly, writes must be committed in order. With
the addition of tags, responses can be returned out-of-order, and write data
can be committed out-of-order with respect to requests, as long as the
transactions target different addresses. (Refer to Section 4.7.1 on page 57 for
the case when requests from different tags of a thread target overlapping
addresses.) The tag links the response back to the original request.

Tagging is useful when a master core, such as a processor, can handle out-
of-order return, because it allows a slave core such as a DRAM controller to
service requests in the order that is most convenient, rather than the order in
which requests were sent by the master.

Out-of-order request and response delivery can also be enabled using
multiple threads. The major differences between threads and tags are that
threads can have independent flow control for each thread and have no
ordering rules for transactions on different threads. Tags, on the other hand,
exist within a single thread and are restricted to shared flow control. Tagged
transactions to overlapping addresses have to be committed in order but their
responses may be reordered if the transactions have different tag IDs (see
Section 4.7.1 on page 57). Implementing independent flow control requires
independent buffering for each thread, leading to more complex implemen-
tations. Tags enable lower overhead implementations for out-of-order return
of responses at the expense of some concurrency.

Threads and Connections
To support concurrency and out-of-order processing of transfers, the
extended OCP supports the notion of multiple threads. Transactions among
threads have no ordering requirements, and independent flow control from
one another. Transfers within a single thread must remain ordered unless
tags are in use. The concepts of threads and tags are hierarchical: each thread
has its own flow control, and ordering within a thread either follows the
request order strictly, or is governed by tags.

While the notion of a thread is a local concept between a master and a slave
communicating over an OCP, it is possible to globally pass thread information
from initiator to target using connection identifiers. Connection information
helps to identify the initiator and determine priorities or access permissions
at the target.

Interrupts, Errors, and other Sideband Signaling
While moving data between devices is a central requirement of on-chip
communication systems, other types of communications are also important.
Different types of control signaling are required to coordinate data transfers
(for instance, high-level flow control) or signal system events (such as
interrupts). Dedicated point-to-point data communication is sometimes
required. Many devices also require the ability to notify the system of errors
that may be unrelated to address/data transfers.

Theory of Operation 11

OCP-IP Confidential

The OCP refers to all such communication as sideband (or out-of-band)
signaling, since it is not directly related to the protocol state machines of the
dataflow portion of the OCP. The OCP provides support for such signals
through sideband signaling extensions.

Errors are reported across the OCP using two mechanisms. The error
response code in the response field describes errors resulting from OCP
transfers that provide responses. Write-type commands without responses
cannot use the in-band reporting mechanism. The second method for
reporting errors across the OCP uses out-of band error fields. These signals
report more generic sideband errors, including those associated with posted
write commands.

Two additional groups of sideband signals—the reset signal group and the
connection signal group—are used to control the state of the interface itself.
The reset signals enable the master and/or slave to immediately transition
the interface from normal operation into a reset state, independently from any
activity on the dataflow signals. The connection signals allow the master and
slave to cooperate to cleanly achieve quiescence before putting the interface
into a disconnected state where none of the other in-band nor sideband
signals have meaning, except for the OCP clock.

OCP-IP Confidential

3 Signals and Encoding

OCP interface signals are grouped into dataflow, sideband, and test signals.
The dataflow signals are divided into five groups: basic signals, simple
extensions, burst extensions, tag extensions, and thread extensions. A small
set of the signals from the basic dataflow group are required in all OCP config-
urations. The remaining dataflow signals are optional; optional signals can be
configured as needed to support additional core communication
requirements. All sideband and test signals are optional.

The OCP is a synchronous interface with a single clock signal. All OCP
signals, other than the clock and reset, are driven with respect to, and
sampled by, the rising edge of the OCP clock. Except for clock, OCP signals
are strictly point-to-point and uni-directional. The complete set of OCP
signals are shown in Figure 4 on page 36.

3.1 Dataflow Signals
The dataflow signals consist of a small set of required signals and a number
of optional signals that can be configured to support additional core
communication requirements. The dataflow signals are grouped into five
groups: basic signals, simple extensions (options such as byte enables and in-
band information), burst extensions (support for bursting), tag extensions (re-
ordering support), and thread extensions (multi-threading support).

The naming conventions for dataflow signals use the prefix M for signals
driven by the OCP master and S for signals driven by the OCP slave.

3.1.1 Basic Signals
Table 1 lists the basic OCP signals. Only Clk and MCmd are required. The
remaining OCP signals are optional.

14 Open Core Protocol Specification

OCP-IP Confidential

Table 1 Basic OCP Signals

Clk
Input clock signal for the OCP clock. The rising edge of the OCP clock is
defined as a rising edge of Clk that samples the asserted EnableClk.
Falling edges of Clk and any rising edge of Clk that does not sample
EnableClk asserted do not constitute rising edges of the OCP clock.

EnableClk
EnableClk indicates which rising edges of Clk are the rising edges of the
OCP clock, that is. which rising edges of Clk should sample and advance
interface state. Use the enableclk parameter to configure this signal.
EnableClk is driven by a third entity and serves as an input to both the
master and the slave.

When enableclk is set to 0 (the default), the EnableClk signal is not
present and the OCP behaves as if EnableClk is constantly asserted. In
that case all rising edges of Clk are rising edges of the OCP clock.

MAddr
The Transfer address, MAddr, specifies the slave-dependent address of
the resource targeted by the current transfer. To configure this field into
the OCP, use the addr parameter. To configure the width of this field, use
the addr_wdth parameter.

MAddr is a byte address that must be aligned to the OCP word size
(data_wdth). The parameter data_wdth defines a minimum addr_wdth
value that is based on the data bus byte width, and is defined as:

min_addr_wdth = max(1, floor(log2(data_wdth)) - 2)

Name Width Driver Function

Clk 1 varies Clock input

EnableClk 1 varies Enable OCP clock

MAddr configurable master Transfer address

MCmd 3 master Transfer command

MData configurable master Write data

MDataValid 1 master Write data valid

MRespAccept 1 master Master accepts
response

SCmdAccept 1 slave Slave accepts transfer

SData configurable slave Read data

SDataAccept 1 slave Slave accepts write
data

SResp 2 slave Transfer response

Signals and Encoding 15

OCP-IP Confidential

If the OCP word size is larger than a single byte, the aggregate is
addressed at the OCP word-aligned address and the lowest order address
bits are hardwired to 0. If the OCP word size is not a power-of-two, the
address is the same as it would be for an OCP interface with a word size
equal to the next larger power-of-two.

MCmd
Transfer command. This signal indicates the type of OCP transfer the
master is requesting. Each non-idle command is either a read or write
type request, depending on the direction of data flow. Commands are
encoded as follows.

Table 2 Command Encoding

The set of allowable commands can be limited using the write_enable,
read_enable, readex_enable, writenonpost_enable, rdlwrc_enable,
and broadcast_enable parameters as described in Section 4.9.1 on
page 59.

MData
Write data. This field carries the write data from the master to the slave.
The field is configured into the OCP using the mdata parameter and its
width is configured using the data_wdth parameter. The width is not
restricted to multiples of 8.

MDataValid
Write data valid. When set to 1, this bit indicates that the data on the
MData field is valid. Use the datahandshake parameter to configure this
field into the OCP.

MRespAccept
Master response accept. The master indicates that it accepts the current
response from the slave with a value of 1 on the MRespAccept signal. Use
the respaccept parameter to enable this field into the OCP.

SCmdAccept
Slave accepts transfer. A value of 1 on the SCmdAccept signal indicates
that the slave accepts the master’s transfer request. To configure this field
into the OCP, use the cmdaccept parameter.

MCmd[2:0] Command Mnemonic Request Type

0 0 0 Idle IDLE (none)

0 0 1 Write WR write

0 1 0 Read RD read

0 1 1 ReadEx RDEX read

1 0 0 ReadLinked RDL read

1 0 1 WriteNonPost WRNP write

1 1 0 WriteConditional WRC write

1 1 1 Broadcast BCST write

16 Open Core Protocol Specification

OCP-IP Confidential

SData
This field carries the requested read data from the slave to the master. The
field is configured into the OCP using the sdata parameter and its width
is configured using the data_wdth parameter. The width is not restricted
to multiples of eight.

SDataAccept
Slave accepts write data. The slave indicates that it accepts pipelined write
data from the master with a value of 1 on SDataAccept. This signal is
meaningful only when datahandshake is in use. Use the dataaccept
parameter to configure this field into the OCP.

SResp
Response field from the slave to a transfer request from the master. The
field is configured into the OCP using the resp parameter. Response
encoding is as follows.

Table 3 Response Encoding

The use of responses is explained in Section 4.4 on page 49. FAIL is a non-
error response that indicates a successful transfer and is reserved for a
response to a WriteConditional command for which the write is not
performed, as described in Section 4.4 on page 49.

3.1.2 Simple Extensions
Table 4 lists the simple OCP extensions. The extensions add to the OCP
interface address spaces, byte enables, and additional core-specific
information for each phase.

Table 4 Simple OCP Extensions

SResp[1:0] Response Mnemonic

0 0 No response NULL

0 1 Data valid / accept DVA

1 0 Request failed FAIL

1 1 Response error ERR

Name Width Driver Function

MAddrSpace configurable master Address space

MByteEn configurable master Request phase byte enables

MDataByteEn configurable master Datahandshake phase write byte
enables

MDataInfo configurable master Additional information transferred
with the write data

Signals and Encoding 17

OCP-IP Confidential

MAddrSpace
This field specifies the address space and is an extension of the MAddr
field that is used to indicate the address region of a transfer. Examples of
address regions are the register space versus the regular memory space of
a slave or the user versus supervisor space for a master.

The MAddrSpace field is configured into the OCP using the addrspace
parameter. The width of the MAddrSpace field is configured with the
addrspace_wdth parameter. While the encoding of the MAddrSpace field
is core-specific, it is recommended that slaves use 0 to indicate the
internal register space.

MByteEn
Byte enables. This field indicates which bytes within the OCP word are
part of the current transfer. See Section 4.4.1 on page 50 for more detail
on request and datahandshake phase byte enables and their relationship.
There is one bit in MByteEn for each byte in the OCP word. Setting
MByteEn[n] to 1 indicates that the byte associated with data wires [(8n +
7):8n] should be transferred. The MByteEn field is configured into the OCP
using the byteen parameter and is allowed only if data_wdth is a multiple
of 8 (that is, the data width is an integer number of bytes).

The allowable patterns on MByteEn can be limited using the
force_aligned parameter as described on page 60.

MDataByteEn
Write byte enables. This field indicates which bytes within the OCP word
are part of the current write transfer. See Section 4.4.1 on page 50 for
more detail on request and datahandshake phase byte enables and their
relationship. There is one bit in MDataByteEn for each byte in the OCP
word. Setting MDataByteEn[n] to 1 indicates that the byte associated with
MData wires [(8n + 7):8n] should be transferred. The MDataByteEn field
is configured into the OCP using the mdatabyteen parameter. Setting
mdatabyteen to 1 is only allowed if datahandshake is 1, and only if
data_wdth is a multiple of 8 (that is, the data width is an integer number
of bytes).

The allowable patterns on MDataByteEn can be limited using the
force_aligned parameter as described on page 60.

MDataInfo
Extra information sent with the write data. The master uses this field to
send additional information sequenced with the write data. The encoding
of the information is core-specific. To be interoperable with masters that

MReqInfo configurable master Additional information transferred
with the request

SDataInfo configurable slave Additional information transferred
with the read data

SRespInfo configurable slave Additional information transferred
with the response

Name Width Driver Function

18 Open Core Protocol Specification

OCP-IP Confidential

do not provide this signal, design slaves to be operable in a normal mode
when the signal is tied off to its default tie-off value as specified in
Table 16 on page 31. Sample uses are data byte parity or error correction
code values. Use the mdatainfo parameter to configure this field into the
OCP, and the mdatainfo_wdth parameter to configure its width.

This field is divided in two: the low-order bits are associated with each
data byte, while the high-order bits are associated with the entire write
data transfer. The number of bits to associate with each data byte is
configured using the mdatainfobyte_wdth parameter. The low-order
mdatainfobyte_wdth bits of MDataInfo are associated with the
MData[7:0] byte, and so on.

Figure 2 MDataInfo Field

MReqInfo
Extra information sent with the request. The master uses this field to send
additional information sequenced with the request. The encoding of the
information is core-specific. To be interoperable with masters that do not
provide this signal, design slaves to be operable in a normal mode when
the signal is tied off to its default tie-off value as specified in Table 16 on
page 31. Sample uses are cacheable storage attributes or other access
mode information. Use the reqinfo parameter to configure this field into
the OCP, and the reqinfo_wdth parameter to configure its width.

SDataInfo
Extra information sent with the read data. The slave uses this field to send
additional information sequenced with the read data. The encoding of the
information is core-specific. To be interoperable with slaves that do not
provide this signal, design masters to be operable in a normal mode when
the signal is tied off to its default tie-off value as specified in Table 16 on
page 31. Sample uses are data byte parity or error correction code values.
Use the sdatainfo parameter to configure this field into the OCP, and the
sdatainfo_wdth parameter to configure its width.

This field is divided into two pieces: the low-order bits are associated with
each data byte, while the high-order bits are associated with the entire
read data transfer. The number of bits to associate with each data byte is

...

mdatainfo_wdth

mdatainfobyte_wdth

Associated with entire
write data transfer

Associated with
MData [15:8]

Associated with
MData [7:0]

Associated with
MData [(8n+7):8n]

Signals and Encoding 19

OCP-IP Confidential

configured using the sdatainfobyte_wdth parameter. The low-order
sdatainfobyte_wdth bits of SDataInfo are associated with the
SData[7:0] byte, and so on.

Figure 3 SDataInfo Field

SRespInfo
Extra information sent with the response. The slave uses this field to send
additional information sequenced with the response. The encoding of the
information is core-specific. To be interoperable with slaves that do not
provide this signal, design masters to be operable in a normal mode when
the signal is tied off to its default tie-off value as specified in Table 16 on
page 31. Sample uses are status or error information such as FIFO full or
empty indications. Use the respinfo parameter to configure this field into
the OCP, and the respinfo_wdth parameter to configure its width.

3.1.3 Burst Extensions
Table 5 lists the OCP burst extensions. The burst extensions allow the
grouping of multiple transfers that have a defined address relationship. The
burst extensions are enabled only when MBurstLength is included in the
interface, or tied off to a value other than one.

Table 5 OCP Burst Extensions

Name Width Driver Function

MAtomicLength configurable master Length of atomic burst

MBlockHeight configurable master Height of 2D block burst

MBlockStride configurable master Address offset between 2D block
rows

MBurstLength configurable master Burst length

MBurstPrecise 1 master Given burst length is precise

MBurstSeq 3 master Address sequence of burst

...

sdatainfo_wdth

sdatainfobyte_wdth

Associated with entire
read data transfer

Associated with
SData [15:8]

Associated with
SData [7:0]

Associated with
SData [(8n+7):8n]

20 Open Core Protocol Specification

OCP-IP Confidential

MAtomicLength
This field indicates the minimum number of transfers within a burst that
are to be kept together as an atomic unit when interleaving requests from
different initiators onto a single thread at the target. To configure this field
into the OCP, use the atomiclength parameter. To configure the width of
this field, use the atomiclength_wdth parameter. A binary encoding of
the number of transfers is used. A 0 value is not legal for MAtomicLength.

MBlockHeight
This field indicates the number of rows of data to be transferred in a two-
dimensional block burst (the height of the block of data). A binary
encoding of the height is used. To configure this field into the OCP, use
the blockheight parameter. To configure the width of this field, use the
blockheight_wdth parameter.

MBlockStride
This field indicates the address difference between the first data word in
each consecutive row in a two-dimensional block burst. The stride value
is a binary encoded byte address offset and must be aligned to the OCP
word size (data_wdth). To configure this field into the OCP, use the
blockstride parameter. To configure the width of this field, use the
blockstride_wdth parameter.

MBurstLength
For a BLCK burst (see Table 6), this field indicates the number of transfers
for a row of the burst and stays constant throughout the burst. A BLCK
burst is always precise. For a precise non-BLCK burst, this field indicates
the number of transfers for the entire burst and stays constant
throughout the burst. For imprecise bursts, the value indicates the best
guess of the number of transfers remaining (including the current
request), and may change with every request. To configure this field into
the OCP, use the burstlength parameter. To configure the width of this
field, use the burstlength_wdth parameter. A binary encoding of the
number of transfers is used. 0 is not a legal encoding for MBurstLength.

MBurstPrecise
This field indicates whether the precise length of a burst is known at the
start of the burst or not. When set to 1, MBurstLength indicates the
precise length of the burst during the first request of the burst. To

MBurstSingleReq 1 master Burst uses single request/ multiple
data protocol

MDataLast 1 master Last write data in burst

MDataRowLast 1 master Last write data in row

MReqLast 1 master Last request in burst

MReqRowLast 1 master Last request in row

SRespLast 1 slave Last response in burst

SRespRowLast 1 slave Last response in row

Name Width Driver Function

Signals and Encoding 21

OCP-IP Confidential

configure this field into the OCP, use the burstprecise parameter. If set
to 0, MBurstLength for each request is a hint of the remaining burst
length.

MBurstSeq
This field indicates the sequence of addresses for requests in a burst. To
configure this field into the OCP, use the burstseq parameter. The
encodings of the MBurstSeq field are shown in Table 6. The definition of
the address sequences is described in Section 4.6.1 on page 53.

Table 6 MBurstSeq Encoding

MBurstSingleReq
The burst has a single request with multiple data transfers. This field
indicates whether the burst has a request per data transfer, or a single
request for all data transfers. To configure this field into the OCP, use the
burstsinglereq parameter. When this field is set to 0, there is a one-to-
one association of requests to data transfers; when set to 1, there is a
single request for all data transfers in the burst.

MDataLast
Last write data in a burst. This field indicates whether the current write
data transfer is the last in a burst. To configure this field into the OCP,
use the datalast parameter with datahandshake set to 1. When this
field is set to 0, more write data transfers are coming for the burst; when
set to 1, the current write data transfer is the last in the burst.

MDataRowLast
Last write data in a row. This field identifies the last transfer in a row. The
last data transfer in a burst is always considered the last in a row, and
BLCK burst sequences also have a last in a row transfer after every
MBurstLength transfers. To configure this field into the OCP, use the
datarowlast parameter. If this field is set to 0, additional write data
transfers can be expected for the current row; when set to 1, the current
write data transfer is the last in the row.

MBurstSeq[2:0] Burst Sequence Mnemonic

0 0 0 Incrementing INCR

0 0 1 Custom (packed) DFLT1

0 1 0 Wrapping WRAP

0 1 1 Custom (not packed) DFLT2

1 0 0 Exclusive OR XOR

1 0 1 Streaming STRM

1 1 0 Unknown UNKN

1 1 1 2-dimensional Block BLCK

22 Open Core Protocol Specification

OCP-IP Confidential

MReqLast
Last request in a burst. This field indicates whether the current request
is the last in this burst. To configure this field into the OCP, use the
reqlast parameter. When this field is set to 0, more requests are coming
for this burst; when set to 1, the current request is the last in the burst.

MReqRowLast
Last request in a row. This field identifies the last request in a row. The
last request in a burst is always considered the last in a row, and BLCK
burst sequences also have a last-in-a-row request after every
MBurstLength requests. To configure this field into the OCP, use the
reqrowlast parameter. When this field is set to 0, more requests can be
expected for the current row; when set to 1, the current request is the last
in the row.

SRespLast
Last response in a burst. This field indicates whether the current
response is the last in this burst. To configure this field into the OCP, use
the resplast parameter. When the field is set to 0, more responses are
coming for this burst; when set to 1, the current response is the last in
the burst.

SRespRowLast
Last response in a row. This field identifies the last response in a row. The
last response in a burst is always considered the last in a row, and BLCK
burst sequences also have a last in a row response after every
MBurstLength responses. Use the resprowlast parameter to configure
this field. When this field is set to 0, more can be expected for the current
row; when set to 1, the current response is the last in the row.

3.1.4 Tag Extensions
Table 7 lists OCP tag extensions, which add support for tagging OCP transfers
to enable out-of-order responses and write data commit. The binary encoded
*TagID signals must each carry a value in the range 0 to (#tags-1) where
#tags is the value specified by the tags parameter.

Table 7 OCP Tag Extensions

Name Width Driver Function

MDataTagID configurable master Ordering tag for write data

MTagID configurable master Ordering tag for request

MTagInOrder 1 master Do not reorder this request

STagID configurable slave Ordering tag for response

STagInOrder 1 slave This response is not reordered

Signals and Encoding 23

OCP-IP Confidential

MDataTagID
Write data tag. This variable-width field provides the tag associated with
the current write data. The field carries the binary-encoded tag value.
MDataTagID is required if tags is greater than 1 and the datahandshake
parameter is 1. The field width is .

MTagID
Request tag. This variable-width field provides the tag associated with the
current transfer request. If tags is greater than 1, this field is enabled.
The field width is .

MTagInOrder
Assertion of this single-bit field indicates that the current request should
not be reordered with respect to other requests that had this field
asserted. This field is enabled by the taginorder parameter. Both
MTagInOrder and STagInOrder are present in the interface, or else neither
may be present.

STagID
Response tag. This variable-width field provides the tag associated with
the current transfer response. This field is enabled if tags is greater than
1, and the resp parameter is set to 1. The field width is .

STagInOrder
Assertion of this single-bit field indicates that the current response is
associated with an in-order request and was not reordered with respect to
other requests that had MTagInOrder asserted. This field is enabled if
both the taginorder and the resp parameters are set to 1.

3.1.5 Thread Extensions
Table 8 shows a list of OCP thread extensions that add support for multi-
threading of the OCP interface. Thread numbering begins at 0 and is
sequential. The binary encoded *ThreadID must carry a value less than the
threads parameter.

Table 8 OCP Thread Extensions

Name Width Driver Function

MConnID configurable master Connection identifier

MDataThreadID configurable master Write data thread identifier

MThreadBusy configurable master Master thread busy

MThreadID configurable master Request thread identifier

SDataThreadBusy configurable slave Slave write data thread busy

SThreadBusy configurable slave Slave request thread busy

SThreadID configurable slave Response thread identifier

log2 tags()

log2 tags()

log2 tags()

24 Open Core Protocol Specification

OCP-IP Confidential

MConnID
Connection identifier. This variable-width field provides the binary
encoded connection identifier associated with the current transfer
request. To configure this field use the connid parameter. The field width
is configured with the connid_wdth parameter.

MDataThreadID
Write data thread identifier. This variable-width field provides the thread
identifier associated with the current write data. The field carries the
binary-encoded value of the thread identifier.

MDataThreadID is required if threads is greater than 1 and the
datahandshake parameter is set to 1. MDataThreadID has the same
width as MThreadID and SThreadID.

MThreadBusy
Master thread busy. The master notifies the slave that it cannot accept
any responses associated with certain threads. The MThreadBusy field is
a vector (one bit per thread). A value of 1 on any given bit indicates that
the thread associated with that bit is busy. Bit 0 corresponds to thread 0,
and so on. The width of the field is set using the threads parameter. It is
legal to enable a one-bit MThreadBusy interface for a single-threaded
OCP. To configure this field, use the mthreadbusy parameter. See
Section 4.3.2.4 on page 44 for a description of the flow control options
associated with MThreadBusy.

MThreadID
Request thread identifier. This variable-width field provides the thread
identifier associated with the current transfer request. If threads is
greater than 1, this field is enabled. The field width is the next whole
integer of .

SDataThreadBusy
Slave write data thread busy. The slave notifies the master that it cannot
accept any new datahandshake phases associated with certain threads.
The SDataThreadBusy field is a vector, one bit per thread. A value of 1 on
any given bit indicates that the thread associated with that bit is busy. Bit
0 corresponds to thread 0, and so on.

The width of the field is set using the threads parameter. It is legal to
enable a one-bit SDataThreadBusy interface for a single-threaded OCP.
To configure this field, use the sdatathreadbusy parameter. See
Section 4.3.2.4 on page 44 for a description of the flow control options
associated with SDataThreadBusy.

SThreadID
Response thread identifier. This variable-width field provides the thread
identifier associated with the current transfer response. This field is
enabled if threads is greater than 1 and the resp parameter is set to 1.
The field width is .

SThreadBusy
Slave thread busy. The slave notifies the master that it cannot accept any
new requests associated with certain threads. The SThreadBusy field is a
vector, one bit per thread. A value of 1 on any given bit indicates that the

log2 threads()

log2 threads()

Signals and Encoding 25

OCP-IP Confidential

thread associated with that bit is busy. Bit 0 corresponds to thread 0, and
so on. The width of the field is set using the threads parameter. It is legal
to enable a one-bit SThreadBusy interface for a single-threaded OCP. To
configure this field, use the sthreadbusy parameter. See Section 4.3.2.4
on page 44 for a description of the flow control options associated with
SThreadBusy.

3.2 Sideband Signals
Sideband signals are OCP signals that are not part of the dataflow phases,
and so can change asynchronously with the request/response flow but are
generally synchronous to the rising edge of the OCP clock. Sideband signals
convey control information such as reset, interrupt, error, and core-specific
flags. They also exchange control and status information between a core and
an attached system. All sideband signals are optional except for reset signals.
Either the MReset_n or the SReset_n signal must be present.

Table 9 lists the OCP sideband extensions.

Table 9 Sideband OCP Signals

Name Width Driver Function

MConnect 2 master Master connection state

MError 1 master Master Error

MFlag configurable master Master flags

MReset_n 1 master Master reset

SConnect 1 slave Slave connection vote

SError 1 slave Slave error

SFlag configurable slave Slave flags

SInterrupt 1 slave Slave interrupt

SReset_n 1 slave Slave reset

SWait 1 slave Slave delays connection change

ConnectCap 1 tie-off Connection capability tie-off

Control configurable system Core control information

ControlBusy 1 core Hold control information

ControlWr 1 system Control information has been written

Status configurable core Core status information

StatusBusy 1 core Status information is not consistent

StatusRd 1 system Status information has been read

26 Open Core Protocol Specification

OCP-IP Confidential

3.2.1 Connection, Reset, Interrupt, Error, and Core-Specific
Flag Signals
MConnect

Master connection state. This signal indicates the current connection
state of the interface. The master changes this state based upon input
from the slave SConnect signal and the master’s desired connection state,
but state transitions must respect the slave SWait signal. Connection
states are encoded as shown in Table 10.

Table 10 Connection State Encoding

The M_WAIT state is transient. When the master is changing the
connection state between any two of the other states, it must enter
M_WAIT if the slave is asserting SWait (S_WAIT). The connection status of
the interface does not change while in M_WAIT. The master can only
transition to a non-transient connection state once it samples SWait
negated (S_OK). The MConnect signal is configured by the connection
parameter and must maintain the value M_CON if the ConnectCap tie-off
is 0. If ConnectCap is 1, the reset value of MConnect is M_OFF.

SConnect
Slave connection vote. This signal indicates the slave’s willingness to have
the master in the M_CON state. The slave’s vote is encoded as follows.

Table 11 Slave Connection Vote Encoding

The SConnect signal is configured by the connection parameter and
must maintain the value S_CON if the ConnectCap tie-off is 0. If
ConnectCap is 1, the reset value of SConnect is S_DISC.

SWait
Slave delays connection change. This signal allows the slave to force the
master to transition through the M_WAIT state before changing the
connection state to M_OFF, M_DISC, or M_CON. This signal is encoded as
follows:

MConnect[1:0] State Mnemonic Connected?

0 0 Disconnected by master M_OFF No

0 1 Waiting to transition M_WAIT Matches prior state

1 0 Disconnected by slave M_DISC No

1 1 Connected M_CON Yes

SConnect Connection Vote Mnemonic

0 Vote to disconnect S_DISC

1 Vote to connect S_CON

Signals and Encoding 27

OCP-IP Confidential

Table 12 Slave Connection Change Delay Encoding

The SWait signal is configured by the connection parameter and must
maintain the value S_OK if the ConnectCap tie-off is 0. If ConnectCap is
1, the reset value of SWait is S_OK.

ConnectCap
Connection capability tie-off. This signal is tied off at component
instantiation to indicate whether the interface supports the connection
state machine. Tie ConnectCap to logic 0 on a master or slave if the
connected slave or master, respectively, does not implement the
connection protocol. In such case, the interface is always connected (i.e.
it behaves as if in the M_CON state). If ConnectCap is tied to logic 1, then
both master and slave must support the connection protocol. The
ConnectCap tie-off signal is configured by the connection parameter and
has no default value.

MError
Master error. When the MError signal is set to 1, the master notifies the
slave of an error condition. The MError field is configured with the merror
parameter.

MFlag
Master flags. This variable-width set of signals allows the master to
communicate out-of-band information to the slave. Encoding is
completely core-specific.

To configure this field into the OCP, use the mflag parameter. To
configure the width of this field, use the mflag_wdth parameter.

MReset_n
Master reset. The MReset_n signal is active low, as shown in Table 13. The
MReset_n field is enabled by the mreset parameter.

Table 13 MReset Signal

SError
Slave error. With a value of 1 on the SError signal the slave indicates an
error condition to the master. The SError field is configured with the
serror parameter.

SWait Function Mnemonic

0 Allow connection status change S_OK

1 Delay connection status change S_WAIT

MReset_n Function

0 Reset Active

1 Reset Inactive

28 Open Core Protocol Specification

OCP-IP Confidential

SFlag
Slave flags. This variable-width set of signals allows the slave to
communicate out-of-band information to the master. Encoding is
completely core-specific.

To configure this field into the OCP, use the sflag parameter. To
configure the width of this field, use the sflag_wdth parameter.

SInterrupt
Slave interrupt. The slave may generate an interrupt with a value of 1 on
the SInterrupt signal. The SInterrupt field is configured with the
interrupt parameter.

SReset_n
Slave reset. The SReset_n signal is active low, as shown in Table 14. The
SReset_n field is enabled by the sreset parameter.

Table 14 SReset Signal

3.2.2 Control and Status Signals
The remaining sideband signals are designed for the exchange of control and
status information between an IP core and the rest of the system. They make
sense only in this environment, regardless of whether the IP core acts as a
master or slave across the OCP interface.

Control
Core control information. This variable-width field allows the system to
drive control information into the IP core. Encoding is core-specific.

Use the control parameter to configure this field into the OCP. Use the
control_wdth parameter to configure the width of this field.

ControlBusy
Core control busy. When this signal is set to 1, the core tells the system
to hold the control field value constant. Use the controlbusy parameter
to configure this field into the OCP.

ControlWr
Core control event. This signal is set to 1 by the system to indicate that
control information is written by the system. Use the controlwr
parameter to configure this field into the OCP.

Status
Core status information. This variable-width field allows the IP core to
report status information to the system. Encoding is core-specific.

Use the status parameter to configure this field into the OCP. Use the
status_wdth parameter to configure the width of this field.

SReset_n Function

0 Reset Active

1 Reset Inactive

Signals and Encoding 29

OCP-IP Confidential

StatusBusy
Core status busy. When this signal is set to 1, the core tells the system to
disregard the status field because it may be inconsistent. Use the
statusbusy parameter to configure this field into the OCP.

StatusRd
Core status event. This signal is set to 1 by the system to indicate that
status information is read by the system. To configure this field into the
OCP, use the statusrd parameter.

3.3 Test Signals
The test signals add support for scan, clock control, and IEEE 1149.1 (JTAG).
All test signals are optional.

Table 15 Test OCP Signals

3.3.1 Scan Interface
The Scanctrl, Scanin, and Scanout signals together form a scan interface into
a given IP core.

Scanctrl
Scan mode control signals. Use this variable width field to control the scan
mode of the core. Set scanport to 1 to configure this field into the OCP
interface. Use the scanctrl_wdth parameter to configure the width of
this field.

Scanin
Scan data in for a core’s scan chains. Use the scanport parameter, to
configure this field into the OCP interface and scanport_wdth to control
its width.

Name Width Driver Function

Scanctrl configurable system Scan control signals

Scanin configurable system Scan data in

Scanout configurable core Scan data out

ClkByp 1 system Enable clock bypass mode

TestClk 1 system Test clock

TCK 1 system Test clock

TDI 1 system Test data in

TDO 1 core Test data out

TMS 1 system Test mode select

TRST_N 1 system Test reset

30 Open Core Protocol Specification

OCP-IP Confidential

Scanout
Scan data out from the core’s scan chains. Use the scanport parameter
to configure this field into the OCP interface and scanport_wdth to
control its width.

3.3.2 Clock Control Interface
The ClkByp and TestClk signals together form the clock control interface into
a given IP core. This interface is used to control the core’s clocks during scan
operation.

ClkByp
Enable clock bypass signal. When set to 1, this signal instructs the core
to bypass the external clock source and use TestClk instead. Use the
clkctrl_enable parameter to configure this signal into the OCP
interface.

TestClk
A gated test clock. This clock becomes the source clock when ClkByp is
asserted during scan operations. Use the clkctrl_enable parameter to
configure this signal into the OCP interface.

3.3.3 Debug and Test Interface
The TCK, TDI, TDO, TMS, and TRST_N signals together form an IEEE 1149
debug and test interface for the OCP.

TCK
Test clock as defined by IEEE 1149.1. Use the jtag_enable parameter to
add this signal to the OCP interface.

TDI
Test data in as defined by IEEE 1149.1. Use the jtag_enable parameter
to add this signal to the OCP interface.

TDO
Test data out as defined by IEEE 1149.1. Use the jtag_enable parameter
to add this signal to the OCP interface.

TMS
Test mode select as defined by IEEE 1149.1. Use the jtag_enable
parameter to add this signal to the OCP interface.

TRST_N
Test logic reset signal. This is an asynchronous active low reset as defined
by IEEE 1149.1. Use the jtagtrst_enable parameter to add this signal
to the OCP interface.

Signals and Encoding 31

OCP-IP Confidential

3.4 Signal Configuration
The set of signals making up the OCP interface is configurable to match the
characteristics of the IP core. Throughout this chapter, configuration
parameters were mentioned that control the existence and width of various
OCP fields. Table 16 summarizes the configuration parameters, sorted by
interface signal group. For each signal, the table also specifies the default
constant tie-off, which is the inferred value of the signal if it is not configured
into the OCP interface and if no other constant tie-off is specified.

For the ControlBusy, EnableClk, MRespAccept, SCmdAccept, SDataAccept,
MThreadBusy, SThreadBusy, SDataThreadBusy, MReset_n, SReset_n,
SInterrupt, and StatusBusy signals, the default tie-off is also the only legal
tie-off.

Table 16 OCP Signal Configuration Parameters

Group Signal
Parameter to add
signal to interface

Parameter to
control width

Default
Tie-off

Basic Clk Required Fixed n/a

EnableClk enableclk Fixed 1

MAddr addr addr_wdth 0

MCmd Required Fixed n/a

MData mdata data_wdth 0

MDataValid datahandshake Fixed n/a

MRespAccept1 respaccept Fixed 1

SCmdAccept cmdaccept Fixed 1

SData1 sdata data_wdth 0

SDataAccept2 dataaccept Fixed 1

SResp resp Fixed n/a

Simple MAddrSpace addrspace addrspace_wdth 0

MByteEn3 byteen data_wdth all 1s

MDataByteEn4 mdatabyteen data_wdth all 1s

MDataInfo mdatainfo mdatainfo_wdth5 0

MReqInfo reqinfo reqinfo_wdth 0

SDataInfo1 sdatainfo sdatainfo_wdth6 0

SRespInfo1 respinfo respinfo_wdth 0

32 Open Core Protocol Specification

OCP-IP Confidential

Burst MAtomicLength7 atomiclength atomiclength_wdth 1

MBlockHeight7,8 blockheight blockheight_wdth9 1

MBlockStride7,8 blockstride blockstride_wdth 0

MBurstLength burstlength burstlength_wdth10 1

MBurstPrecise7, 11 burstprecise Fixed 1

MBurstSeq7 burstseq Fixed INCR

MBurstSingleReq7, 12 burstsinglereq Fixed 0

MDataLast7, 13 datalast Fixed n/a

MDataRowLast7, 8, 13, 14 datarowlast Fixed n/a

MReqLast7 reqlast Fixed n/a

MReqRowLast7, 8, 15 reqrowlast Fixed n/a

SRespLast1, 7 resplast Fixed n/a

SRespRowLast1, 7, 8, 16 resprowlast Fixed n/a

Tag MDataTagID17 tags>1 and datahandshake tags 0

MTagID tags>1 tags 0

MTagInOrder18 taginorder Fixed 0

STagID tags>1 and resp tags 0

STagInOrder19 taginorder and resp Fixed 0

Thread MConnID connid connid_wdth 0

MDataThreadID threads>1 and datahandshake threads 0

MThreadBusy1, 20 mthreadbusy threads 0

MThreadID threads>1 threads 0

SDataThreadBusy21 sdatathreadbusy threads 0

SThreadBusy22 sthreadbusy threads 0

SThreadID threads>1 and resp threads 0

Group Signal
Parameter to add
signal to interface

Parameter to
control width

Default
Tie-off

Signals and Encoding 33

OCP-IP Confidential

Sideband ConnectCap connection Fixed n/a

Control control control_wdth 0

ControlBusy23 controlbusy Fixed 0

ControlWr24 controlwr Fixed n/a

MConnect25 connection 2 M_CON

MError merror Fixed 0

MFlag mflag mflag_wdth 0

MReset_n mreset Fixed 1

SConnect25 connection 1 S_CON

SError serror Fixed 0

SFlag sflag sflag_wdth 0

SInterrupt interrupt Fixed 0

SReset_n sreset Fixed 1

Status status status_wdth 0

StatusBusy26 statusbusy Fixed 0

StatusRd27 statusrd Fixed n/a

SWait25 connection 1 S_OK

Group Signal
Parameter to add
signal to interface

Parameter to
control width

Default
Tie-off

34 Open Core Protocol Specification

OCP-IP Confidential

Test ClkByp clkctrl_enable Fixed n/a

Scanctrl scanport scanctrl_wdth n/a

Scanin scanport scanport_wdth n/a

Scanout scanport scanport_wdth n/a

TCK jtag_enable Fixed n/a

TDI jtag_enable Fixed n/a

TDO jtag_enable Fixed n/a

TestClk clkctrl_enable Fixed n/a

TMS jtag_enable Fixed n/a

TRST_N28 jtagtrst_enable Fixed n/a

1 MRespAccept, MThreadBusy, SData, SDataInfo, SRespInfo, SRespLast, and SRespRowLast may be included only if the resp
parameter is set to 1.

2 SDataAccept can be included only if datahandshake is set to 1.

3 MByteEn has a width of data_wdth/8 and can only be included when either mdata or sdata is set to 1 and data_wdth is
an integer multiple of 8.

4 MDataByteEn has a width of data_wdth/8 and can only be included when mdata is set to 1, datahandshake is set to 1, and
data_wdth is an integer multiple of 8.

5 mdatainfo_wdth must be > mdatainfobyte_wdth * data_wdth/8 and can be used only if data_wdth is a multiple
of 8. mdatainfobyte_wdth specifies the partitioning of MDataInfo into transfer-specific and per-byte fields.

6 sdatainfo_wdth must be > sdatainfobyte_wdth * data_wdth/8 and can be used only if data_wdth is a multiple
of 8. sdatainfobyte_wdth specifies the partitioning of SDataInfo into transfer-specific and per-byte fields.

7 MAtomicLength, MBlockHeight, MBlockStride, MBurstPrecise, MBurstSeq, MBurstSingleReq, MDataLast, MDataRowLast,
MReqLast, MReqRowLast, SRespLast, and SRespRowLast may be included in the interface or tied off to non-default values only
if MBurstLength is included or tied off to a value other than 1.

8 MBlockHeight, MBlockStride, MDataRowLast, MReqRowLast, and SRespRowLast may be included or tied off to non-default
values only if burstseq_blck_enable is set to 1 and MBurstPrecise is included or tied off to a value of 1.

9 blockheight_wdth can never be 1.

10 burstlength_wdth can never be 1.

11 If no sequences other than WRAP, XOR, or BLCK are enabled, MBurstPrecise must be tied off to 1.

12 If any write-type commands are enabled, MBurstSingleReq can only be included when datahandshake is set to 1. If the only
enabled burst address sequence is UNKN, MBurstSingleReq cannot be included or tied off to a non-default value.

13 MDataLast and MDataRowLast can be included only if the datahandshake parameter is set to 1.

14 MDataRowLast can only be included if MDataLast is included.

15 MReqRowLast can only be included if MReqLast is included.

16 SRespRowLast can only be included if SRespLast is included.

17 MDataTagID is included if tags is greater than 1 and the datahandshake parameter is set to 1.

18 MTagInOrder can only be included if tags is greater than 1.

19 STagInOrder can only be included if tags is greater than 1.

20 MThreadBusy has a width equal to threads. It may be included for single-threaded OCP interfaces.

21 SDataThreadBusy has a width equal to threads. It may be included for single-threaded OCP interfaces and may only be
included if datahandshake is 1.

22 SThreadBusy has a width equal to threads. It may be included for single-threaded OCP interfaces.

23 ControlBusy can only be included if both Control and ControlWr exist.

24 ControlWr can only be included if Control exists.

25 The default tie-off values for MConnect, SConnect and SWait are the only allowed tie-off values.

26 StatusBusy can only be included if Status exists.

27 StatusRd can only be included if Status exists.

Group Signal
Parameter to add
signal to interface

Parameter to
control width

Default
Tie-off

Signals and Encoding 35

OCP-IP Confidential

3.4.1 Signal Directions
Figure 4 on page 36 summarizes all OCP signals. The direction of some
signals (for example, MCmd) depends on whether the module acts as a master
or slave, while the direction of other signals (for example, Control) depends on
whether the module acts as a system or a core. The combination of these two
choices provides four possible module configurations as shown in Table 17.

Table 17 Module Configuration Based on Signal Directions

For example, if a module acts as OCP master and also as system, it is
designated a system master. In addition to the notion of modules, it is useful
to introduce an “interface” type. All modules have interfaces. Also, there is a
“monitor” interface type which observes all OCP signals. The permitted
connectivity between interface types is shown in Table 18.

Table 18 Interface Types

The Clk, EnableClk, and ConnectCap signals are special in that they are
supplied by a third (external) entity that is neither of the two modules
connected through the OCP interface.

28 TRST_N can only be included if jtag_enable is set to 1.

Acts as Core Acts as System

Acts as OCP Master Master System master

Acts as OCP Slave Slave System slave

Type Connects To Cannot Connect To

Master System slave, Slave, Monitor Master, System master

Slave System master, Master, Monitor Slave, System slave

System master Slave, Monitor Master, System Master, System
slave

System slave Master, Monitor Slave, System slave, System
master

Monitor Master, System master, Slave,
System slave

Monitor

36 Open Core Protocol Specification

OCP-IP Confidential

Figure 4 OCP Signal Summary

MAddr

MAddrSpace

MAtomicLength

Enable

Clk

MBlockHeight

MBlockStride

MBurstLength

MBurstPrecise

MBurstSeq

MBurstSingleReq

MByteEn

MCmd

MConnID

MReqInfo

MReqLast

MReqRowLast

MTagID

MTagInOrder

MThreadID

SCmdAccept

SData

SDataInfo

SResp

SRespInfo

SRespLast

SRespRowLast

STagID

STagInOrder

SThreadID

MRespAccept

MDataByteEn

MData

MDataInfo

MDataLast

MDataRowLast

MDataTagID

MDataThreadID

MDataValid

SDataAccept

MThreadBusy

SDataThreadBusy

SThreadBusy

MReset_n

MError

MFlag

SError

SFlag

SInterrupt

SReset_n

Control

ControlWr

ControlBusy

Status

StatusRd

StatusBusy

Scanctrl

Scanin

Scanout

ClkByp

TestClk

TCK

TDI

TDO

TMS

TRST_N

Data Flow

Sideband

Test

Request

Response

Data
Handshake

MConnect

SConnect

SWait

ConnectCap

Master Slave

System Core

OCP-IP Confidential

4 Protocol Semantics

This chapter defines the semantics of the OCP protocol by assigning meanings
to the signal encodings described in the preceding chapter. Figure 5 provides
a graphic view of the hierarchy of elements that compose the OCP.

Figure 5 Hierarchy of Elements

Signal

Group

Phase Phase Phase...

Transfer

Transaction

Timing information

Transfer Transfer...

Signal Signal...

38 Open Core Protocol Specification

OCP-IP Confidential

4.1 Signal Groups
Some OCP fields are grouped together because they must be active at the
same time. The data flow signals are divided into three signal groups: request
signals, response signals, and datahandshake signals. A list of the signals
that belong to each group is shown in Table 19.

Table 19 OCP Signal Groups

Group Signal Condition

Request MAddr always

MAddrSpace always

MAtomicLength always

MBlockHeight always

MBlockStride always

MBurstLength always

MBurstPrecise always

MBurstSeq always

MBurstSingleReq always

MByteEn always

MCmd always

MConnID always

MData* datahandshake = 0

MDataInfo* datahandshake = 0

MReqInfo always

MReqLast always

MReqRowLast always

MTagID always

MTagInOrder always

MThreadID always

Protocol Semantics 39

OCP-IP Confidential

4.2 Combinational Dependencies
It is legal for some signal or signal group outputs to be derived from inputs
without an intervening latch point, that is, combinationally. To avoid
combinational loops, other outputs cannot be derived in this manner.
Figure 6 describes a partial order of combinational dependency. For any
arrow shown, the signal or signal group can be derived combinationally from
the signal at the point of origin of the arrow or another signal earlier in the
dependency chain. No other combinational dependencies are allowed.

MThreadBusy, SDataThreadBusy, and SThreadBusy each appear twice in
Figure 6. The two appearances of each signal are mutually exclusive based
upon the setting of the mthreadbusy_pipelined,
sdatathreadbusy_pipelined, and sthreadbusy_pipelined parameters.
Refer to Section 4.3.2.4 on page 44 for more information about these
parameters.

Response SData always

SDataInfo always

SResp always

SRespInfo always

SRespLast always

SRespRowLast always

STagID always

STagInOrder always

SThreadID always

Datahandshake MData* datahandshake = 1

MDataByteEn always

MDataInfo* datahandshake = 1

MDataLast always

MDataRowLast always

MDataTagID always

MDataThreadID always

MDataValid always

* MData and MDataInfo belong to the request group, unless the
datahandshake configuration parameter is enabled. In that case they belong
to the datahandshake group.

Group Signal Condition

40 Open Core Protocol Specification

OCP-IP Confidential

Figure 6 Legal Combinational Dependencies Between Signals and Signal Groups

Combinational paths are not allowed within the sideband and test signals, or
between those signals and the data flow signals. The only legal combinational
dependencies are within the data flow signals. Data flow signals, however,
may be combinationally derived from MReset_n and SReset_n.

For timing purposes, some of the allowed combinational paths are designated
as preferred paths and are described in Table 65 on page 317.

4.3 Signal Timing and Protocol Phases
This section specifies when a signal can or must be valid.

4.3.1 OCP Clock
The rising edge of the OCP clock signal is used to sample other OCP signals
to advance the state of the interface. When the EnableClk signal is not
present, the OCP clock is simply the Clk signal. When the EnableClk signal is
present (enableclk is 1), only rising edges of Clk that sample EnableClk
asserted are considered rising edges of the OCP clock. Therefore, when
EnableClk is 0, rising edges of Clk are not rising edges of the OCP clock and
OCP state is not advanced.

This restriction applies to all signals in the OCP interface. In particular, the
requirements for reset assertion (described on page 46) are measured in OCP
clock cycles.

Datahandshake
group

MThreadBusy

Response group

SThreadBusy
SDataThreadBusy

SThreadBusy
SDataThreadBusySlave

Master

MThreadBusy

!mthreadbusy_pipelined
!sthreadbusy_pipelined

sthreadbusy_pipelined

sthreadbusy_pipelined &&
mthreadbusy_pipelined

mthreadbusy_pipelined

!sthreadbusy_pipelined

Request group

SCmdAccept
SDataAccept

MRespAccept

Protocol Semantics 41

OCP-IP Confidential

4.3.2 Dataflow Signals
Signals in a signal group must all be valid at the same time.

• The request group is valid whenever a command other than Idle is
presented on the MCmd field.

• The response group is valid whenever a response other than Null is
presented on the SResp field.

• The datahandshake group is valid whenever a 1 is presented on the
MDataValid field.

The accept signal associated with a signal group is valid only when that group
is valid.

• The SCmdAccept signal is valid whenever a command other than Idle is
presented on the MCmd field.

• The MRespAccept signal is valid whenever a response other than Null is
presented on the SResp field.

• The SDataAccept signal is valid whenever a 1 is presented on the
MDataValid field.

The signal groups map on a one-to-one basis to protocol phases. All signals
in the group must be held steady from the beginning of a protocol phase until
the end of that phase. Outside of a protocol phase, all signals in the
corresponding group (except for the signal that defines the beginning of the
phase) are “don’t care.”

In addition, the MData and MDataInfo fields are a “don’t care” during read-
type requests, and the SData and SDataInfo fields are a “don’t care” for
responses to write-type requests. Non-enabled data bytes in MData and bits
in MDataInfo as well as non-enabled bytes in SData and bits in SDataInfo are
a “don’t care.” The MDataByteEn field is “don’t care” during read-type
transfers. If MDataByteEn is present, the MByteEn field is “don’t care” during
write-type transfers. MTagID is a “don’t care” if MTagInOrder is asserted and
MDataTagID is a “don’t care” for the corresponding datahandshake phase.
Similarly, STagID is a “don’t care” if STagInOrder is asserted.

• A request phase begins whenever the request group becomes active. It
ends when the SCmdAccept signal is sampled by the rising edge of the
OCP clock as 1 during a request phase.

• A response phase begins whenever the response group becomes active. It
ends when the MRespAccept signal is sampled by the rising edge of the
OCP clock as 1 during a response phase.

If MRespAccept is not configured into the OCP interface (respaccept = 0)
then MRespAccept is assumed to be on; that is the response phase is
exactly one cycle long.

• A datahandshake phase begins whenever the datahandshake signal
group becomes active. It ends when the SDataAccept signal is sampled by
the rising edge of the OCP clock as 1 during a datahandshake phase.

42 Open Core Protocol Specification

OCP-IP Confidential

For all phases, it is legal to assert the corresponding accept signal in the cycle
that the phase begins, allowing the phase to complete in a single cycle.

4.3.2.1 Phases in a Transfer
An OCP transfer consists of several phases, as shown in Table 20. Every
transfer has a request phase. Read-type requests always have a response
phase. For write-type requests, the OCP can be configured with or without
responses or datahandshake. Without a response, a write-type request
completes upon completion of the request phase (posted write model).

Table 20 Phases in each Transfer for MBurstSinqleReq set to 0

Single request, multiple data (SRMD) bursts, described in Section 4.6.5 on
page 55, have a single request phase and multiple data transfer phases, as
shown in Table 21.

Table 21 Phases in a Transaction for MBurstSinqleReq set to 1

MCmd Phases Condition

Read, ReadEx,
ReadLinked

Request, response always

Write, Broadcast Request datahandshake = 0
writeresp_enable = 0

Write, Broadcast Request, response datahandshake = 0
writeresp_enable = 1

WriteNonPost,
WriteConditional

Request, response datahandshake = 0

Write, Broadcast Request, datahandshake datahandshake = 1
writeresp_enable = 0

Write, Broadcast Request, datahandshake, response datahandshake = 1
writeresp_enable = 1

WriteNonPost,
WriteConditional

Request, datahandshake, response datahandshake = 1

MCmd Phases Condition

Read Request, H*L* response

* H refers to the burst height (MBlockHeight), and is 1 for all burst sequences other than BLCK.

always

Write, Broadcast Request, H*L† datahandshake

† L refers to the burst length (MBurstLength).

datahandshake = 1
writeresp_enable = 0

Write, Broadcast Request, H*L† datahandshake, response datahandshake = 1
writeresp_enable = 1

WriteNonPost Request, H*L† datahandshake, response datahandshake = 1

Protocol Semantics 43

OCP-IP Confidential

4.3.2.2 Phase Ordering Within a Transfer
The OCP is causal: within each transfer a request phase must precede the
associated datahandshake phase which in turn, must precede the associated
response phase. The specific constraints are:

• A datahandshake phase cannot begin before the associated request phase
begins, but can begin in the same OCP clock cycle.

• A datahandshake phase cannot end before the associated request phase
ends, but can end in the same OCP clock cycle.

• A response phase cannot begin before the associated request phase
begins, but can begin in the same OCP clock cycle.

• A response phase cannot end before the associated request phase ends,
but can end in the same OCP clock cycle.

• If there is a datahandshake phase and a response phase, the response
phase cannot begin before the associated datahandshake phase (or last
datahandshake phase for single request, multiple data bursts) begins, but
can begin in the same OCP clock cycle.

• If there is a datahandshake phase and a response phase, the response
phase cannot end before the associated datahandshake phase (or last
datahandshake phase for single request, multiple data bursts) ends, but
can end in the same OCP clock cycle.

4.3.2.3 Phase Ordering Between Transfers
If tags are not in use, the ordering of transfers is determined by the ordering
of their request phases. Also, the following rules apply.

• Since two phases of the same type belonging to different transfers both
use the same signal wires, the phase of a subsequent transfer cannot
begin before the phase of the previous transfer has ended. If the first
phase ends in cycle x, the second phase can begin in cycle x+1.

• The ordering of datahandshake phases must follow the order set by the
request phases including multiple datahandshake phases for single
request, multiple data (SRMD) bursts.

• The ordering of response phases must follow the order set by the request
phases including multiple response phases for SRMD bursts.

• For SRMD bursts, a request or response phase is shared between multiple
transfers. Each individual transfer must obey the ordering rules described
in Section 4.3.2.2, even when a phase is shared with another transfer.

• Where no phase ordering is specified, by the previous rules, the effect of
two transfers that are addressing the same location (as specified by
MAddr, MAddrSpace, and MByteEn [or MDataByteEn, if applicable]) must
be the same as if the two transfers were executed in the same order but
without any phase overlap. This ensures that read/write hazards yield
predictable results.

44 Open Core Protocol Specification

OCP-IP Confidential

For example, on an OCP interface with datahandshake enabled, a read
following a write to the same location cannot start its response phase until
the write has started its datahandshake phase, otherwise the latest write
data cannot be returned for the read.

If tags are in use, the preceding rules are partially relaxed. Refer to
Section 4.7.1 on page 57 for a more detailed explanation.

4.3.2.4 Ungrouped Signals
Signals not covered in the description of signal groups and phases are
MThreadBusy, SDataThreadBusy, and SThreadBusy. Without further
protocol restriction, the cycle timing of the transition of each bit that makes
up each of these three fields is not specified relative to the other dataflow
signals. This means that there is no specific time for an OCP master or slave
to drive these signals, nor a specific time for the signals to have the desired
flow-control effect. Without further restriction, MThreadBusy, SDataTh-
readBusy, and SThreadBusy can only be treated as a hint.

For stricter semantics use the protocol configuration parameters
mthreadbusy_exact, sdatathreadbusy_exact, and sthreadbusy_exact.
These parameters can be set to 1 only when the corresponding signal has
been enabled.

The parameters mthreadbusy_pipelined, sdatathreadbusy_pipelined,
and sthreadbusy_pipelined can be used to set the relative protocol timing
of the MThreadBusy, SDataThreadBusy, and SThreadBusy signals with
respect to their phases. The *_pipelined parameters1 can only be enabled
when the corresponding *_exact parameter is enabled.

The *_exact parameters define strict protocol semantics for the
corresponding phase. The receiver of the phase identifies (through the
corresponding ThreadBusy signals) to the sender of the phase which threads
can accept an asserted phase. The sender will not assert a phase on a busy
thread, and the receiver accepts any phases asserted on threads that are not
busy. To avoid ambiguity, the corresponding phase Accept signal may not be
present on the interface, and is considered tied off to 1. The resulting phase
has exact flow control and is non-blocking. See Section 4.9.1.5 on page 61 for
configuration restrictions associated with ThreadBusy-related parameters.

The *_pipelined parameters control the cycle relationship between the
ThreadBusy signal and the corresponding phase assertion. When the
*_pipelined parameter is disabled (the default), the ThreadBusy signal
defines the flow control for the current cycle, so phase assertion depends
upon that cycle’s ThreadBusy values. This mode corresponds to the timing
arcs in Figure 6 where the ThreadBusy generation appears at the beginning
of the OCP cycle. When a *_pipelined parameter is enabled, the ThreadBusy
signal defines the flow control for the next cycle enabling fully sequential
interface behavior, where non-blocking flow control can be accomplished
without combinational paths crossing the interface twice in a single cycle.

1 The notation *_pipelined means the set of all parameter names ending in _pipelined.

Protocol Semantics 45

OCP-IP Confidential

Combinational paths may still be present to enable the phase receiver to
consider interface activity in the current cycle before signaling the
ThreadBusy signal that affects the next cycle. This corresponds to the timing
arcs in Figure 6 where ThreadBusy appears at the end of the OCP cycle. When
a _pipelined parameter is enabled, exact flow control is not possible for the
first cycle after reset is de-asserted, since the associated ThreadBusy would
have to be provided while reset was asserted. When sthreadbusy_pipelined
is enabled the master may not assert the request phase in the first cycle after
reset.

The effect of these parameters is as follows:

• If mthreadbusy_exact is enabled, mthreadbusy_pipelined is disabled,
and the master cannot accept a response on a thread, it must set the
MThreadBusy bit for that thread to 1 in that cycle. The slave must not
present a response on a thread when the corresponding MThreadBusy bit
is set to 1. Any response presented by the slave on a thread that is not
busy is accepted by the master in that cycle.

• If mthreadbusy_exact and mthreadbusy_pipelined are enabled and
the master cannot accept a response on a thread in the next cycle, it must
set the MThreadBusy bit for that thread to 1 in the current cycle. If an
MThreadBusy bit was set to 1 in the prior cycle, the slave cannot present
a response on a thread in the current cycle. Any response presented by
the slave on a thread that was not busy in the prior cycle is accepted by
the master in that cycle.

• If sdatathreadbusy_exact is enabled, sdatathreadbusy_piplelined
is disabled, and the slave cannot accept a datahandshake phase on a
thread, the slave must set the SDataThreadBusy bit for that thread to 1
in that cycle. The master must not present a datahandshake phase on a
thread when the corresponding SDataThreadBusy bit is set to 1. Any
datahandshake phase presented by the master on a thread that is not
busy is accepted by the slave in that cycle.

• If sdatathreadbusy_exact and sdatathreadbusy_piplelined are
enabled and the slave cannot accept a datahandshake phase on a thread
in the next cycle, the slave must set the SDataThreadBusy bit for that
thread to 1 in the current cycle. If an SDataThreadBusy bit was set to 1
in the prior cycle, the master cannot present a datahandshake on the
corresponding thread in the current cycle. Any datahandshake presented
by the master on a thread that was not busy in the prior cycle is accepted
by the slave in that cycle.

• If sthreadbusy_exact is enabled, sthreadbusy_piplelined is
disabled, and the slave cannot accept a command on a thread, the slave
must set the SThreadBusy bit for that thread to 1 in that cycle. The
master must not present a request on a thread when the corresponding
SThreadBusy bit is set to 1. Any request presented by the master on a
thread that is not busy is accepted by the slave in that cycle.

• If sthreadbusy_exact and sthreadbusy_piplelined are enabled and
the slave cannot accept a request on a thread in the next cycle, the slave
must set the SThreadBusy bit for that thread to 1 in the current cycle. If
an SThreadBusy bit was set to 1 in the prior cycle, the master cannot

46 Open Core Protocol Specification

OCP-IP Confidential

present a request on the corresponding thread in the current cycle. Any
request presented by the master on a thread that was not busy in the prior
cycle is accepted by the slave in that cycle.

4.3.3 Sideband and Test Signals

4.3.3.1 Reset
The OCP interface provides an interface reset signal for each master and
slave. At least one of these signals must be present. If both signals are
present, the composite reset state of the interface is derived as the logical AND
of the two signals (that is, the interface is in reset as long as one of the two
resets is asserted).

Treat OCP reset signals as fully synchronous to the OCP clock, where the
receiver samples the incoming reset using the rising edge of the clock and
deassertion of the reset meets the receiver’s timing requirements with respect
to the clock. An exception to this rule exists when the assertion edge of an
OCP reset signal is asynchronous to the OCP clock. This behavior handles the
practice of forcing all reset signals to be combinationally asserted for power-
on reset or other hardware reset conditions without waiting for a clock edge.

Once a reset signal is sampled asserted by the rising edge of the OCP clock,
all incomplete transactions, transfers and phases are terminated and both
master and slave must transition to a state where there are no pending OCP
requests or responses. When a reset signal is asserted asynchronously, there
may be ambiguity about transactions that completed, or were aborted due to
timing differences between the arrival of the OCP reset and the OCP clock.

For systems requiring precision use synchronous reset assertion, or only
apply reset asynchronously if the interface is either quiescent or hung.
MReset_n and SReset_n must be asserted for at least 16 cycles of the OCP
clock to ensure that the master and slave reach a consistent internal state.
When one or both of the reset signals are asserted in a given cycle, all other
OCP signals must be ignored in that cycle. The master and slave must each
be able to reach their reset state regardless of the values presented on the
OCP signals. If the master or slave require more than 16 cycles of reset
assertion, the requirement must be documented in the IP core specifications.

At the clock edge that all reset signals present are sampled deasserted, all
OCP interface signals must be valid. In particular, it is legal for the master to
begin its first request phase in the same clock cycle that reset is deasserted.

4.3.3.2 Connection Signals
The OCP interface offers an optional connection protocol that enables the
master to control the connection state of the interface based upon the input
of both master and slave, which can be used to implement robust schemes for
power management. The protocol makes a clear difference between an OCP
disconnected state resulting solely from a slave vote (M_DISC state) versus
one resulting from a master vote independently from the slave side vote

Protocol Semantics 47

OCP-IP Confidential

(M_OFF state). It has a single connected state (M_CON) and a transient state
(M_WAIT) that allows the slave to control how quickly the master may
transition from one stable state to another.

The connection protocol is implemented using fully synchronous signals
sampled by the rising edge of the OCP clock and no combinational paths are
allowed between the connection signals. Since any transitions between the
stable connection states requires that the interface be quiescent, the interface
reset is not needed explicitly by the connection protocol and connection state
transitions may occur independently from the reset state of the interface.
Neither data flow nor sideband communication (other than the connection
signals) is allowed in a disconnected state. However, the connection signals
(MConnect, SConnect and SWait) are always valid to enable proper operation
of the connection protocol. Since sideband communication is only reliable in
the connected state (M_CON), the 16 cycle reset assertion requirement can
only be reliably met in the connected state.

MConnect[1:0] provides the OCP socket connection state and is driven by the
master. The master must ensure a minimum duration of 2 cycles in a stable
state (M_CON, M_OFF or M_DISC) to permit the slave to sample a new stable
state and then assert SWait (to S_WAIT) to influence the next potential
connection state transition. This is a side effect of the timing requirements of
the connection protocol. MConnect[1:0] does not convey the master’s vote on
the OCP connection state. This vote information is not explicitly visible at the
interface. The four valid connection states follow.

• The M_OFF state is a stable state where the interface is disconnected due
to the master’s vote, independently from any concurrent vote from the
slave. It is likely required that the interface reach the M_OFF state before
performing specific power reduction techniques such as powering down
the master.

• The M_DISC state is a stable state where the interface is disconnected
resulting solely from the slave’s vote on SConnect. Since the master is
voting for connection, but prevented by the slave, the master may
implement an alternate behavior for upstream traffic intended for the
disconnected slave. This alternate behavior is out of the scope of the
connection protocol, but may be addressed in a future
extension.Transitions to M_DISC are only allowed after the master has
sampled the slave’s vote to disconnect (SConnect is S_DISC).

• The M_CON state is a stable state where the interface is fully connected.
It is the only state in which the master is allowed to begin any
transactions, and the master may not leave M_CON unless all
transactions are complete. Transitions to M_CON are only allowed after
the master has sampled the slave’s vote for a connection (SConnect is
S_CON). The master may not present the first transaction on the interface
until the cycle after transitioning to M_CON.

• The M_WAIT state is a transient state where the master is indicating to
the slave that it is in the process of changing the connection state. The
master can change between stable connection states without entering
M_WAIT only if the SWait signal is negated. M_WAIT is disconnected for
dataflow communication but sideband communication is allowed in

48 Open Core Protocol Specification

OCP-IP Confidential

M_WAIT only if the prior state was M_CON. The master and slave must
cooperate to ensure that all sideband communication is complete before
exiting M_WAIT for a disconnected state.

SConnect provides the slave’s vote on the OCP connection state. The slave
may change its vote at any time, but must be ready to support the connected
state (M_CON) when driving SConnect to S_CON.

SWait allows the slave to control how the master transitions between the
stable connection states. By asserting SWait (S_WAIT) in a stable state, the
slave forces the master to transition through the M_WAIT state and the
master may not leave M_WAIT until it has sampled SWait negated (S_OK). The
slave must assert SWait in situations where the master could otherwise
transition from M_CON to a disconnected state without allowing the slave to
become quiescent. SWait can be tied-off to logic 0 (S_OK) in case the slave can
accept immediate transitions by the master between the stable connection
states.

4.3.3.3 Interrupt, Error, and Core Flags
There is no specific timing associated with SInterrupt, SError, MFlag, MError,
and SFlag. The timing of these signals is core-specific.

4.3.3.4 Status and Control
The following rules assure that control and status information can be
exchanged across the OCP without any combinational paths from inputs to
outputs and at the pace of a slow core.

• Control must be held steady for a full cycle after the cycle in which it has
transitioned, which means it cannot transition more frequently than every
other cycle. If ControlBusy was sampled active at the end of the previous
cycle, Control can not transition in the current cycle. In addition, Control
must be held steady for the first two cycles after reset is deasserted.

• If Control transitions in a cycle, ControlWr (if present) must be driven
active for that cycle. ControlWr following the rules for Control, cannot be
asserted in two consecutive cycles.

• ControlBusy allows a core to force the system to hold Control steady.
ControlBusy may only start to be asserted immediately after reset, or in
the cycle after ControlWr is asserted, but can be left asserted for any
number of cycles.

• While StatusBusy is active, Status is a “don’t care”. StatusBusy enables a
core to prevent the system from reading the current status information.
While StatusBusy is active the core may not read Status. StatusBusy can
be asserted at any time and be left asserted for any number of cycles.

• StatusRd is active for a single cycle every time the status register is read
by the system. If StatusRd was asserted in the previous cycle, it must not
be asserted in the current cycle, so it cannot transition more frequently
than every other cycle.

Protocol Semantics 49

OCP-IP Confidential

4.3.3.5 Test Signals
Scanin and Scanout are “don’t care” while Scanctrl is inactive (but the
encoding of inactive for Scanctrl is core-specific).

TestClk is “don’t care” while ClkByp is 0.

The timing of TRST_N, TCK, TMS, TDI, and TDO is specified in the IEEE 1149
standard.

4.4 Transfer Effects
A successful transfer is one that completes without error. For write-type
requests without responses, there is no in-band error indication. For all other
requests, a non-ERR response (that is, a DVA or FAIL response) indicates a
successful transfer. The FAIL response is legal only for WriteConditional
commands1. This section defines the effect that a successful transfer has on
a slave. The request acts on the addressed location, where the term address
refers to the combination of MAddr, MAddrSpace, and MByteEn (or
MDataByteEn, if applicable). Two addresses are said to match if they are
identical in all components. Two addresses are said to conflict, if the mutual
exclusion (lock or monitor) logic is built to alias the two addresses into the
same mutual exclusion unit. The transfer effects of each command are:

Idle
None.

Read
Returns the latest value of the addressed location on the SData field.

ReadEx
Returns the latest value of the addressed location on the SData field. Sets
a lock for the initiating thread on that location. The next request on the
thread that issued a ReadEx must be a Write or WriteNonPost to the
matching address. Requests from other threads to a conflicting address
that is locked are not committed until the lock is released. If the ReadEx
request returns an ERR response, it is slave-specific whether the lock is
actually set or not. Refer to Section 4.4.3 on page 51 for details.

ReadLinked
Returns the latest value of the addressed location on the SData field. Sets
a reservation in a monitor for the corresponding thread on at least that
location. Requests of any type from any thread to a conflicting address
that is reserved are not blocked from proceeding, but may clear the
reservation.

Write/WriteNonPost
Places the value on the MData field in the addressed location. Unlocks
access to the matched address if locked by a ReadEx issued on the same
initiating thread.Clears the reservations on any conflicting addresses set
by other threads.

1 For all commands except those following a posted write model, a DVA response also indicates
that the transfer is committed.

50 Open Core Protocol Specification

OCP-IP Confidential

WriteConditional
If a reservation is set for the matching address and for the corresponding
thread, the write is performed as it would be for a Write or WriteNonPost.
Simultaneously, the reservation is cleared for all threads on any
conflicting address. If no reservation is set for the corresponding thread,
the write is not performed, a FAIL response is returned, and no
reservations are cleared.

Broadcast
Places the value on the MData field in the addressed location that may
map to more than one slave in a system-dependent way. Broadcast clears
the reservations on any conflicting addresses set by other threads.

If a transfer is unsuccessful, the effect of the transfer is unspecified. Higher-
level protocols must determine what happened and handle any clean-up.

The synchronization commands ReadEx / Write, ReadEx / WriteNonPost,
and ReadLinked / WriteConditional have special restrictions with regard to
data width conversion and partial words. In systems where these commands
are sent through a bridge or interconnect that performs wide-to-narrow data
width conversion between two OCP interfaces, the initiator must issue only
commands within the subset of partial words that can be expressed as a
single word of the narrow OCP interface. For maximum portability, single-
byte synchronization operations are recommended.

4.4.1 Partial Word Transfers
An OCP interface may be configured to include partial word transfers by using
either the MByteEn field, or the MDataByteEn field, or both.

• If neither field is present, then only whole word transfers are possible.

• If only MByteEn is present, then the partial word is specified by this field
for both read type transfers and write type transfers as part of the request
phase.

• If only MDataByteEn is present, then the partial word is specified by this
field for write type transfers as part of the datahandshake phase, and
partial word reads are not supported.

• If both MByteEn and MDataByteEn are present, then MByteEn specifies
partial words for read transfers as part of the request phase, and
MDataByteEn specifies partial words for write transfers as part of the
datahandshake phase.

It is legal to use a request with all byte enables deasserted. Such requests
must follow all the protocol rules, except that they are treated as no-ops by
the slave: the response phase signals SData and SDataInfo are “don’t care”
for read-type commands, and nothing is written for write-type commands.

Protocol Semantics 51

OCP-IP Confidential

4.4.2 Posting Semantics
Table 22 below summarizes the posting semantics for write-type commands.
WRNP and WRC are always non-posted; a DVA response indicates that the
write was committed and an ERR response indicates that the write was not
committed (an error occurred along the write path).

WR and BCST commands may follow a posted or non-posted model. If the
OCP interface is configured to not send a completion response
(writeresp_enable is set to 0), the write is posted upon command
acceptance and is considered to be posted early. When writeresp_enable is
set to 1, the system designer decide where along the write path the posting
point is. The completion response (either DVA or ERR) is then generated from
the posting point. The non-posted model has the same semantics as WRNP.

Table 22 Write Posting Semantics

4.4.3 Transaction Completion, Transaction Commitment
It is useful to distinguish between “commitment” of a transaction and the
“completion” of a transaction. A transaction is “committed” when the
transaction finishes or completes at the final target.

In cases where the completion response is sent by the slave or target after
commitment, the completion response is a guarantee of transaction
commitment. With a posted write model, however, the posted write
completion response may be received at the master before the write
commitment.

Thus, the OCP completion response implies commitment for all transactions
except writes with a posted write model (e.g., WR or BCST with early posting).
For posted writes, there is no relationship between commitment and
completion.

4.5 Endianness
An OCP interface by itself is inherently endian-neutral. Data widths must
match between master and slave, addressing is on an OCP word granularity,
and byte enables are tied to byte lanes (data bits) without tying the byte lanes
to specific byte addresses.

The issue of endianness arises in the context of multiple OCP interfaces,
where the data widths of the initiator of a request and the final target of that
request do not match. Examples are a bridge or a more general interconnect
used to connect OCP-based cores.

Write Command
writeresp_enable

0 1

WR, BCST Posted early Posted or Non-posted

WRNP, WRC Non-posted Non-posted

52 Open Core Protocol Specification

OCP-IP Confidential

When the OCP interfaces differ in data width, the interconnect must associate
an endianness with each transfer. It does so by associating byte lanes and
byte enables of the wider OCP with least-significant word address bits of the
narrower OCP. Packing rules, described in Section 4.6.1.2 on page 54 must
also be obeyed for bursts.

OCP interfaces can be designated as little, big, both, or neutral with respect
to endianness. This is specified using the protocol parameter endian
described in Section 4.9.1.6 on page 62. A core that is designated as both
typically represents a device that can change endianness based upon either
an internal configuration register or an external input. A core that is
designated as neutral typically represents a device that has no inherent
endianness. This indicates that either the association of an endianness is
arbitrary (as with a memory, which traditionally has no inherent endianness)
or that the device only works with full-word quantities (when byteen and
mdatabyteen are set to 0).

When all cores have the same endianness, an interconnect should match the
endianness of the attached cores. The details of any conversion between cores
of different endianness is implementation-specific.

4.6 Burst Definition
A burst is a set of transfers that are linked together into a transaction having
a defined address sequence and number of transfers. There are three general
categories of bursts:

Imprecise bursts
Request information is given for each transfer. Length information may
change during the burst.

Precise bursts
Request information is given for each transfer, but length information is
constant throughout the burst.

Single request / multiple data bursts (also known as packets)
Also a precise burst, but request information is given only once for the
entire burst.

To express bursts on the OCP interface, at least the address sequence and
length of the burst must be communicated, either directly using the
MBurstSeq and MBurstLength signals, or indirectly through an explicit
constant tie-off as described in Section 4.9.5.1 on page 66.

A single (non-burst) request on an OCP interface with burst support is
encoded as a request with any legal burst address sequence and a burst
length of 1.

The ReadEx, ReadLinked, and WriteConditional commands can not be used
as part of a burst. The unlocking Write or WriteNonPost command associated
with a ReadEx command also can not be used as part of a burst.

Protocol Semantics 53

OCP-IP Confidential

4.6.1 Burst Address Sequences
The relationship of the MBurstSeq encodings and corresponding address
sequences are shown in Table 23. The table also indicates whether a burst
sequence type is packing or not, a concept discussed on page 54.

Table 23 Burst Address Sequences

The address sequence for two-dimensional block bursts is as follows. The
address sequence begins at the provided address and proceeds through a set
of MBlockHeight subsequences, each of which follows the normal INCR
address sequence for MBurstLength transfers. The starting address for each
following subsequence is the starting address of the prior subsequence plus
MBlockStride.

The address sequence for exclusive OR bursts is as follows. Let BASE be the
lowest byte address in the burst, which must be aligned with the total burst
size. Let FIRST_OFFSET be the byte offset (from BASE) of the first transfer in
the burst. Let CURRENT_COUNT be the count of the current transfer in the
burst, starting at 0. Let WORD_SHIFT be the logarithm base-two of the OCP
word size in bytes. Then the current address of the transfer is BASE |
(FIRST_OFFSET ^ (CURRENT_COUNT << WORD_SHIFT)).

The burst address sequence UNKN is used if the address sequence is not
statically known for the burst. Single request/multiple data bursts (described
on page 55) with a burst address sequence of UNKN are illegal. In contrast,
the DFLT1 and DFLT2 address sequences are known, but are core or system
specific.

The burst address sequences BLCK, WRAP, and XOR can only be used for
precise bursts. Additionally, the burst sequences WRAP and XOR can only
have a power-of-two burst length and a data width that is a power-of-two
number of bytes.

Mnemonic Name Address Sequence Packing

BLCK 2D block see below for definition yes

DFLT1 custom (packed) user-specified yes

DFLT2 custom (not packed) user-specified no

INCR incrementing incremented by OCP word size

each transfer*

* Bursts must no wrap around the OCP address size.

yes

STRM streaming constant each transfer no

UNKN unknown none specified implementation
specific

WRAP wrapping like INCR, except wrap at
address boundary aligned with
MBurstLength * OCP word size

yes

XOR exclusive OR see below for definition yes

54 Open Core Protocol Specification

OCP-IP Confidential

Not all masters and slaves need to support all burst sequences. A separate
protocol parameter described in Section 4.9.1.2 on page 59 is provided for
each burst sequence to indicate support for that burst sequence.

4.6.1.1 Byte Enable Restrictions
Burst address sequences STRM and DFLT2 must have at least one byte
enable asserted for each transfer in the burst. Bursts with the STRM address
sequence must have the same byte enable pattern for each transfer in the
burst.

4.6.1.2 Packing
Packing allows the system to make use of the burst attributes to improve the
overall data transfer efficiency in the face of multiple OCP interfaces of
different data widths. For example, if a bridge is translating a narrow OCP to
a wide OCP, it can aggregate (or pack) the incoming narrow transfers into a
smaller number of outgoing wide transfers. Burst address sequences are
classified as either packing or not packing.

For burst address sequences that are packing, the conversion between
different OCP data widths is achieved through aggregation or splitting.
Narrow OCP words are collected together to form a wide OCP word. A wide
OCP word is split into several narrow OCP words. The byte-specific portion of
MDataInfo and SDataInfo is aggregated or split with the data. The transfer-
specific portion of MDataInfo and SDataInfo is unaffected. The packing and
unpacking order depends on endianness as described on page 51.

For burst address sequences that are not packing, conversion between
different OCP data widths is achieved using padding and stripping. A narrow
OCP word is padded to form a wide OCP word with only the relevant byte
enables turned on. A wide OCP word is stripped to form a narrow OCP word.
The byte-specific portion of MDataInfo and SDataInfo is zero-padded or
stripped with the data. The transfer-specific portion of MDataInfo and
SDataInfo is unaffected. Width conversion can be performed reliably only if
the wide OCP interface has byte enables associated with it. For wide to narrow
conversion the byte enables are restricted to a subset that can be expressed
within a single word of the narrow OCP interface.

Since the address sequence of DFLT1 is user-specified, the behavior of DFLT1
bursts through data width conversion is implementation-specific.

4.6.2 Burst Length, Precise and Imprecise Bursts
The MBurstLength field indicates the number of transfers in the burst.

Precise bursts (MBurstPrecise set to 1)
MBurstLength must be held constant throughout the burst, so the exact
burst length can be obtained from the first transfer. A precise burst is
completed by the transfer of the correct number of OCP words. Precise
bursts are recommended over imprecise bursts because they allow for
increased hardware optimization.

Protocol Semantics 55

OCP-IP Confidential

Imprecise bursts (MBurstPrecise set to 0)
MBurstLength can change throughout the burst and indicates the current
best guess of the number of transfers left in the burst (including the
current one). An imprecise burst is completed by an MBurstLength of 1.

4.6.3 Constant Fields in Bursts
MCmd, MAddrSpace, MConnID, MBurstPrecise, MBurstSingleReq,
MBurstSeq, MAtomicLength, MBlockHeight, MBlockStride, and MReqInfo
must all be held steady by the master for every transfer in a burst, regardless
of whether the burst is precise or imprecise. If possible, slaves should hold
SRespInfo steady for every transfer in a burst.

4.6.4 Atomicity
When interleaving requests from different initiators on the way to or at the
target, the master uses MAtomicLength to indicate the number of OCP words
within a burst that must be kept together as an atomic quantity. If MAtomi-
cLength is greater than the actual length of the burst, the atomicity
requirement ends with the end of the burst. Specifying atomicity
requirements explicitly is especially useful when multiple OCP interfaces are
involved that have different data widths.

For master cores, it is best to make the atomic size as small as required and,
if possible, to keep the groups of atomic words address-aligned with the group
size.

4.6.5 Single Request / Multiple Data Bursts (Packets)
MBurstSingleReq specifies whether a burst can be communicated using a
single request / multiple data protocol. When MBurstSingleReq is 0, each
request has a single data word associated with it. When MBurstSingleReq is
1, each request may have multiple data words associated with it, according to
the values of MBurstLength and MBlockHeight. MBurstSingleReq may be set
to 1 only if MBurstPrecise is set to 1. In addition, if any write-type commands
are enabled, datahandshake must be set to 1.

When MBurstSingleReq is set to 1, write type transfers have MBurstLength *
height datahandshake phases per request1; while read-type transfers have
MBurstLength * height response phases per request as shown in Table 21 on
page 42. The height is MBlockHeight for BLCK address sequences, and 1 for
all others.

For write type transfers when MBurstSingleReq is set to 1 and the
MDataByteEn field is present, that field in each data transfer phase specifies
the partial word pattern for the phase. When MBurstSingleReq is set to 1 and
the MDataByteEn field is not present, the MByteEn pattern of the request
phase applies to all data transfer phases.

1 Additionally, there is a single response phase for WRNP write type while the WR and BCST types
have this phase only if writeresp_enable is set to 1. Note that WRC write type is not allowed
in a burst.

56 Open Core Protocol Specification

OCP-IP Confidential

For read type transfers when MBurstSingleReq is set to 1, the MByteEn field
specifies the byte enable pattern that is applied to all data transfers in the
burst.

4.6.6 MReqLast, MDataLast, SRespLast
Optional signals MReqLast, MDataLast, and SRespLast provide redundant
information that indicates the last request, datahandshake, and response
phase in a burst, respectively. These signals are provided as a convenience to
the recipient of the signal. To avoid separate counting mechanisms to track
bursts, cores that have the information available internally are encouraged to
provide it at the OCP interface.

MReqLast is 0 for all request phases in a burst except the last one. MReqLast
is 1 for the last request phase in a burst, for single request / multiple data
bursts, and for single requests.

MDataLast is 0 for all datahandshake phases in a burst except the last one.
MDataLast is 1 for the last datahandshake phase in a burst and for the only
datahandshake phase of a single request.

SRespLast is 0 for all response phases in a burst except the last one.
SRespLast is 1 for the last response phase in a burst, for the response to a
write-type single request / multiple data burst, and for the response to a
single request.

4.6.7 MReqRowLast, MDataRowLast, SRespRowLast
For the BLCK burst address sequence, the optional signals MReqRowLast,
MDataRowLast, and SRespRowLast identify the last request, datahandshake,
and response phase in a row. The last phase in a burst is always considered
the last phase in a row, and BLCK burst sequences reach the end of a row
every MBurstLength phases (at the end of each INCR sub-sequence, see page
68). To avoid separate counting mechanisms needed to track BLCK burst
sequences, cores that have the end of row information available should
provide it at the OCP interface.

For all request phases in a non-BLCK burst except the last one, MReqRowLast
is 0. MReqRowLast is 0 for every request phase in a BLCK burst sequence that
is not an integer multiple of MBurstLength. MReqRowLast is 1 for:

• The last request phase in a burst including:

− The only request phase in a single request/multiple data burst

− The only request phase in a single word request

• Every request phase in a BLCK burst sequence that is an integer multiple
of MBurstLength

For all datahandshake phases in a non-BLCK burst except the last one,
MDataRowLast is 0. MDataRowLast is 0 for every datahandshake phase in a
BLCK burst sequence that is not an integer multiple of MBurstLength.
MDataRowLast is 1 for:

Protocol Semantics 57

OCP-IP Confidential

• The last datahandshake phase in a burst including the only
datahandshake phase of a single word request

• Every datahandshake phase in a BLCK burst sequence that is an integer
multiple of MBurstLength

For all response phases in a non-BLCK burst except the last one,
SRespRowLast is 0. SRespRowLast is 0 for every response phase in a BLCK
burst sequence that is not an integer multiple of MBurstLength.
SRespRowLast is 1 for:

• The last response phase in a burst including:

− The only response phase in a write-type single request/multiple data
burst

− The only response phase in a single word request

• Every response phase in a BLCK burst sequence that is an integer
multiple of MBurstLength

4.7 Tags
Tags allow out-of-order return of responses and out-of-order commit of write
data.

A master drives a tag on MTagID during the request phase. The value of the
tag is determined by the master and may or may not convey meaning beyond
ordering to the slave. For write transactions with data handshake enabled,
the master repeats the same tag on MDataTagID during the datahandshake
phase. For read transactions and writes with responses the slave returns the
tag of the corresponding request on STagID while supplying the response. The
same tag must be used for an entire transaction.

4.7.1 Ordering Restrictions
The sequence of requests by the master determines the initial ordering of
tagged transactions. For tagged write transactions with datahandshake
enabled, the datahandshake phase must observe the same order as the
request phase. The master cannot interleave requests or datahandshake
phases from different tags belonging to the same thread within a transaction.

Tag values can be re-used for multiple outstanding transactions. Slaves are
responsible for committing write data and sending responses for multiple
transactions that have the same tag, in order.

Responses that are part of the same transaction must stay together, up to the
tag_interleave_size (see Section 4.9.1.7 on page 62). Beyond the
tag_interleave_size, responses with different tags can be interleaved. This
allows for blocks of responses corresponding to tag_interleave_size from
one burst to be interleaved with blocks of responses from other bursts.

58 Open Core Protocol Specification

OCP-IP Confidential

Responses with different tags can be returned in any order for all commands
that have responses. Responses with the same tag must remain in order with
respect to one another. Responses to requests that are issued with
MTagInOrder asserted are also never reordered with respect to one another.
The value returned on STagInOrder with the slave’s response must match the
value provided on MTagInOrder with the master’s request.

Commitment of transactions with overlapping addresses (as determined by
MAddrSpace, MAddr, MByteEn [or MDataByteEn, if applicable]) on different
(or the same) tags within a thread is always in order. Note, however, that the
completion responses for such transactions with different tag ids may be
reordered.

4.8 Threads and Connections
When using multiple threads, it is possible to support concurrent activity,
and out-of-order completion of transfers. All transfers within a given thread
must either remain strictly ordered or follow the tag ordering rules, but there
are no ordering rules for transfers that are in different threads. Mapping of
individual requests and responses to threads is handled through the
MThreadID and SThreadID fields respectively. If datahandshake has been
enabled when multiple threads are present, there must also be an MDataTh-
readID field to annotate the datahandshake phase. If datahandshake is set to
1 and the datahandshake phase has blocking flow control (as described on
page 61), the order of datahandshake phases must follow the order of request
phases across all threads. If the datahandshake phase has no flow control or
non-blocking flow control, the request order and datahandshake order are
independent across threads.

The use of thread IDs allows two entities that are communicating over an OCP
interface to assign transfers to particular threads. If one of the communi-
cating entities is itself a bridge to another OCP interface, the information
about which transfers are part of which thread must be maintained by the
bridge, but the actual assignment of thread IDs is done on a per-OCP-
interface basis. There is no way for a slave on the far side of a bridge to extract
the original thread ID unless the slave design comprehends the character-
istics of the bridge.

Use connections whenever source thread information about a request must
be sent end-to-end from master to slave. Any bridges in the path between the
end-to-end partners preserve the connection ID, even as thread IDs are re-
assigned on each OCP interface in the path. The MConnID field transfers the
connection ID during the request phase. Since this establishes the mapping
onto a thread ID, the other phases do not require a connection ID but are
unambiguous with only a thread ID.

The SThreadBusy, SDataThreadbusy, and MThreadBusy signals are used to
indicate that a particular thread is busy. The protocol parameters
sthreadbusy_exact, sdatathreadbusy_exact, and mthreadbusy_exact
can be used to force precise semantics for these signals and assure that a
multi-threaded OCP interface never blocks. For more information, see
Section 4.3.2.4 on page 44.

Protocol Semantics 59

OCP-IP Confidential

4.9 OCP Configuration
This section describes configuration options that control interface
capabilities.

4.9.1 Protocol Options

4.9.1.1 Optional Commands
Not all devices support all commands. Each command in Table 24 has an
enabling parameter to indicate if that command is supported.

Table 24 Command Enabling Parameters

The following conditions apply to command support:

• A master with one of these options set to 0 must not generate the
corresponding command.

• A slave with one of these options set to 0 cannot service the corresponding
command.

• At least one of the command enables must be set to 1.

• If any read-type command is enabled, or if WRNP is enabled, or if
writeresp_enable is set to 1, resp must be set to 1.

• If readex_enable is set to 1, write_enable or writenonpost_enable
must be set to 1.

4.9.1.2 Optional Burst Sequences
Not all masters and slaves need to support all burst address sequences. Table
25 lists the parameter for each burst sequence. A master with the parameter
set to 1 may generate the corresponding burst sequence. A slave with the
parameter set to 1 can service the corresponding burst sequence. If
MBurstSeq is disabled and tied off to a constant value, the corresponding
burst sequence parameter must be enabled and all others disabled. If
MBurstSeq is enabled at least one of the burst sequence parameters must be
enabled.

Command Parameter

Broadcast broadcast_enable

Read read_enable

ReadEx readex_enable

ReadLinked and
WriteConditional

rdlwrc_enable

Write write_enable

WriteNonPost writenonpost_enable

60 Open Core Protocol Specification

OCP-IP Confidential

Table 25 Burst Sequence Parameters

The BLCK burst sequence can only be enabled if both MBlockHeight and
MBlockStride are included in the interface or tied off to non-default values.
For additional burst information, see Section 4.6 on page 52.

4.9.1.3 Byte Enable Patterns
Not all devices support all allowable byte enable patterns. A force_aligned
parameter limits byte enable patterns on MByteEn and MDataByteEn to be
power-of-two in size and aligned to that size. The byte enable pattern of all 0s
is explicitly included in the legal force aligned patterns.

• A master with this option set to 1 must not generate any byte enable
patterns that are not force aligned.

• A slave with this option set to 1 cannot handle any byte enable patterns
that are not force aligned.

force_aligned can be set to 1 only if data_wdth is set to a power-of-two
value.

4.9.1.4 Burst Alignment
The burst_aligned parameter provides information about the length and
alignment of INCR bursts issued by a master and can be used to optimize the
system. Setting burst_aligned to 1 requires all INCR bursts to:

• Have an exact power-of-two number of transfers

• Have their starting address aligned with their total burst size

• Be issued as precise bursts.

The burst_aligned parameter does not apply to the INCR subsequences
within BLCK burst sequences.

Burst Sequence Parameter

BLCK burstseq_blck_enable

DFLT1 burstseq_dflt1_enable

DFLT2 burstseq_dflt2_enable

INCR burstseq_incr_enable

STRM burstseq_strm_enable

UNKN burstseq_unkn_enable

WRAP burstseq_wrap_enable

XOR burstseq_xor_enable

Protocol Semantics 61

OCP-IP Confidential

4.9.1.5 Flow Control Options
To permit the SThreadBusy and MThreadBusy signals to guarantee a non-
blocking, multi-threaded OCP interface, the sthreadbusy_exact and
mthreadbusy_exact parameters require strict semantics. See
Section 4.3.2.4 on page 44 for a definition of these parameters. Table 26
describes the legal combinations of phase handshake signals.

Table 26 Request Phase Without Datahandshake

When datahandshake is set to 1, the preceding rules for cmdaccept,
sthreadbusy, and sthreadbusy_exact also apply to dataaccept, sdatath-
readbusy, and sdatathreadbusy_exact. In addition, blocking and non-
blocking flow control must not be mixed for the request and datahandshake
phase. A phase using no flow control can be mixed with phases using either
blocking or non-blocking type flow control. The legal combinations are shown
in Table 27.

Table 27 Request Phase with Datahandshake

1 Only legal if reqdata_together is set to 0.
2 Only legal if reqdata_together is set to 0. In addition the master must not assert the datahandshake phase until after

the associated request phase has been accepted.
3 Only legal if sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set to the same value.

The preceding rules for the request phase using cmdaccept, sthreadbusy,
and sthreadbusy_exact also apply to the response phase for respaccept,
mthreadbusy, and mthreadbusy_exact.

cmdaccept sthreadbusy sthreadbusy_exact Explanation

0 0 0 Legal: no flow control

0 0 1 Illegal: sthreadbusy_exact must be
0 when sthreadbusy is 0

0 1 0 Illegal: no real flow control

0 1 1 Legal: non-blocking flow control

1 0 0 Legal: blocking flow control

1 0 1 Illegal: sthreadbusy_exact must be
0 when sthreadbusy is 0

1 1 0 Legal: blocking flow control with
hints

1 1 1 Illegal: since SCmdAccept is
present flow control cannot be
exact

Datahandshake Phase Flow Control

None Blocking Non-blocking

Request Phase
Flow Control

None Legal Legal1 Legal

Blocking Legal2 Legal Illegal

Non-blocking Legal Illegal Legal3

62 Open Core Protocol Specification

OCP-IP Confidential

4.9.1.6 Endianness
The endian parameter specifies the endianness of a core. The behavior of
each endianness choice is summarized in Table 28.

Table 28 Endianness

As far as OCP is concerned, little endian means that lower addresses are
associated with lower numbered data bits (byte lanes), while big endian
means that higher addresses are associated with lower numbered data bits
(byte lanes). This becomes significant when packing is concerned (see
Section 4.6.1.2 on page 54). In addition, for non-power-of-2 data widths, tie-
off padding is always added at the most significant end of the OCP word. See
Section 4.5 on page 51 for additional information.

4.9.1.7 Burst Interleaving with Tags
When tags > 1, the tag_interleave_size parameter limits the interleaving
permitted for responses with burst sequences. The parameter indicates the
size of a power-of-two, aligned data block (in OCP words) within which there
can be no interleaving of responses from packing bursts with different tags.

tag_interleave_size = 0
No interleaving of responses between any burst sequence responses with
different tags is permitted.

tag_interleave_size = 1
Interleaving is permitted at OCP word granularity and is unrestricted.

tag_interleave_size > 1
Interleaving of non-packing burst sequence responses is not limited by
tag_interleave_size. Interleaving of packing burst responses is
allowed whenever the next response would cross the data block boundary,
regardless of whether a full data block of responses has been returned.

Restricting interleaving opportunities for packing burst responses reduces
the storage required for width conversion when multiple tags are present. For
slaves, enabling the parameter restricts the aligned boundary within which
the slave interleaves responses with different tags. For masters, the
parameter gives the minimum aligned boundary at which the master can
tolerate interleaving of responses with different tags.

Endianness Description

little core is little-endian

big core is big-endian

both core can be either big or little endian, depending on its static or
dynamic configuration (e.g. CPUs)

neutral core has no inherent endianness (e.g. memories, cores that deal
only in OCP words)

Protocol Semantics 63

OCP-IP Confidential

4.9.2 Phase Options
The datahandshake parameter allows write data to have a handshake
interface separate from the request group.

Datahandshake
If datahandshake is set to 1, the MDataValid and optionally the SDataAccept
signals are added to the OCP interface, a separate datahandshake phase is
added, and the MData and MDataInfo fields are moved from the request group
to the datahandshake group. Datahandshake can be set to 1 only if at least
one write-type command is enabled.

Request and Data Together
While datahandshake is required for OCP interfaces that are capable of
communicating single request / multiple data bursts, a fully separated
datahandshake may be overkill for some cores. The parameter
reqdata_together is used to specify that the request and datahandshake
phases of the first transfer in a single request, multiple data (SRMD) write-
type burst begin and end together.

A master with reqdata_together set to 1 must present the request and first
write data word in the same cycle and can expect that the slave will accept
them together. If sthreadbusy_exact and sdatathreadbusy_exact are both set
to 1 and sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set
to 0, then a request and first write data can be presented only when both
SThreadBusy and SDataThreadBusy for the corresponding thread are 0 on
that cycle. If sthreadbusy_exact and sdatathreadbusy_exact are both set to 1
and sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set to 1,
then a request and first write data can be presented only on cycle i when both
SThreadBusy and SDataThreadBusy for the corresponding thread are 0
during the prior cycle, i.e., cycle (i-1).

A slave with reqdata_together set to 1 must accept the request and first write
data word in the same cycle and can expect that they will be presented
together.

The parameter reqdata_together can only be set to 1 if burstsinglereq is
set to 1, or burstsinglereq is set to 0 and MBurstSingleReq is tied off to 1.

If both reqdata_together and burstsinglereq are set to 1, the master
must present the request and associated write data word together for each
transfer in any multiple request / multiple data writes it issues. The slave
must accept both request and write data together for all such transfers.

Write Responses
• Writes which follow a non-posted model, i.e., WRNP and WRC, always

have a write response. For this case, resp must be set to 1.

• For writes which follow a posted model, i.e., WR and BCST: if responses
are not enabled on writes (writeresp_enable set to 0), then they
complete on command acceptance.

64 Open Core Protocol Specification

OCP-IP Confidential

4.9.3 Signal Options
The configuration parameters described in Section 3.4 on page 31, not only
configure the corresponding signal into the OCP interface, but also enable the
function. For example, if the burstseq and burstlength parameters are
enabled the MBurstSeq and MBurstLength fields are added and the interface
also supports burst extensions as described in Section 4.6 on page 52.

4.9.4 Minimum Implementation
A minimal OCP implementation must support at least the basic OCP dataflow
signals. OCP-interoperable masters and slaves must support the command
type Idle and at least one other command type.

If the SResp field is present in the OCP interface, OCP-interoperable masters
and slaves must support response types NULL and DVA. The ERR response
type is optional and should only be included if the OCP-interoperable slave
has the ability to report errors. All OCP masters must be able to accept the
ERR response. If rdlwrc_enable is set to 1, the FAIL response type must be
supported by OCP masters and slaves.

4.9.5 OCP Interface Interoperability
Two devices connected together each have their own OCP configuration. The
two interfaces are only interoperable (allowing the two devices to be connected
together and communicate using the OCP protocol semantics) if they are
interoperable at the core, protocol, phase, and signal levels.

1. At the core level:

• One interface must act as master and the other as slave.

• If system signals are present, one interface must act as core and the
other as system.

2. At the protocol level, the following conditions determine interface
interoperability:

• If the slave has read_enable set to 0, the master must have
read_enable set to 0, or it must not issue Read commands.

• If the slave has readex_enable set to 0, the master must have
readex_enable set to 0, or it must not issue ReadEx commands.

• If the slave has rdlwrc_enable set to 0, the master must have
rdlwrc_enable set to 0, or it must not issue either ReadLinked or
WriteConditional commands.

• If the slave has write_enable set to 0, the master must have
write_enable set to 0, or it must not issue Write commands.

• If the slave has writenonpost_enable set to 0, the master must have
writenonpost_enable set to 0, or it must not issue WriteNonPost
commands.

Protocol Semantics 65

OCP-IP Confidential

• If the slave has broadcast_enable set to 0, the master must have
broadcast_enable set to 0, or it must not issue Broadcast
commands.

• If the slave has burstseq_blck_enable set to 0, the master must
have burstseq_blck_enable set to 0, or it must not issue BLCK
bursts.

• If the slave has burstseq_incr_enable set to 0, the master must
have burstseq_incr_enable set to 0, or it must not issue INCR
bursts.

• If the slave has burstseq_strm_enable set to 0, the master must
have burstseq_strm_enable set to 0, or it must not issue STRM
bursts.

• If the slave has burstseq_dflt1_enable set to 0, the master must
have burstseq_dflt1_enable set to 0, or it must not issue DFLT1
bursts.

• If the slave has burstseq_dflt2_enable set to 0, the master must
have burstseq_dflt2_enable set to 0, or it must not issue DFLT2
bursts.

• If the slave has burstseq_wrap_enable set to 0, the master must
have burstseq_wrap_enable set to 0, or it must not issue WRAP
bursts.

• If the slave has burstseq_xor_enable set to 0, the master must have
burstseq_xor_enable set to 0, or it must not issue XOR bursts.

• If the slave has burstseq_unkn_enable set to 0, the master must
have burstseq_unkn_enable set to 0, or it must not issue UNKN
bursts.

• If the slave has force_aligned, the master has force_aligned or it
must limit itself to aligned byte enable patterns.

• Configuration of the mdatabyteen parameter is identical between
master and slave.

• If the slave has burst_aligned, the master has burst_aligned or it
must limit itself to issue all INCR bursts using burst_aligned rules.

• If the interface includes SThreadBusy, the sthreadbusy_exact and
sthreadbusy_pipelined parameters are identical between master
and slave.

• If the interface includes MThreadBusy, the mthreadbusy_exact and
mthreadbusy_pipelined parameter are identical between master
and slave.

• If the interface includes SDataThreadBusy, the
sdatathreadbusy_exact and sdatathreadbusy_pipelined
parameters are identical between master and slave.

66 Open Core Protocol Specification

OCP-IP Confidential

• All combinations of the endian parameter between master and slave
are interoperable as far as the OCP interface is concerned. There may
be core-specific issues if the endianness is mismatched.

• If tags > 1, the master’s tag_interleave_size is smaller than or
equal to the slave’s tag_interleave_size.

3. At the phase level the two interfaces are interoperable if:

• Configuration of the datahandshake parameter is identical between
master and slave.

• Configuration of the writeresp_enable parameter is identical
between master and slave. Otherwise, the master only issues the write
commands WriteNonPost and WriteConditional.

• Configuration of the reqdata_together parameter is identical
between master and slave.

4. At the signal level, two interfaces are interoperable if:

• data_wdth is identical for master and slave, or if one or both
data_wdth configurations are not a power-of-two, if that data_wdth
rounded up to the next power-of-two is identical for master and slave.

• The master and slave both have mreset or sreset set to 1.

• If the master has mreset set to 1, the slave has mreset set to 1.

• If the slave has sreset set to 1, the master has sreset set to 1.

• The value of connection is identical for master and slave, or if
ConnectCap is tied off to logic 0 on the side with connection set to 1.

• Both master and slave have tags set to >1 or if only one core’s tags
parameter is set to 1, the other core behaves as though MTagInOrder
were asserted for every request.

• The tie-off rules, described in the next section are observed for any
mismatch at the signal level for fields other than MData and SData.

4.9.5.1 Signal Mismatch Tie-off Rules
There are two types of signal mismatches: both interfaces may have
configured the signal, but to different widths or only one interface may have
configured the signal.

Width mismatch for all fields other than MData and SData is handled through
a set of signal tie-off rules. The rules state whether a master and slave that
are mismatched in a particular field width configuration are interoperable,
and if so how to connect them by tying off the mismatched signals.

If there is a width mismatch between master and slave for a particular signal
configuration the following rules apply:

Protocol Semantics 67

OCP-IP Confidential

• If there are more outputs than inputs (the driver of the field has a wider
configuration than the receiver of the field) the low-order output bits are
connected to the input bits, and the high-order output bits are lost. The
interfaces are interoperable if the sender of the field explicitly limits itself
to encodings that only make use of the bits that are within the
configuration of the receiver of the field.

• If there are more inputs than outputs (the driver of field has a narrower
configuration than the receiver of the field) the low-order input bits are
connected to the output bits, and the high-order input bits are tied to
logical 0. The interfaces are always interoperable, but only a portion of the
legal encodings are used on that field.

If one of the cores has a signal configured and the other does not, the following
rules apply:

• If the core that would be the driver of the field does not have the field
configured, the input is tied off to the constant specified in the driving
core’s configuration, or if no constant tie-off is specified, to the default tie-
off constant (see Table 16 on page 31). The interfaces are interoperable if
the encodings supported by the receiver’s configuration of the field
include the tie-off constant.

• If the core that would be the receiver of the field does not have the field
configured, the output is lost. The receiver of the signal must behave as
though in every phase it were receiving the tie-off constant specified in its
configuration, or lacking a constant tie-off, the default tie-off constant (see
Table 16 on page 31). The interfaces are interoperable if the driver of the
signal can limit itself to only driving the tie-off constant of the receiver.

• If only one core has the EnableClk signal configured, the interfaces are
interoperable only when the EnableClk signal is asserted, matching the
tie-off value of the core that has enableclk=0.

If neither core has a signal configured, the interfaces are interoperable if both
cores have the same tie-off constant, where the tie-off constant is either
explicitly specified, or if no constant tie-off is specified explicitly, is the default
tie-off (see Table 16 on page 31).

While the tie-off rules allow two mismatched cores to be connected, this may
not be enough to guarantee meaningful communication, especially when
core-specific encodings are used for signals such as MReqInfo.

As the previous rules suggest, specifying core specific tie-off constants that
are different than the default tie-offs for a signal (see Table 16 on page 31)
makes it less likely that the core will be interoperable with other cores.

4.9.6 Configuration Parameter Defaults
To assure OCP interface interoperability between a master and a slave
requires complete knowledge of the OCP interface configuration of both
master and slave. This is achieved by a combination of (a) requiring some
parameters to be explicitly specified for each core, and (b) defining defaults
that are used when a parameter is not explicitly specified for a core.

68 Open Core Protocol Specification

OCP-IP Confidential

Table 29 lists all configuration parameters. For parameters that do not need
to be specified, a default value is listed, which is used whenever an explicit
parameter value is not specified. Certain parameters are always required in
certain configurations, and for these no default is specified.

Table 29 Configuration Parameter Defaults

Type Parameter Default

Protocol broadcast_enable 0

burst_aligned 0

burstseq_blck_enable 0

burstseq_dflt1_enable 0

burstseq_dflt2_enable 0

burstseq_incr_enable 1

burstseq_strm_enable 0

burstseq_unkn_enable 0

burstseq_wrap_enable 0

burstseq_xor_enable 0

endian little

force_aligned 0

mthreadbusy_exact 0

rdlwrc_enable 0

read_enable 1

readex_enable 0

sdatathreadbusy_exact 0

sthreadbusy_exact 0

tag_interleave_size 1

write_enable 1

writenonpost_enable 0

Phase datahandshake 0

reqdata_together 0

writeresp_enable 0

Protocol Semantics 69

OCP-IP Confidential

Signal
(Dataflow)

addr 1

addr_wdth No default - must be explicitly specified if
addr is set to 1

addrspace 0

addrspace_wdth No default - must be explicitly specified if
addrspace is set to 1

atomiclength 0

atomiclength_wdth No default - must be explicitly specified if
atomiclength is set to 1

blockheight 0

blockheight_wdth No default - must be explicitly specified if
blockheight is set to 1

blockstride 0

blockstride_wdth No default - must be explicitly specified if
blockstride is set to 1

burstlength 0

burstlength_wdth No default - must be explicitly specified if
burstlength is set to 1

burstprecise 0

burstseq 0

burstsinglereq 0

byteen 0

cmdaccept 1

connid 0

connid_wdth No default - must be explicitly specified if
connid is set to 1

dataaccept 0

datalast 0

datrowalast 0

data_wdth No default - must be explicitly specified if
mdata or sdata is set to 1

enableclk 0

mdata 1

mdatabyteen 0

mdatainfo 0

Type Parameter Default

Signal
(Dataflow)

mdatainfo_wdth No default - must be explicitly specified if
mdatainfo is set to 1

mdatainfobyte_wdth

mthreadbusy 0

mthreadbusy_pipelined 0

reqinfo 0

reqinfo_wdth No default - must be explicitly specified if
reqinfo is set to 1

reqlast 0

reqrowlast 0

resp 1

respaccept 0

respinfo 0

respinfo_wdth No default - must be explicitly specified if
respinfo is set to 1

resplast 0

resprowlast 0

sdata 1

sdatainfo 0

sdatainfo_wdth No default - must be explicitly specified if
sdatainfo is set to 1

sdatainfobyte_wdth

sdatathreadbusy 0

sdatathreadbusy_pipelined 0

sthreadbusy 0

sthreadbusy_pipelined 0

tags 1

taginorder 0

threads 1

Type Parameter Default

Protocol Semantics 71

OCP-IP Confidential

Signal
(Sideband)

connection 0

control 0

controlbusy 0

control_wdth No default—must be explicitly specified if
control is set to 1

controlwr 0

interrupt 0

merror 0

mflag 0

mflag_wdth No default—must be explicitly specified if
mflag is set to 1

mreset No default—must be explicitly specified

serror 0

sflag 0

sflag_wdth No default - must be explicitly specified if
sflag is set to 1

sreset No default - must be explicitly specified

status 0

statusbusy 0

statusrd 0

status_wdth No default - must be explicitly specified if
status is set to 1

Signal
(Test)

clkctrl_enable 0

jtag_enable 0

jtagtrst_enable 0

scanctrl_wdth 0

scanport 0

scanport_wdth No default - must be explicitly specified if
scanport is set to 1

Type Parameter Default

72 Open Core Protocol Specification

OCP-IP Confidential

OCP-IP Confidential

5 OCP Coherence Extensions:
Theory of Operation

There is an increasing need for SoC architectures to be built with masters
which have caches. When shared memory locations are cached, there is a
need for cache coherence.

The OCP Coherence Extensions are a parameterizable set of commands and
signals that enable a SoC designer to build a wide variety of cache coherent
architectures. The main features of the extensions are:

• OCP 3.0 with coherence extensions maintains full backward compatibility
with OCP 2.2, making it possible to mix OCP 2.2 masters and slaves (that
are by definition non-coherent) with coherent masters and slaves.

• Ability to build a wide range of cache-coherent architectures, from fully
snoop-based to fully directory-based. Example architectures are
presented in Chapter 13, beginning on page 255.

• The extensions support protocols based on MSI (and SI), MESI, and
MOESI cache state combinations. Further, it is not necessary that all
agents in a coherence domain enable the same set of cache states. Thus,
a directory agent, for example, could be based on MSI while each of the
other caching agents could be based on MSI or MESI.

• Includes support for coherence-aware masters.

• The extensions only support invalidation based protocols because of their
preponderance over update based protocols. Within the gamut of
invalidation based protocols, the extensions permit the use of either
three-hop protocols or four-hop protocols. The Coherence Extensions are
flexible, and permit protocol optimizations based on specific system
requirements.

74 Open Core Protocol Specification

OCP-IP Confidential

• Multiple coherence domains may coexist in a single architecture.
However, only one cache line size is permitted in each coherence domain,
and a coherence domain cannot share its coherence address space with
any other coherence domain.

Note that an OCP coherent system permits the existence of “subsystem
coherence,” where a subsystem will maintain its own coherence framework
and can act as a single OCP coherent agent to the system at the next hierar-
chical level. In fact, the subsystem coherence framework at the lower level
could itself be composed of OCP agents. Hierarchical coherent subsystems
are built in this manner.

5.1 Cache Coherence
A generally accepted definition of cache coherence1, which is used in this
specification, requires the following two conditions to be satisfied:

• A write must eventually be made visible to all master entities. This is
accomplished in invalidate protocols by ensuring that a write is
considered complete only after all the cached copies other than the one
which is updated are invalidated.

• Writes to the same location must appear to be seen in the same order by
all masters. Two conditions which ensure this are:

• Writes to the same location by multiple masters are serialized, i.e., all
masters see such writes in the same order. This can be accomplished
by requiring that all invalidate operations for a location arise from a
single point in the coherent slave and that the interconnect preserves
the ordering of messages between two entities.

• A read following a write to the same memory location is returned only
after the write has completed.

5.2 Local View vs. System View
OCP 2.x is a point-to-point interface with one end being the master and the
other end the slave. Thus all requests from the master agent are directed to
the slave agent and all responses from the slave agent are directed to the
master agent. Even when multiple agents are used in a system and a master
agent needs to communicate with multiple slaves, the master agent acts as
though it were communicating only with its slave (i.e., the slave agent in a
single master–single slave configuration). This abstraction is made possible
by a “bridge” or “interconnection” agent that acts as a slave agent for this
master (and other masters). It also acts as a single master when a slave agent
has to communicate with multiple masters in a system. Thus, the master and
the slave agents do not need to carry explicit identifiers. Each master or slave
agent maintains a “local” view even when it is part of a multi-agent system.

1 See, for example, S. Adve and K. Gharachorloo, “Shared Memory Consistency Models: A Tutorial,” IEEE Computer,
vol. 29, no. 12, pp. 66-76, December 1996.

OCP Coherence Extensions: Theory of Operation 75

OCP-IP Confidential

Only the bridge or interconnect agent maintains a “system” view. This is a
very convenient abstraction in SoC architectures that are loosely coupled with
agents that are really hard or soft IPs.

With OCP 3.0 and the introduction of cache coherence, the “local” view is
maintained for all master agents and all non-coherent slave agents. Only the
home agent (introduced on page 79), which is a slave coherent agent, and the
bridge agent need to maintain the “system view” abstraction. In this context,
the “system view” refers to the explicit encoding of the master, slave, and
forwarding agent identifiers (IDs) and the encoding of the address regions on
an agent’s interface.

5.3 Coherent System Transactions
The notions of master, slave, and bridge entities are inherited from previous
versions of the Open Core Protocol Specification. The master entity initiates
requests and receives responses on its OCP port. The slave entity receives
requests and generates responses on its OCP port. The bridge entity, if
present, has one or more master and one or more slave ports.

In a coherent system, the slave may not be able to satisfy the response to a
request directly since the latest copy of the requested address may reside in
the coherent cache of another master and may not reside at its “home”
memory. The coherence mechanism ensures that the latest copy is returned
to the requester. It does this by “snooping” the set of coherent caches which
has the latest data for this address, possibly updating the cache states, and
finally returning the latest data to the original master. It can be inferred from
this short background that a more sophisticated description of master/slave
entities, ports, and address regions is needed for OCP to support cache
coherence. The relevant definitions follow. (The reader is referred to standard
text books and tutorials on cache coherence for a complete treatment.)

For convenience, the set of commands supported by OCP Rev. 2.2 are called
legacy commands. The new set of commands introduced for the coherence
extensions are called coherent commands.

5.3.1 Cache Line and Cache States
A cache line is the granularity of the data which participates in cache
coherence. The cache line is byte addressable, has a power-of-two data size,
and its address is always aligned to its line size. The current version of the
OCP specification requires that all entities in the coherence domain have the
same cache line size. It is expected that succeeding versions of the specifi-
cation will relax this requirement. The first refinement will allow a different
cache line size at each level of a hierarchical cache coherent system.
Subsequent refinements will permit multiple cache line sizes in a coherence
domain at the same level of the hierarchy. In such cases, the cache line sizes
will be power-of-two multiples of the base size.

76 Open Core Protocol Specification

OCP-IP Confidential

Note that if a master with coherent cache supports the critical word first
feature, addresses of commands from the master may not be aligned to
multiple of the cache line size, but the cache line boundaries should be
aligned to the multiple of the cache line size by using WRAP or XOR burst
address sequences.

A cache line in a master’s coherent cache is always in one of several known
states; the set of available states are summarized in Table 30. Some states
are required and some are optional depending on the type of coherence
protocol chosen.

Table 30 Cache Line State Definitions

5.3.2 Three Hop and Four Hop Protocols
The coherence extensions permit the implementation of both four hop and
three hop protocols.

Four hop protocols are simpler to implement and are so called because the
transfer of a cache line to a requester takes up to four protocol steps:

1. master’s request to coherent slave;

2. slave’s probe of other masters (which have coherent caches);

3. responses from masters, with one of them possibly providing the latest
copy of the cache line to the slave; and,

4. the transfer of data from the slave to the requesting master.

Name Mnemonic Description OCP
Compliance

Invalid I Cache line not present in caching
entity.

Required

Shared S Cache line is read only. Required

Modified M Cache line owned exclusively by
caching entity and modified by it.
Memory copy is stale.
All other caching entities have this
line in I state.

Required1

1. Instruction caches typically do not require this state.

Exclusive E Cache line is exclusively owned.
Memory copy matches value.
All other caching entities have this
line in I state.

Optional

Owned O This entity has latest copy.
Memory copy is stale.
Other caching agents may have
(latest) copy.

Optional

OCP Coherence Extensions: Theory of Operation 77

OCP-IP Confidential

Three hop protocols have better latency characteristics, but are more
complicated to implement than four-hop protocols since they give rise to
additional race conditions, deadlock, and starvation scenarios. The transfer
of a modified cache line to a requester takes three protocol steps:

1. master’s request to coherent slave;

2. slave’s probe of other masters (which have coherent caches); and,

3. response from a master which has a cache line in the modified state
directly to the requester (and a possible writeback of this data to the slave)
with concurrent responses from all masters to the slave.

5.4 Address Space
The entire address space is partitioned into two non-overlapping parts: the
coherent address space and the non-coherent address space. Each space
is composed of regions which may be non-contiguous. The size of a region is
implementation specific.

The coherent address space is kept coherent by OCP-based cache coherence
protocols. Each access to this space is permitted only at cache line granularity
(with optional byte enables). A read operation into this space always results
in the latest completed write being read. A completed write to this space
always results in this value being visible to all masters. Section 6.2.3.2 gives
the semantics of the various types of reads and writes to this space. This
space is typically accessed by coherent and coherence-aware masters (both
cached and non-cached).

Coherent addresses are cacheable by coherent masters. If an address is
cached, then the cache is coherent, i.e., it participates in cache coherence
through the intervention port (see Section 5.5 on page 77). A coherence-aware
master does not require a cache.

The non-coherent address space is not kept coherent by the OCP-based cache
coherence protocol. Accesses to this space are at the OCP word granularity
(with optional byte enables). Reads and writes to this space follow the
semantics of legacy reads and writes.

Non-coherent addresses may be cached by a master. Such a cache does not
participate in cache coherence and is not kept coherent by OCP.

5.5 Entities and Ports
A master with a coherent cache issues read and write commands that have
different semantics from the read and write commands detailed in the Open
Core Protocol Specification, Release 2.2. For example, such a master might
issue a read with intent to modify the requested line (i.e., acquiring the latest
copy, writing to it, and retaining it in its cache), a read only request, and a
write back of a modified or dirty line when that line needs to be evicted from
the cache. A master with a coherent cache is called a coherent master and
issues requests on the main port of the OCP interface. The full set of main

78 Open Core Protocol Specification

OCP-IP Confidential

port commands and encodings are explained in Section 5.6. Legacy requests
which are targeted to non-coherent address space are issued on the main
port.

The coherent master also needs to satisfy requests from other coherent
masters to “snoop” its cache lines and possibly respond either with the latest
copy of the cache line or by giving up its ownership of the cache line. In OCP
3.0, these requests to the master and the corresponding responses are
handled via the intervention port. The full set of intervention port
commands are explained in Section 6.3.3.1 on page 115. A CPU is a typical
example of an entity which would be an OCP coherent master. Section 5.9
presents an abstract model that illustrates the interaction between the main
port and the intervention port, and between the coherent master and coherent
slave.

A coherence-aware master does not have a coherent cache. For example, a
DMA engine could be implemented as a coherence-aware master. A
coherence-aware master has a main port but does not have an intervention
port.

A coherence-aware master uses legacy commands. If the associated address
is in the coherent region, then the coherent slave performs the appropriate
actions depending on the request and the state of the associated cache line
(as seen by the home agent), e.g., a coherent read returns the latest value
written. (While processing a request from the coherence-aware master, a
coherent slave may send intervention requests for the latest write to be
returned, as discussed in detail in Section 13.3.4.1 on page 276.) If the
associated address for a request is in the non-coherent address space, then
the request has the semantics of a legacy request.

The coherent slave is the target of coherent request commands from all or
any master in the coherence domain, depending on the type of coherence
protocol used. It receives requests on its main port. Before it generates the
response, it in turn sends requests on the intervention port to snoop all or a
subset of the coherent caches in the coherence domain and may send a
request to the memory controller. After it receives the responses to the
intervention requests and/or from the memory controller, it finally sends the
response to the original request on its main port. The coherent slave also
ensures that writes to the same location appear to be seen in the same order
by all the coherence masters. The coherent slave implementation usually
takes the form of either a snoop- or directory-based scheme, as described in
Section 5.11.

OCP 3.0 maintains full backward compatibility with OCP 2.2, that is, the
command set for the coherence extensions is a superset of the OCP 2.2
command set. OCP 3.0 defines a new signal, MCohCmd, which, when set,
indicates a coherent command. Non-coherent commands, which refer to the
OCP 2.2 command set, do not have the MCohCmd bit set. In the rest of the
document, the port defined by OCP 2.2 is referred to as the legacy port. Note
that the main port defined by OCP 3.0 is capable of generating legacy
transactions. Hence, a new design would not need both the legacy and main
ports.

OCP Coherence Extensions: Theory of Operation 79

OCP-IP Confidential

A master with a legacy port that only generates transactions to non-coherent
space is called a legacy master. A slave with a legacy port is called a legacy
slave.

Other terms used in this document include:

• The term requester is interchangeably used for a coherent master which
initiates a request.

• The term responder is interchangeably used for a coherent master which
responds to an intervention request.

• The term owner is interchangeably used for a coherent master which has
a cache line in the M or the O state.

• The term snoop is interchangeably used with intervention.

• The term home agent is interchangeably used with coherent slave. Thus
each coherent address has an associated home which is the coherent
slave managing its coherency actions.

5.6 Commands
A master which can only issue legacy commands to noncoherent space is
called a legacy master. A master which can issue only legacy commands to
both coherent and noncoherent address spaces is called a coherence aware
master. A master which can issue legacy commands to both non-coherent
and coherent address spaces, and can issue coherent commands to coherent
address spaces is called a coherent master.

It is illegal for coherent commands to be issued to non-coherent address
spaces.

Legacy commands accessing the noncoherent address space are called
“Legacy Commands to Noncoherent Space” (LC-NC for short). Legacy
commands accessing the coherent address space are called “Legacy
Commands to Coherent Space” (LC-C for short).

Table 31 summarizes the allowed combination of OCP masters and command
types.

The LC-C semantics are different from LC-NC since they operate on a different
address space. The LC-C and the Coherent Commands are described in
Section 6.2.3.2 on page 99.

80 Open Core Protocol Specification

OCP-IP Confidential

Table 31 Allowed Commands

Table 32 summarizes the scope of the address space access for each
command type.

Table 32 Address Space Access by Command Type

5.7 Self Intervention and Serialization
When a coherent slave receives a request R1 from a coherent master M1, the
slave is required to send an intervention request to M1 in addition to any other
intervention requests it needs to send as a result of request R1. Such a
request to M1 is called a self intervention. In case of conflicting requests by
multiple masters to the same cache line, the self intervention request is used
to establish the same order at the coherent master as the conflicting requests
seen at the coherent slave. Self intervention is a key mechanism to ensure
cache coherence and freedom from deadlock.

An intervention that is not a self intervention is called a system
intervention. The term intervention by itself is can be used to refer to either
self intervention or system intervention—with the distinction made clear by
the context; self-interventions are explicitly noted.

The coherent slave or home agent plays a significant role in ensuring that
conflicting write requests (i.e., write-write, read-write, or write-read access
sequence to the same cache line) are serialized. The serialization point is the
logic in the home that orders or serializes the conflicting requests. This
ordering is done in an implementation-specific manner. It is necessary that
the coherent masters that process these conflicting requests also see them in
the same order established by the home agent. To facilitate this, OCP requires
that the interconnect preserves the ordering of OCP transactions between a
given pair of entities (A and B) on a per-address basis: if two transactions T1
and T2 with the same address are launched from A to B, the interconnect will

Master Type Legacy Commands
to Noncoherent
Space (LC-NC)

Legacy Commands
to Coherent Space
(LC-C)

Coherent
Commands (CC)

Legacy Yes No No

Coherence-Aware Yes Yes No

Coherent Yes Yes Yes

Command Type Address Space Access Scope

LC-NC Non-coherent address space at OCP word granularity. Bridge
agent handles multiple word sizes, packing, etc.

LC-C, CC Coherent address space at cache line granularity, aligned at
cache line size boundary. Single cache line size used within
entire coherence domain.

OCP Coherence Extensions: Theory of Operation 81

OCP-IP Confidential

deliver the transactions to B in the same order. These conditions, along with
the self intervention mechanism, ensure that all coherent masters see writes
to the same cache line in the order established at the home agent.

Thus, each coherent master has to implement logic to maintain the ordering
imposed by the home. The serialization point at the home is called the primary
serialization point and the one at each master is called the secondary serial-
ization point. Unless otherwise noted, the term serialization point refers to the
primary serialization point.

In a snoop based design, the home agent for all coherent requests is typically
the interconnect agent itself, which acts as the coherent slave. Thus, snoop
based designs have a single serialization point. In a directory based design,
the home agents for coherent addresses may be physically centralized or may
be distributed and are typically separate from the interconnect. Each physical
home agent becomes the serialization point for the set of coherent addresses
it controls.

5.8 Interconnect or Bridge Agent
An OCP 3.0 cache coherent system requires at least two coherent masters. It
also requires at least one coherent slave. The slave in a directory based
implementation needs to be able to identify the coherent masters to know the
coherent cache state, send targeted intervention requests, etc. Hence, unlike
a legacy OCP system, the slave needs to be aware of all the coherent masters
in the coherence domain. Further, since there are at least three entities in the
coherent system, a bridge or interconnect agent is necessary in OCP 3.0. The
bridge has to preserve the transaction ordering property on a per-address
basis as mentioned in Section 5.7.

Note that the interconnection agent is still able to preserve the abstraction
that a master still communicates with a single slave and a legacy slave still
communicates with a single legacy master. Thus all these entities have a
“local” view as outlined in Section 5.2. The interconnect agent, in this case,
acts as a proxy for these entities by assigning appropriate IDs and providing
routing functionality. Thus, only coherent slaves which have directory based
implementations need to have the “system view” in addition to the
interconnect.

In snoopy based designs, the interconnect frequently provides additional
functionality by acting as the coherent slave. This is explained in
Section 5.11.2.

5.9 Port Characteristics
Table 33 captures the roles of different masters and slaves.

82 Open Core Protocol Specification

OCP-IP Confidential

Table 33 Roles of Masters and Slaves

Figures 7—9 capture the port connectivities and port directions for three
generic cases:

• Figure 7 for an OCP non-coherent (legacy) system

• Figure 8 for an OCP coherent system which is snoop based with the
interconnect acting as the coherent slave or home.

Core
Type

Legacy
Port

Main
Port

Inter-
vention
Port

Function

Legacy
Master

Yes No No • Initiates requests to non-
coherent address space only

• Receives responses from
non-coherent address space
only

Coherence
-Aware
Master

No Yes No • Initiates legacy and coherent
requests to coherent and
non-coherent spaces using
legacy commands

• Receives responses from
coherent and non-coherent
spaces

Coherent
Master

No Yes Yes • Initiates requests to both
non-coherent and coherent
address spaces on main port
(including coherent
commands)

• Receives responses on main
port

• Receives intervention
requests

• Generates intervention
responses

Legacy
Slave

Yes No No • Receives legacy requests
• Initiates legacy responses

Coherent
Slave
(Home
Agent)

Possible1

1. These are requests to a non-coherent slave (typically the memory). This can be handled
through a legacy OCP port or through a custom interface.

Yes Yes • Receives requests on main
port

• Generates intervention
requests

• Receives intervention
responses

• Generates legacy port
requests1

• Receives legacy port
responses1

• Generates responses on
main port

OCP Coherence Extensions: Theory of Operation 83

OCP-IP Confidential

• Figure 9 for an OCP coherent system with a centralized directory based
coherent slave.

Figure 7 Block Diagram of OCP Non-Coherent System

Figure 8 Block Diagram of Snoop-Based OCP Coherent System

Core Core Core

On-Chip Bus

Master Master

MasterSlave Slave Master

Slave Slave

OCP Request
Response

Legacy Master/Slave Legacy SlaveLegacy Master

Bus Initiator Bus Initiator/Target Bus Target{Bus wrapper
interface
module

{Legacy
Ports

OCP

Legacy Slave
(Memory)

Legacy Master

Core

Non-Coherent Slave

Slave

Core

Non-Coherent Master

Master

Core

Coherent Master

Master

Slave Master

LPLP

LP

Slave

MP

MP

IP

IP

Coherent Master
Coherence-Aware

Master

Core

Coherence-Aware Master

Master

Non-Coherent Bus
Initiator

Slave
Coherent Cache

Initiator

MP

Broadcast Interconnect

Non-Coherent Target

LP

MP

Coherence-Aware
initiator

Response Signals

Legacy Port

Intervention Port

Main Port

Legacy Port

Intervention Port
Main Port

Request Signals

Secondary

Primary

Serialization Point

Legacy Port

Main Port

Ports

Intervention Port

MP

LP

IP

84 Open Core Protocol Specification

OCP-IP Confidential

Figure 9 Block Diagram of Directory-Based OCP Coherent System

5.10 Master Models

5.10.1 Coherent Master
Each request on the main port generates at most one response. This
requirement makes the design of the coherent master relatively simple. The
coherent slave and the interconnect have to bear additional responsibilities
(as outlined in Section 5.11) to support this requirement.

Consider a coherent master sending a read request to the coherent slave and
waiting for its response.

In the interim, it receives the self intervention request on its intervention port
and one or more system intervention requests, one or more of which may
conflict with the address of the request. Figure 10 shows the abstract model
of the coherent master to deal with coherence and serialization.

OCP

Legacy Slave
(Memory)

Legacy Master

Core

Non-Coherent Slave

Slave

Core

Non-Coherent Master

Core

Coherent Master

Slave Master

LPLP

LP

Slave

MP

MP

IP

IP

Coherent
Master

Coherence-
Aware Master

Core
Coherence-Aware

Master

Master

Slave

Coherent Initiator

MP

Non-Coherent
Target

LP

MP

Coherent Initiator

Coherent Slave

Core

Coherent Slave

SlaveMaster

Master

LPMP IP

LPMP IP

Interconnect

LPMP IPCoherent Target

Master

Non-Coherent Bus
Initiator

Response Signals

Legacy Port

Intervention Port

Main Port

Legacy Port

Intervention Port
Main Port

Request Signals

Secondary

Primary

Serialization Point

Legacy Port

Main Port

Ports

Intervention Port

MP

LP

IP

OCP Coherence Extensions: Theory of Operation 85

OCP-IP Confidential

Figure 10 Abstract Model of Coherent Master

An abstract implementation of the secondary serialization point is described
below.

Each request is associated with two fencing points: one at the main port
request path and the other at the intervention port request path. Each fencing
point is associated with a fencing interval.

The main port fencing interval begins when the request enters the lower
queue on the request side and lasts till all the associated response is received
on the main port response queue. During this interval, the fencing logic does
not accept additional conflicting requests on the main port from the master
entity (the processor/cache complex).

The intervention port fencing interval begins when the self intervention enters
the intervention port request side and is detected by the fencing logic. It lasts
until the associated response is received on the main port response queue.
During this interval, the fencing logic does not accept conflicting requests
from the intervention port’s request queue. Note that conflicting intervention
requests arriving at the master before the self intervention request are

Intervention Port

Main Port
Request

System Intervention
Requests Coming From

Others

Request Response

Main Port
Response

reset reset

Passing through
Home Directory’s
Serialization Point

fencing point for
conflicting main

port request
triggered by main

port request

fencing point for
intervention

request triggered
by self-

intervention

Processor/caches Coherence State

OCP Coherence Master (with caches)

OCP
Wrapper

Self-Intervention
Requests

OCP Main Port with
Coherence Extensions

Request Response

Intervention
Response

Rest of
System

86 Open Core Protocol Specification

OCP-IP Confidential

serviced in order at the intervention port and the appropriate responses
generated (i.e., cache look up, possible cache state change, generation of
response).

Upon receipt of the response for the request, the fences need to be cleared.
The fencing logic is implementation specific.

A non-coherent request follows the same behavior as a legacy master.

5.10.2 Coherence-Aware Master
A master sends a request on its main port. It then waits for the associated
response to come back on the main port. Since the master has no coherent
cache, it does not have an intervention port. Correspondingly, this simplifies
the abstract model of Figure 10 (e.g., only the main port fencing logic is
needed).

A non-coherent request follows the same behavior as a legacy master.

5.10.3 Legacy Master
A legacy master generates only non-coherent requests. It follows the same
behavior as a traditional OCP master. The target addresses are to the non-
coherent address space.

5.11 Slave Models
It is convenient to consider snoop-based and directory-based coherent slaves
separately.

5.11.1 Coherent Slave: Directory Based
Figure 11 shows the abstract model of the directory based coherent slave to
deal with coherence and serialization.

The directory is a logically centralized structure which maintains information
of cache lines at each coherent master. Various directory schemes are
possible depending on what information it maintains. To make this
discussion concrete, it is assumed that the directory maintains the cache
state for each cache line that is cached in the coherence domain. If a line is
not present in any coherent master, then the most up-to-date data is present
in the memory.

OCP Coherence Extensions: Theory of Operation 87

OCP-IP Confidential

Figure 11 Directory-Based Coherent Slave Model

A request received on the main port is looked up in the directory controller to
determine which of the coherent masters need to be sent intervention
requests in addition to the self intervention request. These requests go out on
the intervention port. In addition, a request to memory may also need to be
sent. The figure shows a speculative path option to memory in which case the
memory request is sent before the directory lookup, optimizing for latency.
Alternatively, bandwidth conscious designs could do a lookup and determine
if a memory request is warranted (e.g., if the line is in M state in a master,
then a memory access is not necessary). The directory controller is the serial-
ization point and determines a single order to process conflicting requests
across the coherence domain.

Cache writeback requests arriving on the main port will be written to memory
on the legacy port, after a directory lookup to update the state of the line.

Responses arriving at the intervention port and at the legacy port are
appropriately “merged” and zero or more responses are generated depending
on the nature of the request (for example, on a read request it could be the
read data from memory combined with a completion response or it could be
no response if a modified line was returned directly by a responding coherent
master to the requesting coherent master). The main port of the requesting
coherent master receives only one response for each request. With cache-to-
cache transfers, the modified line that is received (DVA) also serves as a
transaction completion indicator.

As already mentioned, receiving only one response makes the design of the
coherent master relatively simple. It has the potential to introduce race
conditions at the directory, however. It is expected that the implementation
will take care to prevent such races and possible deadlocks. Some scenarios
are outlined below:

Directory
Controller

speculative
non-speculative

serialization point

Main Port
(from coherent masters)

Legacy Port
(to memory)

Intervention Port
(to Coherent Cache Masters)

88 Open Core Protocol Specification

OCP-IP Confidential

In the case of a cache-to-cache transfer, the directory may choose to not
generate a completion response after the transaction is complete from its
perspective. If the slave does generate a response, then the interconnect agent
must taken on the responsibility to drop this response.

Additionally, the race condition arising below has to be handled by the
directory: Assume that a master (say, B) supplies a modified cache line to the
original requester A. The response arrives at A and the data is consumed and
the transaction is deallocated. It is possible that A generates another request
to the same cache line even before the additional response from B to the
directory controller has arrived at the latter. In such a case, the directory
should hold off servicing the request from A until it has processed the
response. This is typically handled by having separate request and response
queues at the directory.

Note that the directory structure is only logically centralized. The serialization
point refers to a single cache line address. Hence the directory controller may
be physically distributed with each controller being “home” to a distinct set of
cache line addresses. The set of addresses controlled by each controller is
non-overlapping and together cover the complete coherent address space.

Note that the coherent slave is required to have a “system view”—thus, it
needs to identify coherent masters as a requesters, the targets of intervention
requests, and as responders who provide cache line data and cache state.
This information is used to keep the directory up-to-date, to broadcast
intervention requests selectively, etc. OCP provides explicit signals for this
purpose on both the main port (MCohId, SCohId) and the intervention port
(MCohId, SCohId, MCohFwdId, SCohFwdId).

5.11.2 Coherent Slave: Snoop Based
Figure 12 shows the abstract model of the snoop based coherent slave to deal
with coherence and serialization. In a snoop based design, an intervention
request is broadcast to ALL the coherent masters in its coherence domain.
The directory controller is replaced by a relatively simple piece of logic which
is logically and, frequently, physically a single unit which is the target of all
coherent requests from all coherent masters. This piece of “bus logic” also is
the coherent slave’s single serialization point. Since all main port requests are
targeted to a single coherent slave and the coherent slave, in turn, broadcasts
to all coherent masters, it is not necessary for the coherent slave to have
explicit knowledge of the master ids (the *CohId fields as in the directory
based design). Apart from these changes, the functionality of the snoop based
design is the same as the directory based design.

OCP Coherence Extensions: Theory of Operation 89

OCP-IP Confidential

Figure 12 Home Agent Coherent Slave Model (Snoop Based)

Frequently, the coherent slave functionality (the shaded portion in Figure 12)
is provided by the interconnect agent itself. In such a case, the main port and
the intervention port of the coherent slave is not exposed as OCP ports. Only
the legacy port gets exposed to the memory subsystem. In this specification,
such an interconnect is called a broadcast interconnect or a snoop-based
interconnect.

Just as in the case of the directory based coherent slave, the snoop based
slave and the interconnect need to provide similar functionality to ensure that
the coherent master's main port receives at most one response to a request.

5.11.3 Legacy Slave
A legacy slave receives only non-coherent requests and generates responses.
It follows the same behavior as a traditional OCP slave. The target addresses
are to the non-coherent address space.

5.12 Multi-threading and Tags
If accesses of different threads or tags are not related to cache coherency, the
accesses have no ordering requirement. If accesses of different threads or tags
access the same cache line (in coherent address space), the order of the
accesses must be maintained properly. As described in Section 5.7, the order
of all accesses to a coherent memory location is globally ordered at the serial-
ization point.

Broadcast Logic

speculative
non-speculative

serialization point

Main Port
(from ALL coherent masters)

Legacy Port
(to memory)

Intervention Port
(to ALL coherent cache masters)

90 Open Core Protocol Specification

OCP-IP Confidential

Multithreading and tagging are supported in the OCP coherence extensions,
with the above restrictions.

5.13 Burst Support
Bursts to coherent space have the following restrictions: They have to be
SRMD, burst lengths have to be the cache line size. Only INCR, XOR, and
WRAP burst sequences are allowed.

Bursts to non-coherent space follow legacy behavior.

5.14 Memory Consistency
The serialization mechanism, enforced through intervention in the OCP
coherence extensions, imposes ordering constraints on conflicting cache line
addresses which is globally seen or observed. The set of possible orderings
may be further restricted by the particular memory consistency model
employed by the system. The coherence extensions do not restrict the type of
memory consistency used by the system.

5.15 Race Condition, Deadlock, Livelock, and
Starvation
In the context of OCP cache coherence, a race occurs when two entities
concurrently access the same cache line. The home agent establishes the
order and this order is reflected throughout the coherence domain; the race
is thus resolved.

Some possible scenarios that result from race conditions include:

1. The master’s cache state may be changed before it receives its own request
from its intervention request port as self-intervention.

2. If a master receives a read request to the same cache line as the master’s
cache write-back request, the cache write-back request may be canceled.

3. Transactions with data phase may be cancelled. The cc-WB request
coming from main port may be canceled by the requester itself, due to the
cache state change caused by another master’s coherent request.

There are other situations that can cause races, starvation, deadlocks, and
livelocks in cache coherent systems. Solutions to these problems are
implementation dependent, and are outside the scope of the main specifi-
cation. Some specific examples of race conditions which arise in specific
implementations are discussed in the Developer’s Guidelines.

OCP Coherence Extensions: Theory of Operation 91

OCP-IP Confidential

5.16 Heterogeneous Coherence System
With increasing sophistication and the need for multiple functional blocks
(computation intensive, graphics, video, audio, etc.), SoC architectures are
being built as hierarchical subsystems. In such architectures, some
subsystems could be locally cache coherent (usually referred to “subsystem
coherence”). Additionally, there may be a need for cache coherence across
subsystems. In fact, the subsystem cache coherence and global coherence
may follow different cache coherent protocols.

The OCP coherence extensions support coherence in such sophisticated
heterogeneous architectures—this is discussed through the example in
Figure 13. The figure shows a hierarchical system composed of 4 “super
nodes” or subsystems (NUMA nodes 0–3). Each subsystem is in turn
composed of processors with differing cache hierarchies, memory, and I/O.
Note that the memory is physically distributed, but is logically shared.

At the local level, a snoop bus based coherence scheme is used to keep the
subsystem coherent. The directory agent at each node maintains coherence
among the nodes at the global level. Thus, a read request from node 0 first
snoops locally. If the read request is not satisfied, then it is routed to its
“home” at the global level (say, Node 1). The directory node then handles the
request. Assume that the line is modified state in Node 2 (the directory only
maintains information at this granularity and not at the level of individual
caching agents). This then results in snooping of Node 2 which then returns
the data to the original requester, routed through the Node 0 directory
controller.

Another level of heterogeneity that is permitted is in the granularity of the
cache line states. For example, the directory could only implement an MSI
based protocol while the snoop based protocol could be based on MESI.

92 Open Core Protocol Specification

OCP-IP Confidential

Figure 13 OCP-Based Heterogeneous SoC Architecture

IPMP

I/O 0

Directory-based Coherence
Module 0

Memory 0

Snoop-Bus-Based OCP Interconnect

NUMA
Node 0

NUMA
Node 1

OCP Interconnect

NUMA
Node 2

NUMA
Node 3

Shared L3

Proc00
L1i,L1d

L2

Proc01
L1i,Lid

L2

Proc02
L1i,L1d

L2

Proc03
L1i,L1d

L2

Proc04
L1i,L1d

L2

Proc05
L1i,L1d

L2

Chipset

IPMP IPMP

IPMPLP

IP

Serialization Points

Primary

Secondary

OCP Connections

Main Port (bi-directional, with coherence extensions)

Intervention Port (bi-directional)

Legacy Port (bi-directional)

OCP Connections

Main Port

Intervention Port

Legacy Port

MP

IP

LP

OCP
Wrapper

OCP
Wrapper

MP

OCP-IP Confidential

6 OCP Coherence Extensions:
Signals and Encodings

6.1 Definitions

6.1.1 New Transaction Types
Since some of the coherent transactions do not act exactly like legacy write
and read commands, new basic command types are introduced.

6.1.1.1 Message Command Type
The first new command type, called Message, is similar to a write command
but does not do any data transfer on the port in which the command request
appears.

There are two extensions of this basic type: Posted Message and Non-Posted
Message.

The Posted Message command does not receive any response if port
parameter writeresp_enable is set equal to zero.

The following MCmd commands are of type Posted Message:

• CohWriteBack when port parameter intport_writedata=1

• CohCopyBack when port parameter intport_writedata=1

• CohCopyBackInv when port parameter intport_writedata=1

The non-posted message command always receives a response.

The following MCmd command is of type Non-Posted Message:

94 Open Core Protocol Specification

OCP-IP Confidential

• CohInvalidate

These MCmd commands are described in Section 6.2.3.2 on page 99.

6.1.1.2 Query Command Type
The second new transaction type, called Query, is similar to a read command
and always gets a response from the slave but may not transfer any data.

The following MCmd commands are of type Query:

• CohUpgrade

• CohCompletionSync

These MCmd commands are described in Section 6.2.3.2 on page 99.

6.2 Main Port: Parameters, Signals, and
Encodings

6.2.1 Introduction
The main port is an OCP port with the following extensions, new signals, and
port restrictions:

• A MCohCmd signal is added to the request phase.

• The MCmd signal field is extended to allow issuing coherence commands.

• The SResp signal field is extended to support new coherence response
semantics.

• A SCohState signal is added to the response phase to indicate the
coherence installing state (at the response receiving side).

• SRMD bursts must be supported, i.e., the MBurstSingleReq signal must
be supported or, alternatively, the signal may be tied off to a non-default
tie-off value of 1. The datahandshake phase must be enabled. The
reqdata_together parameter must be set to 1.

• If the port parameter intport_writedata=0, then the CohWriteback
command behaves in this manner:

1. The initial write request occurs on the Main port with the write data
phase appearing on the Main port.

2. The home agent sends a self-intervention request to the initiator on
the intervention port.

3. The initiator responds with OK to acknowledge the operation.

• If the port parameter intport_writedata=1, then the CohWriteback
command behaves in this manner:

OCP Coherence Extensions: Signals and Encodings 95

OCP-IP Confidential

1. The initial write request occurs on the Main port but no write data
phase appears on the Main port.

2. The home agent sends a self-intervention request to the initiator on
the intervention port. No write data phase occurs with this request.

3. The initiator responds with the writeback data on the intervention
port, (if the cache line hasn’t been invalidated in between steps 1 and
2).

This option allows self-intervention data responses and “normal” snoop
responses to use the same data paths and thus be ordered.

6.2.2 Main Port Parameters
cohcmd_enable

If this parameter is set, the MCohCmd signal is instantiated. The MCmd
signal is extended.

cohstate_enable

If this parameter is set, the SCohState signal is instantiated.

coh_enable

If this parameter is set, the Cached Coherent commands are enabled for
the port.

cohnc_enable

If this parameter is set, the Non-Cached Coherent command set are
enable for the port. Each specific commands within the set have their own
enable parameters.

cohwrinv_enable

If this parameter is set and both coh_enable and writeresp_enable are
also set, then the CohWriteInvalidate and CohInvalidate commands are
allowed on the main port.

read_enable, readex_enable, rdlwrc_enable, write_enable,
writenonpost_enable

These parameters enable the specific commands within the Non-Cached,
Coherent set.

upg_enable

If this parameter is set, the Coh_Upgrade command is enabled for the
port.

intport_exists

If this parameter is set, an associated intervention port is instantiated.

intport_writedata

If this parameter is set and intport_exists is also set, then writeback
data appears on the intervention port instead of the main port.

mcohid_enable

If this parameter is set, the MCohID signal is instantiated.

96 Open Core Protocol Specification

OCP-IP Confidential

scohid_enable

If this parameter is set, the SCohID signal is instantiated.

cohfwdid_enable

If this parameter is set, the MCohFwdID and SCohFwdID signals are
instantiated.

mcohid_wdth

Width of the MCohID signal.

scohid_wdth

Width of the SCohID signal.

cohfwdid_wdth

Width of the CohFwdID signal.

6.2.3 Signals and Encodings
Table 34 lists the OCP 2.2 signals that must be included in the main port. It
also lists in bold and italic fonts the new signals and their control parameters
introduced for coherent transactions. Unless specifically mentioned, the
default tie-off values are the same as in the legacy specification.

Table 34 Main Port Signals

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

Basic Clk Required

MAddr addr=1 addr_wdth Required

MCmd
Bus widened for
coherent
commands.

To enable the
coherent
commands:
cohnc_enable
coh_enable
cohwrinv_enable

Required

MData mdata=1 data_wdth Required for SRMD

MDataValid datahandshake=1 Required for SRMD

MRespAccept resp
respaccept

Optional

SCmdAccept cmdaccept Optional

SData resp = 1
sdata = 1

data_wdth Required

SDataAccept datahandshake=1
dataaccept

Optional

SResp resp=1 Required

OCP Coherence Extensions: Signals and Encodings 97

OCP-IP Confidential

Simple MAddrSpace addrspace addrspace_wdth Optional

MByteEn mdata=1
byteen=1

Required

MDataByteEn mdata=1
datahandshake=1
mdatabyteen=1

Required

MDataInfo Optional

MReqInfo reqinfo
reqinfo_wdth

Optional

SDataInfo resp=1
sdatainfo
sdatainfo_wdth

Optional

SRespInfo resp=1
respinfo
respinfo_wdth

Optional

Burst MAtomicLength atomiclength atomiclength_wdth Tied off to cache
line size

MBurstLength burstlength burstlength_wdth Tied off to cache
line size

MBurstPrecise burstprecise=1 Required.
Set to 1 for
Coherent
commands

MBurstSeq burstseq Required. Only
INCR, XOR, and
WRAP are
allowed.

MBurstSingleReq datahandshake=1
burstsinglereq=1

Required.
Set to 1 for
Coherent
commands.

MDataLast datalast=1 Required

MReqLast reqlast Optional

SRespLast resplast Optional

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

98 Open Core Protocol Specification

OCP-IP Confidential

Coherence SCohState cohstate_enable Required
Default Tie-off=0

MCohCmd cohcmd_enable Required
Default Tie-off=0

MCohID mcohid_enable mcohid_wdth Optional; required
for directory
based protocols
and three-hop
protocols

SCohID scohid_enable scohid_wdth Optional; required
for directory
based protocols
and three-hop
protocols

MCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required
for three-hop
protocols

SCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required
for three-hop
protocols

Thread MConnID connid=0 Optional

MDataThreadID when threads > 1
datahandshake=0

threads Optional

MThreadBusy mthreadbusy
threads

threads Optional

MThreadID when threads > 1 threads Optional

SDataThreadBusy sdatathreadbusy
threads
datahandshake=1

threads Optional

SThreadBusy sthreadbusy
threads

threads Optional

SThreadID when threads > 1
resp

threads Optional

Tags MTagID tags tags Optional

MDataTagID tags
datahandshake

tags Optional

STagID tags
resp

tags Optional

MTagInOrder taginorder Optional

STagInOrder taginorder
resp

Optional

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

OCP Coherence Extensions: Signals and Encodings 99

OCP-IP Confidential

6.2.3.1 MCohCmd
When set to one, indicates that the command is coherent. When set to zero,
the semantics of the command depend on whether the target address is in
coherent address space or non-coherent address space.

6.2.3.2 MCmd
When the OCP interface supports coherency, the width of the MCmd signal is
extended to five-bits to accommodate the extra coherence commands.

Commands are arranged into two groups: Non-Coherent and Coherent. Non-
Coherent commands are the same set of commands as in the existing OCP 2.2
command set and are also referred to as Legacy commands. Within the
Coherent set of transactions, some existing OCP 2.2 commands remain, but
are re-defined as Coherence-Aware2. The Coherence-Aware commands are
used by initiators that do not contain caches but access the coherent address
space. The new coherent commands must always be issued with MCohCmd
asserted. See Table 35 below for the extensions to the encoding of MCmd.

Table 35 Extended MCohCmd and MCmd Encoding

Sideband SReset_n or
MReset_n

sreset=1 or
mreset=1

Required

(all others) (all others) Optional

Test (all) (all) Optional

2 They are redefined as Non-Cached because the bulk of the use of these commands will be to
satisfy Non-Cached accesses; however, they could be used by caching agents as well; examples
being write-through caches and cached DMA controllers.

MCohCmd MCmd Command Mnemonic Data
Source

Coherence
State
Changed?

Address
Space

0 0x0 Idle IDLE None No (none)

0 0x1 Write WR Requester No Non-
Coherent

0 0x2 Read RD Home No Non-
Coherent

0 0x3 ReadEx RDEX Home No Non-
Coherent

0 0x4 ReadLinked RDL Home No Non-
Coherent

0 0x5 WriteNonPost WRNP Requester No Non-
Coherent

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

100 Open Core Protocol Specification

OCP-IP Confidential

The semantics of legacy commands targeting coherent address space are
described below. Please see Section 5.6 on page 79 for a list of restrictions
related to cache line granularity and Section 5.13 on page 90 for bursts.

0 0x6 WriteConditional WRC Requester No Non-
Coherent

0 0x7 Broadcast BCST Requester No Non-
Coherent

0 0x8-0xF (Reserved) (Reserved) — — —

0 0x1 Write WR Requester Yes Coherent

0 0x2 Read RD Home or
Owner

Yes Coherent

0 0x3 ReadEx RDEX Home or
Owner

Yes Coherent

0 0x4 ReadLinked RDL Home or
Owner

Yes Coherent

0 0x5 WriteNonPost WRNP Requestor Yes Coherent

0 0x6 WriteConditional WRC Requester Yes Coherent

0 0x7 Broadcast BCST Not Permitted Coherent

1 0x8 CohReadOwn CC_RDOW Home or
Owner

Yes Coherent

1 0x9 CohReadShare CC_RDSH Home or
Owner

Yes Coherent

1 0xA CohReadDiscard CC_RDDS Home or
Owner

No Coherent

1 0xB CohReadShareAlways CC_RDSA Home or
Owner

Yes Coherent

1 0xC CohUpgrade CC_UPG None or
Owner

Yes Coherent

1 0xD CohWriteBack CC_WB Requester Yes Coherent

1 0x0E–
0x0F

(Reserved) (Reserved) — — —

1 0x10 CohCopyBack CC_CB Requester Yes Coherent

1 0x11 CohCopyBackInv CC_CBI Requester Yes Coherent

1 0x12 CohInvalidate CC_I None Yes Coherent

1 0x13 CohWriteInvalidate CC_WRI Requester Yes Coherent

1 0x14 CohCompletionSync CC_SYNC None No Coherent

1 0x15–
0x1F

(Reserved) (Reserved) — — —

MCohCmd MCmd Command Mnemonic Data
Source

Coherence
State
Changed?

Address
Space

OCP Coherence Extensions: Signals and Encodings 101

OCP-IP Confidential

Write (0x1, WR)

This form of coherent request is meant to transfer cache line-sized data to
memory (finer granularity can be achieved through the use of byte
enables). While the semantics of this command are very similar to the
legacy Write (WR) command, the home invalidates cache lines for write
invalidate semantics. This command is generated by non-cached or write-
through stores etc. This command is enabled by the port parameter
write_enable.

Read (0x2, RD)

Very similar to a Legacy Read command, but the system returns data from
the owning agent rather than home when the former has the most recent
copy. This command is generated by non-cached loads or instruction
fetches; read misses for write-through memory locations, etc. This
command is enabled by the port parameter read_enable.

ReadEx (0x3, RDEX)

Very similar to a Legacy ReadEx command, but the system returns data
from the owning agent rather than home when the former has the most
recent copy. This command is generated by non-cached loads. The
command is enabled by the port parameter readex_enable.

ReadLinked (0x4, RDL)

Similar to its non-coherent counterpart (RDL), this command can be used
to set a reservation at home, but in a coherent system. This command is

generated by non-cached synchronizing3 loads etc. This command is
enabled by the port parameter rdlwrc_enable.

WriteNonPost (0x5, WRNP)

This form of coherent request is meant to transfer cache line-sized data to
memory (finer granularity can be achieved through the use of byte
enables). While the semantics of this command are very similar to the
legacy WriteNonPost (WRNP) command, the system invalidates cache
lines for write invalidate semantics. This command is generated by non-
cached or write-through stores. This command is enabled by the port
parameter writenonpost_enable.

WriteConditional (0x6, WRC)

Similar to its non-coherent counterpart (WRC), this command can be used
to clear a reservation at home, but in a coherent system. This command
is generated by non-cached synchronizing stores etc. This command is
enabled by the port parameter rdlwrc_enable.

Broadcast (0x7, BCST)

This command is undefined when the target is in coherent space.

CohReadOwn (0x8, CC_RDOW)

This coherent command is used to read data from home with the intent to
modify. This command is generated by processor stores that miss in the
cache hierarchy. The data transfer size is a cache line.

3 The term ‘synchronizing loads’ refers to conditional load instructions, which are available in the
instruction sets of various architectures.

102 Open Core Protocol Specification

OCP-IP Confidential

On all CPUs with coherent caches (excluding the original requester), if
there is a cache line with a matching address that is in the Modified or
Owned state, the implementation has the choice of:

• writing back the cache line to home, or,

• forwarding the data to the requestor directly from the cache, or,

• doing both.

These options do not affect the behavior of the intervention ports and
main ports so there are no port parameters for these options.

On all CPUs with coherent caches (not including the original requester), if
there is a cache line with the matching address and it is in a state other
than Invalid, the cache line state transitions to Invalid.

The original requester receives the most up-to-date data.

CohReadShared (0x9, CC_RDSH)

This coherent command is used to read data from home with no intent to
modify. This command is generated by processor loads that miss in the
cache hierarchy. The data transfer size is a cache line.

For the MOESI protocol:

On all CPUs with coherent caches (excluding the original requestor), if
there is a cache line with the matching address and it is in the
Modified state, the cache line state transitions to Owned.

On all CPUs with coherent caches (excluding the original requestor), if
there is a cache line with the matching address and it is in the
Modified or Owned states, the data is forwarded to the requestor
directly from the cache.

For the MOESI and MESI protocols:

On all CPUs with coherent caches (excluding the original requester), if
there is a cache line with the matching address and it is in the
Exclusive state, the cache line state transitions to Shared.

The implementation may also choose to forward the data to the
requestor directly from the cache, this option is enabled by the
intport_estate_c2c port parameter.

For the MSI and MESI protocol:

On all CPUs with coherent caches (excluding the original requestor), if
there is a cache line with the matching address and it is in the
Modified state, the cache line state transitions to Shared. The cache
line is written back to home.

The implementation may also choose to forward the data to the
requestor directly from the cache. This option does not affect the
behavior of the intervention ports and main ports so there is no port
parameter for this option.

OCP Coherence Extensions: Signals and Encodings 103

OCP-IP Confidential

If the cache line with the matching address is in the Shared state, the
cache line state stays as previous4.

For all protocols, the original requester receives the most up-to-date data.

CohReadDiscard (0xA, CC_RDDS)

This coherent command is used to read data from the processor caches
and not cause any cache line state changes. It is normally generated by
external agents (such as coherent DMA controllers) to read data from the
processor cache hierarchy. The data transfer size is a cache line.

The cache line state is not modified. The original requester receives the
data.

CohReadShareAlways (0xB, CC_RDSA)

This coherent command is used to read data from home with intent to
never modify. The install state is always shared. This command is
generated by processor instruction fetches for coherent instruction
caches. The cache line state transitions are the same as for
CohReadShared. The data transfer size is a cache line.

Coherent instruction caches are not snooped as there can never be any
modified data and the install state is always shared. The original
requester receives the requested data.

CohUpgrade (0xC, CC_UPG)

This coherent command is used to request ownership of a shared cache
line from the system. It is usually generated for processor stores which hit
cache lines with shared states. This command is of the new type “Query.”
The possible responses are OK (no data) or DVA (data). The data transfer
size is either zero or a cache line.

On all CPUs with coherent caches (excluding the original requester), if
there is a cache line with the matching address and it is in the Modified
or Owned state, the implementation has the choice of writing back the

cache line to home or forwarding the data to the requestor or doing both5.
For this case, the response is DVA. This DVA response only occurs if
another agent has modified its copy of the data after receiving the
CohUpgrade request (A race within the other agent between its local
operations and the initiator’s command).

The more common response is OK (the original requestor has an up-to-
date copy of the data), and there is no data phase.

On all CPUs with coherent caches (not including the original requester), if
there is a cache line with the matching address and it is in a state other
than Invalid, the cache line state transitions to Invalid.

The original requester receives the updated data.

4 Some implementations may choose to forward the data to the requestor directly from the cache,
this option requires an additional cache line state (Forwarding/Recent) that is beyond the scope
of this document.

5 These options do not affect the behavior of the intervention and main ports, so there is no port
parameter for these options.

104 Open Core Protocol Specification

OCP-IP Confidential

This command is enabled by the port parameter upg_enable. If this
command is not enabled, any store which hits a shared cache line will
generate a CohReadOwn command.

CohWriteBack (0xD, CC_WB)

This coherent command is used to writeback cache lines into home
memory. It has posted write semantics. When intport_writedata is set
to 0, the write data phase happens on the main port along with the
request phase. The data transfer size is a cache line.

The user has the option of the write data phase to occur on the
intervention port after a self-intervention (port parameter
intport_writedata=1). For this case, this command is of the new type
“Message.” This option allows self-intervention data responses and
“normal” snoop responses to use the same datapaths and thus be
ordered.

CohCopyBack (0x10, CC_CB)

This coherent command is used to writeback cache lines into home and
the cache line is not evicted from the cache hierarchy. This command is
generated by processor-specific cache management instructions. It has
posted write semantics. The data transfer size is either zero or a cache
line.

On masters with coherent caches, if the cache line with the matching
address is originally in the Modified or Owned state then the cache line
will be written back to home. The cache line state transitions to Shared.
When intport_writedata is set to 0, the write data phase occurs on the
main port along with the request phase. When intport_writedata is set
to 1, the write data phase happens on the intervention port as part of the
snoop response.

On masters with coherent caches, if the cache line with the matching
address is in the Shared or Exclusive state, the cache line state is
unchanged and there is no data phase.

CohCopyBackInv (0x11, CC_CBI)

This coherent command is used to writeback cache lines into home and
the cache line is evicted from the cache hierarchy. This command is
generated by processor-specific cache management instructions. It has
posted write semantics. The data transfer size is either zero or a cache
line.

On masters with coherent caches, if the cache line with the matching
address is originally in the Modified or Owned state then the cache line
will be written back to home. The cache line state transitions to Invalid.
When intport_writedata is set to 0, the write data phase occurs on the
main port along with the request phase. When intport_writedata is set
to 1, the write data phase happens on the intervention port as part of the
snoop response.

On all CPUs with coherent caches, if the cache line with the matching
address is in the Shared or Exclusive states then the cache line state
transitions to Invalid. For this case, there is no data phase.

OCP Coherence Extensions: Signals and Encodings 105

OCP-IP Confidential

CohInvalidate (0x12, CC_I)

This coherent command is used to purge data from the cache hierarchy.
This command is generated by processor-specific cache management
instructions and also generated by coherent DMA controllers. This
command has non-posted write semantics. The data transfer size is zero.

On masters with coherent caches, if a cache line contains the requested
address, its state is set to invalid, regardless of the previous state.

There is no data phase for this command.

The port parameter cohwrinv_enable must be set as well for the
CohWriteInvalidate command to be used on the main port.

CohWriteInvalidate (0x13, CC_WRI)

This coherent command is used to inject new data into a coherent system
by simultaneously invalidating a cache line from the system and updating
its value at home. The use of byte enables allows the update of partial
cache lines. Typically used by coherent DMA controllers to write new
values into home and remove stale copies from the cache hierarchy. This
command has non-posted write semantics. The data transfer size is less
than or equal to a cache line.

On all CPUs with coherent caches, if the cache line with the matching
address is originally in the Modified or Owned state and the write does not
modify the entire cache line, then the cache line data will be supplied so
that the new write data can be merged. The cache line state transitions to
Invalid. For this case, SResp is equal to DVA. The data transfer happens
on the intervention port as the snoop response. For this case, the home
agent is responsible to merge the newer write data with the older snoop
response data before the data is written to system memory.

On all CPUs with coherent caches, if the cache line with the matching
address is in the Shared or Exclusive states or if the new write modifies
all bytes within the cache line, then the cache line state transitions to
invalid. For this case, SResp is equal to OK and there is no data phase.

The port parameter cohwrinv_enable must be set as well for the
CohWriteInvalidate command to be used on the main port.

CohCompletionSync (0x14, CC_SYNC)

This coherent cache command is used to maintain ordering. This
command is of the new type “Query.” The slave, after receiving this
command, in an implementation specific fashion, will send the response
when it is satisfied that transaction ordering has been satisfied. Normally
this is used to stall the initiator until all preceding requests have reached
a global ordering point within the system. The slave responds with a single
cycle of DVA on the SResp bus.

For this command there is no data phase.

106 Open Core Protocol Specification

OCP-IP Confidential

6.2.3.3 SCohState
This signal indicates the install state and is part of the response phase and is
passed back to the master with any response to a coherent request. It is also
used to indicate the prior state of the cache line on interventions. For non-
coherent and coherence-aware requests, this signal is a “don’t care”.
SCohState is a three-bit field with encodings as shown in Table 36.

Table 36 SCohState Encoding

6.2.3.4 SResp
Existing responses remain as in OCP 2.2, but a new one (OK) is added to
support intervention port related transactions and main port transaction
(e.g., CC_UPG). The OK response indicates completion without any data
transfer. If the OCP interface supports coherence extensions, SResp becomes
a three-bit field with encodings as shown in Table 37, below.

Table 37 SResp Encoding

6.2.3.5 MReqInfo
MReqInfo is not explicitly defined, but mentioned to remind implementors
that it is available for sending more coherency hints if desired. Some examples
are Instruction or Data miss, Cache management instructions etc.

SCohState Name Mnemonic

0x0 Invalid I

0x1 Shared S

0x2 Modified M

0x3 Exclusive E

0x4–0x5 Reserved —

0x6 Owned O

0x7 Reserved —

SResp Value Response Mnemonic

0x0 No response NULL

0x1 Data valid / accept DVA

0x2 Request failed FAIL

0x3 Response error ERR

0x4 Ack without data transfer OK

0x5–0x7 Reserved -

OCP Coherence Extensions: Signals and Encodings 107

OCP-IP Confidential

6.2.4 Transfer Phases

Table 38 Main Port transfer phases

MCmd Phases

writeresp_enable=0 writeresp_enable=1

intport_writedata=0 intport_writedata=1 intport_writedata=0 intport_writedata=1

WR Request (with write
data)

Request (with write
data)

Request (with write
data);
Response

Request (with write
data);
Response

RD Request;
Response

Request;
Response

Request;
Response

Request;
Response

RDEX Request;
Response

Request;
Response

Request;
Response

Request;
Response

RDL Request;
Response

Request;
Response

Request;
Response

Request;
Response

WRNP Request (with write
data); Response

Request (with write
data); Response

Request (with write
data);
Response

Request (with write
data);
Response

WRC Request (with write
data)

Request (with write
data)

Request (with write
data);
Response

Request (with write
data);
Response

CC_RDOW Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_RDSH Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_RDDS Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_RDSA Request;
Response

Request;
Response

Request;
Response

Request;
Response

CC_UPG Request;

Response1
Request;

Response1
Request;

Response1
Request;

Response1

CC_UPG Request;

Response2
Request;

Response2
Request;

Response2
Request;

Response2

CC_WB Request (with write
data)

Request (no write
data)
If data is resident
within local cache,
the CopyBack
data is supplied
with intervention
response on the
Intervention Port.

Request (with write
data);
Response

Request (no write
data);
Response
WriteBack data is
supplied with self-
intervention
response on
Intervention Port (if
cache line
ownership hasn’t
moved to another
master—data
race)

108 Open Core Protocol Specification

OCP-IP Confidential

6.2.5 Transfer Effects
Read, CohReadOwn, CohReadShared, CohReadDiscard,
CohReadSharedAlways

The master receives the requested data on SData.

CC_CB Request (with write
data)

Request (no write
data)
If data is resident
within local cache,
the CopyBack
data is supplied
with intervention
response on the
Intervention Port.

Request (with write
data);
Response

Request (no write
data);
Response
If modified data is
resident within local
cache, the
CopyBack Data is
supplied with
intervention
response on the
Intervention Port.

CC_CBI Request (with write
data)

Request; Response
Non-Posted Write

Request (with write
data);
Response

Request (no write
data);
Response
If modified data is
resident within local
cache, CopyBack
Data is supplied
with intervention
response on the
Intervention Port.

CC_I Request (with write
data);
Response

Request;
Response

Request (with write
data);
Response

Request; Response

CC_WRI Request (with write
data);
Response

Request;
Response

Request (with write
data);
Response
If data is resident
within local cache,
the snoop data is
supplied with the
intervention
response on
Intervention Port.

Request (with write
data);
Response
If modified data is
resident within local
cache, the snoop
data is supplied
with the
intervention
response on the
Intervention Port.

CC_SYNC Request;
Response

Request;
Response

Request;
Response

1. Cache line ownership stays with original requesting master.
2. Data transfer only occurs if cache line ownership had moved to another master (data-race)

MCmd Phases

writeresp_enable=0 writeresp_enable=1

intport_writedata=0 intport_writedata=1 intport_writedata=0 intport_writedata=1

OCP Coherence Extensions: Signals and Encodings 109

OCP-IP Confidential

ReadEx

The master receives the requested data on SData. Sets a lock on the
address for the initiating thread.

ReadLinked

The master receives the requested data on SData. Sets a reservation on
that address.

Write, WriteNonPost

The request phase includes the write data.

WriteConditional

If there was an existing reservation for the address by the same initiating
thread, the request phase includes the write data. If the write proceeds in
this manner, the reservation for the address is cleared.

CohUpgrade

If the cache line ownership is still resident within the requesting master,
there is no data transfer.

If the cache line ownership had moved to another master (data race), then
the master receives the requested data on SData.

CohWriteBack

If port parameter intport_writedata=1 there is no data transfer on the
main port. The data is transferred on the intervention port.

If port parameter intport_writedata=0, the request phase includes the
write data.

CohCopyBack, CohCopyBackInv

There is no data transfer on the main port. If the data was resident within
any cache, the data is transferred on the intervention port.

CohInvalidate

The SResp value is OK and there is no data transfer phase.

CohWriteInvalidate

The write data is sent along with the Request. The SResp value is OK.

If the data was resident within any cache, the snoop data is written back
on the intervention port. For this case, the home agent is responsible to
merge this older snoop response data with the newer write data.

CohCompletionSync

The master receives the response from the slave that previous
transactions have been made globally visible.

110 Open Core Protocol Specification

OCP-IP Confidential

6.3 Intervention Port: Parameters, Signals, and
Encodings

6.3.1 Introduction
The intervention port signals and encodings are similar to the main port’s
signals and encodings for the main port Coherent command set (CC_*).
However, many of the port parameters and configurations are fixed.

• The intervention slave only sends out data, it does not receive data.

• ALL intervention port requests must have a response, e.g., the port
parameter writeresp_enable must be set to 1.

• If port parameter intport_writedata=0, then the CohWriteback,
CohCopyBack, and CohCopyBackInv commands behave in this manner:

1. The initial write request occurs on the Main port with the write data
phase appearing on the Main port.

2. The home agent sends a self-intervention request to the initiator on
the intervention port. No write data phase occurs with this request.

3. The initiator responds with OK to acknowledge the operation.

• If port parameter intport_writedata=1, then the CohWriteback,
CohCopyBack, and CohCopyBackInv commands behave in this manner:

1. The initial write request occurs on the Main port but no write data
phase appears on the Main port.

2. The home agent coherent slave sends a self-intervention request to the
initiator on the intervention port. No write data phase occurs with this
request.

3. The initiator responds with the writeback data on the intervention
port, (if the cache line hasn’t been invalidated in between steps 1 and
2).

This option allows self-intervention data responses and “normal” snoop
responses to use the same datapaths and thus be ordered.

• There is an option for split transactions on the Intervention Port. This
option allows for responses to precede the data transfer. For this option,
new data handshaking signals are added to aid in transferring data from
the slave back to the master. These signals are MDataAccept and
SDataValid. If threads are used with these split transactions, an
additional hand-shaking signal, MDataThreadBusy, is used.

Legacy reads to coherent address space are processed as follows:

• ReadEx: The coherent slave issues I_CBI, the intervention port request to
write back a possibly modified cache line to the home memory location
and evict the line from the cache hierarchy of each coherent master. The
memory is also read (in an implementation specific manner, either

OCP Coherence Extensions: Signals and Encodings 111

OCP-IP Confidential

speculatively or after the response(s) to I_CBI are received). The slave then
sets a lock for the initiating thread on this address at the home memory.
The data is returned to the requesting master (either the contents of the
modified cache line or the memory contents). It is assumed that an
implementation specific mechanism ensures that this is the only ReadEx
operating on this location.

• Other Read Operations: The coherent slave issues I_RDSA, the
intervention port request to read a possibly modified cache line and
update the home. The memory is also read (in an implementation specific
manner, either speculatively or after the response(s) to I_RDSA are
received). With Read Linked, the slave then sets a reservation in a monitor
for the initiating thread on this address. The data is returned to the
requesting master.

Legacy writes to coherent address space are processed as follows:

• Clearing Write6: (Note the home agent coherent slave will be able to
determine if this is a clearing write). The data is written to main memory
(request on legacy port of coherent slave) and the lock is cleared
atomically in an implementation dependent manner.

• Write Conditional: If a reservation is set for the matching address and for
the corresponding thread, the slave issues I_WRI, the request to update
the value at home. If the reservation is cleared, the write is not performed,
a FAIL response is returned and no reservations are cleared.

• Other Writes: Clears the reservations on any conflicting addresses set by
other threads. The slave issues I_WRI, the intervention port request to
update the value at home.

6.3.2 Port Parameters
intport_writedata

If this parameter is set, then writeback data appears on the intervention
port instead of the main port.

intport_split_tranx

If this parameter is set, then the intervention port data phase occurs after
the intervention port response phase instead of being coincident with the
response phase. The signals MDataAccept and SDataValid are
instantiated.

intport_estate_c2c

If this parameter is set, then coherent slaves supply intervention data
when their matching local cache lines are in the Exclusive state.

mcohid_enable

If this parameter is set, the MCohID signal is instantiated.

6 The term clearing write refers to the Write or WriteNonPost command to the matching address
issued after a ReadEx on that thread. It is called a clearing write as it clears any reservations on
the matching address set by other threads.

112 Open Core Protocol Specification

OCP-IP Confidential

scohid_enable

If this parameter is set, the SCohID signal is instantiated.

cohfwdid_enable

If this parameter is set, the MCohFwdID signal is instantiated.

mcohid_wdth

Width of the MCohID signal.

scohid_wdth

Width of the SCohID signal.

cohfwdid_wdth

Width of the CohFwdID signal.

6.3.3 Signals and Encodings
Table 39 gives an overview of which signals can be or must be included. New
signals and their control parameters introduced for the Coherent
Transactions are in bold and italicized font.

Table 39 Intervention Port Signals

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

Basic Clk Required

MAddr addr=1 addr_wdth Required

MCmd Required (only a
subset of the
coherent
commands are
allowed)

MData mdata=0 Not allowed

MDataValid datahandshake=0 Not allowed

MRespAccept respaccept Optional

SCmdAccept cmdaccept Optional

SData sdata=1 data_wdth Optional

SDataAccept dataaccept=0 Not allowed

SResp resp=1 Required (only
NULL, DVA, and OK
responses allowed)

OCP Coherence Extensions: Signals and Encodings 113

OCP-IP Confidential

Simple MAddrSpace addrspace addrspace_wdth Optional

MByteEn byteen=0 Not allowed

MDataByteEn mdatabyteen=0 Not allowed

MDataInfo mdatainfo=0 Not allowed

MReqInfo reqinfo reqinfo_wdth Optional

SDataInfo sdatainfo sdatainfo_wdth Optional

SRespInfo respinfo respinfo_wdth Optional

Burst MAtomicLength atomiclength atomiclength_wdth Tied off to cache
line size

MBurstLength burstlength burstlength_wdth Tied off to cache
line size

MBurstPrecise burstprecise=1 Tied off to 1

MBurstSeq burstseq Required. Only
INCR, XOR, and
WRAP are allowed.

MBurstSingleReq burstsinglereq=1 Tied off to 1

MDataLast datalast=0 Not allowed

MReqLast reqlast=0 Not allowed

SRespLast resplast=0 Not allowed

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

114 Open Core Protocol Specification

OCP-IP Confidential

Coherence SCohState Required, used to
transmit current
state of the cache
line

MReqSelf Required

MCohID mcohid_enable mcohid_wdth Optional; required
for directory based
protocols and
three-hop

protocols1

SCohID scohid_enable scohid_wdth Optional; required
for directory based
protocols and
three-hop

protocols1

MCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required
for three-hop

protocols1

SCohFwdID cohfwdid_enable cohfwdid_wdth Optional; required
for three-hop

protocols1

SDataValid intport_split_tranx Optional; needed
for split transaction
responses

SDataLast Required

MDataAccept intport_split_tranx Optional; needed
for split transaction
responses

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

OCP Coherence Extensions: Signals and Encodings 115

OCP-IP Confidential

6.3.3.1 MCmd
The intervention port commands are shown in the Table 40 below. The
commands that are write-like (including CohWriteBack, CohCopyBack,
CohCopyBackInv, CohWriteInvalidate) have no associated write data during
the request phase. If the port parameter intport_writedata=1, the write
data transfer phase occurs on the intervention port during the data response
phase for the self intervention. The mnemonics for the intervention port
commands are prefixed by I_ to distinguish them from the main port
commands.

Thread MConnID connid=0 Optional

MDataThreadID threads
datahandshake=0

threads Not allowed

MThreadBusy mthreadbusy
threads

threads Optional

MThreadID threads threads Optional

MDataThreadBusy mdatathreadbusy
threads

threads Optional

SDataThreadBusy sdatathreadbusy=0
threads

threads Not allowed

SThreadBusy sthreadbusy
threads

threads Optional

SThreadID threads
resp

threads Optional

SDataThreadID threads
resp

threads Optional

Tags MTagID tags tags Optional

MDataTagID tags
datahandshake=0

tags Not allowed

STagID tags
resp

tags Optional

MTagInOrder taginorder Optional

STagInOrder taginorder
resp

Optional

Sideband SReset_n or
MReset_n

sreset=1 or
mreset=1

Required

(all others) (all others) Not allowed

Test (all) (all) Not allowed

1. If coherent master is responsible for providing the system view (see Section 5.2 on page 74).

Group Signal Enable Control
Parameters

Width Control
Parameters

Comments

116 Open Core Protocol Specification

OCP-IP Confidential

Table 40 Intervention Port MCohCmd and MCmd Encoding

IntvReadOwn (0x8, I_RDOW)

This coherent command is used to read data from home with the intent to
modify. This command is generated by processor stores that miss in the
cache hierarchy. The slave responds with either SResp=OK (no data) or
DVA (data).

IntvReadShared (0x9, I_RDSH)

This coherent command is used to read data from home with no intent to
modify. This command is generated by processor loads that miss in the
cache hierarchy. The slave responds with either SResp=OK (no data) or
DVA (data).

IntvReadDiscard (0xA, I_RDDS)

This coherent command is used to read data from the processor caches
and not cause any cache line state changes. It is generated by external
agents (such as coherent DMA controllers) to read data from the processor
cache hierarchy. The slave responds with either SResp=OK (no data) or
DVA (data).

IntvReadShareAlways (0xB, I_RDSA)

This coherent command is used to read data from home with intent to
never modify. This command is generated by processor instruction
fetches. The slave responds with either SResp=OK (no data) or DVA (data).

MCmd Command Mnemonic

0x0 Idle IDLE

0x1–0x7 (Reserved) (Reserved)

0x8 IntvReadOwn I_RDOW

0x9 IntvReadShare I_RDSH

0xA IntvReadDiscard I_RDDS

0xB IntvReadShareAlways I_RDSA

0xC IntvUpgrade I_UPG

0xD IntvWriteBack I_WB

0xE–0xF (Reserved) (Reserved)

0x10 IntvCopyBack I_CB

0x11 IntvCopyBackInv I_CBI

0x12 IntvInvalidate I_I

0x13 IntvWriteInvalidate I_WRI

0x14–0x1F (Reserved) (Reserved)

OCP Coherence Extensions: Signals and Encodings 117

OCP-IP Confidential

IntvUpgrade (0xC, I_UPG)

This coherent command is used to request ownership of a shared cache
line from the system. It is usually generated for processor stores which hit
cache lines with shared states. This is a non-posted write. The slave
responds with either SResp=OK (no data) or DVA (data).

The DVA response occurs when the local CPU has modified its data after
the Upgrade command was sent by the originating CPU.

IntvWriteBack (0xD, I_WB)

This coherent command is used to writeback cache lines into home. This
command is generated when a cache miss causes modified cache lines to
be evicted from the cache hierarchy. This is a non-posted write. The slave
responds with either SResp=OK (no data) or DVA (data).

The user has the option of placing the writeback data on this port instead
of the main port (Port parameter intport_writedata=1). This option allows
self-intervention data responses and “normal” responses to use the same
datapaths.

For the self-intervention case, it is possible for the slave to response with
OK instead of DVA. This case occurs if another CPU has gained ownership
of the cache line before the original writeback transaction has been
processed. The cache line would have been previously been written back
for this change of ownership (Race between another core requesting the
line and writeback completing at the originating CPU).

IntvCopyBack (0x10, I_CB)

This coherent command is used to writeback cache lines into home and
the cache line is not evicted from the cache hierarchy. This command is
generated by processor-specific cache management instructions. This is a
non-posted write. The slave responds with either SResp=OK (no data) or
DVA (data).

The user has the option of placing the writeback data on this port instead
of the main port (Port parameter intport_writedata=1). This option allows
self-intervention data responses and “normal” responses to use the same
datapaths.

IntvCopyBackInv (0x11, I_CBI)

This coherent command is used to writeback cache lines into home and
the cache line is evicted from the cache hierarchy. Functionally, it is the
same as CohWriteBack, but this command is generated by processor-
specific cache management instructions. This is a non-posted write. The
slave responds with either SResp=OK (no data) or DVA (data).

The user has the option of placing the writeback data on this port instead
of the main port (Port parameter intport_writedata=1). This option allows
self-intervention data responses and “normal” responses to use the same
datapaths.

IntvInvalidate (0x12, I_I)

This coherent command is used to purge data from the cache hierarchy.
If a cache line contains the requested address, its state is set to invalid,
regardless of the previous state. Typically used by coherent DMA

118 Open Core Protocol Specification

OCP-IP Confidential

controllers to remove stale copies of data from the cache hierarchy and
also by processor-specific cache management instructions. This is a non-
posted write. The slave responds with SResp=OK.

IntvWriteInvalidate (0x13, I_WRI)

This coherent command is used to inject new data into a coherent system
by simultaneously invalidating a cache line from the system and updating
its value at home. Typically used by coherent DMA controllers to write new
values into home and remove stale copies from the cache hierarchy. This
is a non-posted write. The slave responds with either SResp=OK (no data)
or DVA (data). The original data is merged with the new data before it is
written to home.

In some systems, a third port for coherent IO traffic can be used to allow
external masters (such as DMA engines) to inject these WriteInvalidate
commands into the coherent memory system without requiring the CPU main
ports to set writeresp_enable=1.

6.3.3.2 SCohState
This signal indicates the cache line state of the slave cache and is part of the
intervention response phase. Its encoding is identical to the description of the
signal with the same name in the main port signal descriptions (see Table 36
on page 106).

6.3.3.3 MReqSelf
MReqSelf is an output of the master and an input to the slave. It is valid when
MCmd is not IDLE. It indicates to the intervention slave that this intervention
request is a result of a main port request which originated from the master
port of this agent (i.e., it is a self-intervention). This bit is typically asserted by
the interconnect. The concept of self-intervention is critical in OCP 3.0 (along
with a serialization point) to enforce global order in the coherent system.

6.3.3.4 MCohID
MCohID specifies the target of the request. It is valid when MCmd is not IDLE.
For directory based coherence it is used at the intervention ports to indicate
the target of the response. For an interrupt command from the main port it is
used to indicate the target of the command. This is an optional signal which
could be used in three hop protocols when the coherent master also provides
the system view (see Section 5.2 on page 74).

6.3.3.5 SCohID
SCohID specifies the target of the response. It is valid when SResp is not
NULL. For directory based coherence it is used at the intervention ports to
indicate the target of the response. This is an optional signal which could be
used in three hop protocols when the coherent master also provides the
system view (see Section 5.2 on page 74).

OCP Coherence Extensions: Signals and Encodings 119

OCP-IP Confidential

6.3.3.6 McohFwdID
MCohFwdID specifies the target for a three hop transaction. It is valid when
MCmd is not IDLE. Its main use is meant in directory based coherence where
it is used at the intervention port to signal to the target that if a three hop
transaction is required, then this is the address of the final target. This is an
optional signal which could be used in three hop protocols when the coherent
master also provides the system view (see Section 5.2 on page 74).

6.3.3.7 SDataValid
SDataValid is a optional signal. This signal is included if the port parameter
intport_split_tranx is set equal to 1. It is an output from the slave and an
input to the Master to denote that snoop intervention data is valid on SData.

6.3.3.8 SDataLast
SDataLast is a required signal. It is an output from the slave and an input to
the Master to denote that the last data beat of the transfer is valid on SData.

6.3.3.9 MDataAccept
MDataAccept is an optional signal. This signal is included if the port
parameter intport_split_tranx is set equal to 1. It is an output from the
Master and an input to the slave to denote that the Master can accept snoop
intervention data from the slave.

6.3.3.10 MDataThreadBusy
MDataThreadBusy is an optional signal used if threads have been enabled for
the Intervention Port. The master notifies the slave that it cannot accept any
data associated with certain threads. This field is a vector (one bit per thread).
A value of 1 on any given bit indicates that the thread associated with that bit
is busy. Bit 0 corresponds to thread 0, and so on. This signal is enabled by
the port parameter mdatathreadbusy. The semantics of this signal are
controlled by the port parameters mdatathreadbusy_exact and
mdatathreadbusy_pipelined.

6.3.4 Signal Groups
The following table shows the Intervention Port signals placed into specific
groups. All signals within one group as asserted at the same time.

120 Open Core Protocol Specification

OCP-IP Confidential

Table 41 Intervention Port Signal Groups

Group Signal Condition

Request MAddr always

MCmd always

MAddrSpace always

MReqInfo Optional

MAtomicLength Optional

MBurstLength always

MBurstPrecise always

MBurstSeq always

MBurstSingleReq always

MReqSelf always

MCohID Optional

MCohFwdID Optional

MTagID Optional

MTagInOrder Optional

MThreadsID Optional

Response SResp always

SRespInfo Optional

SCohState always

STagID Optional

STagInOrder Optional

SCohID Optional

SThreadID Optional

RespDataHandShake SData Always

SDataValid Optional

SDataLast Always

SDataInfo Optional

STagID Optional

STagInOrder Optional

SCohID Optional

SThreadID Optional

SDataThreadID Optional

OCP Coherence Extensions: Signals and Encodings 121

OCP-IP Confidential

6.3.5 Transfer Phases
Table 42 shows the transfer phases allowed given specific values of the signal
MReqSelf and the parameter intport_writedata.

Table 42 Intervention Port transfer phases

6.3.6 Phase Ordering within a Transfer
The intervention port follows the legacy OCP phase ordering rules except for
the following:

MCmd Phases

MReqSelf=0 MReqSelf=1

intport_writedata=1 intport_writedata=0

I_RDOW Request; Response;

RespDataHandShake1

1. RespDataHandShake group active if cache line was in M or O state in local cache. If port
parameter intport_estate_c2c=1, then RespDataHandShake group also active if cache
line was in E state in local cache.

Request; Response; Request; Response;

I_RDSH Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_RDDS Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_RDSA Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_UPG Request; Response;

RespDataHandShake1
Request; Response Request; Response

I_WB Request; Response2

2. The request and response transfers are not needed in directory based protocols since the
intervention requests are only directed to the original requester. In snoop-based protocols,
some implementations may choose to broadcast the intervention requests, in which case
these transfers are needed.

Request; Response;

RespDataHandShake3

3. RespDataHandShake phase might not occur if cache line ownership has been passed to
another CPU subsequent to when the originating CC_WB command was issued. WriteBack
Data is supplied with self-intervention response

Request; Response

I_CB Request; Response2 Request; Response;

RespDataHandShake3
Request; Response

I_CBI Request; Response2 Request; Response;

RespDataHandShake3
Request; Response

I_I Request; Response Request; Response Request; Response

I_WRI Request; Response;

RespDataHandShake4

4. RespDataHandShake group only active if the cache line in the local cache was in the M or
O state.

Request; Response

RespDataHandShake4
Request; Response
RespDataHandShake

122 Open Core Protocol Specification

OCP-IP Confidential

• If the port parameter intport_split_tranx=1 then it is allowed that the
Response phase can begin before the associated RespDataHandShake
phase.

• If the port parameter intport_split_tranx=1 then it is allowed that the
Response phase can end before the associated RespDataHandShake
phase.

These are optimizations to allow forwarding of the local cache tag lookups
before the local cache data array lookup is completed.

6.3.7 Transfer Effects
All transaction requests on the Intervention Port require a response from the
slave. Some of the transactions may also cause data transfer on the port.

The SCohState signal reports the cache line state prior to the intervention.

If port parameter intport_split_tranx=0, then the SResp signals reports
whether the local slave will deliver data or not. The Response phase is
coincident with the data transfer phase.

If port parameter intport_split_tranx=1, then the SDataValid signal
reports when the local slave delivers data. The response phase is single cycle
and occurs before the data transfer phase. The Response is reported on the
SResp signal.

Table 43 Summary of Transfer Effects

Condition(s) SResp Behavior

IntvReadOwn, IntvReadShared, IntvReadDiscard,
IntvReadSharedAlways, IntvUpgrade

MReqSelf = b0, Cache Line State = M, O DVA (data transfer)

intport_estate_c2c=1, MReqSelf = b0, Cache Line State = E DVA (data transfer)

All other cases OK (no data transfer)

IntvWriteBack

intport_writedata=1, MReqSelf = b1, Cache Line State = M, O DVA (data transfer)

All other cases OK (no data transfer)

IntvCopyBack, IntvCopyBackInv

intport_writedata=1, Cache Line State = M, O DVA (data transfer)

All other cases OK (no data transfer)

IntvWriteInvalidate

Cache Line State = M, O DVA (data transfer)

All other cases OK (no data transfer)

IntvInvalidate

All cases OK (no data transfer)

OCP-IP Confidential

7 Interface Configuration File

The interface configuration file describes a group of signals, called a bundle.
For OCP interfaces, the bundle is pre-defined, and no interface configuration
file is required. If you are using an interface other than OCP in your core RTL
configuration file, the interface configuration file is required.

Name the file <bundle-name>_intfc.conf where bundle-name is the name
given to the bundle that is being defined in the file.

7.1 Lexical Grammar
The lexical conventions used in the interface configuration file are:

<name> : (<letter> | '_') (<letter> | '_' | <digit>)*
<letter> : 'a' .. 'z' | 'A' .. 'Z'
<digit> : '0' .. '9'

<number> : <integer> | <float>

<integer> : <decimal_integer> | <hexadecimal_integer> | <octal_integer> |
<binary_integer>

<decimal_integer> : <digit>+
<hexadecimal_integer> : '0x'<hexadecimal_digit>+
<hexadecimal_digit> : <digit> | 'a' .. 'f' | 'A' .. 'F'
<octal_integer> : '0o'<octal_digit>+
<octal_digit> : '0' .. '7'
<binary_integer> : '0b'<binary_digit>+
<binary_digit> : '0' | '1'

<float> : <mantissa> [<exponent>]
<mantissa>: (<decimal_integer> '.') |('.' <decimal_integer>) |

 (<decimal_integer> '.' <decimal_integer>)
<exponent>: ('e' | 'E') ['+' | '-'] <decimal_integer>

124 Open Core Protocol Specification

OCP-IP Confidential

7.2 Syntax
The interface configuration file is written using standard Tcl syntax. Syntax
is described using the following conventions:

The syntax of the interface configuration file is:

version <version_string>
bundle <bundle_name> \

[revision <revision_string>] {<bundle_stmt>+}

where:

<bundle_stmt>:
| interface_types <interface_type-name>+
| net <net_name> {<net_stmt>*}
| proprietary <vendor_code> <organization_name>
 {<proprietary_statements>}

<net_stmt>:
| direction (input|output|inout)+
| width <number-of-bits>
| vhdl_type <type-string>
| type <net-type>
| proprietary <vendor_code> <organization_name>

{<proprietary_statements>}

The file must contain a single version statement followed by a single bundle
statement. The bundle statement must contain exactly one
interface_types statement, and one or more net statements. Each net
statement must contain exactly one direction statement and may contain
additional statements of other types.

Symbol Meaning

[] optional construct

| or, alternate constructs

* zero or more repetitions

+ one or more repetitions

< > enclose names of syntactic units

() are used for grouping

{ } are part of the format and are required. An open brace
must always appear on the same line as the statement

\ line continuation character

comments

Interface Configuration File 125

OCP-IP Confidential

version
The version statement identifies the version of the interface
configuration file format. The version string consists of major and minor
version numbers separated by a decimal. The current version is 4.5.

bundle
The bundle statement is required and indicates that a bundle is being
defined instead of a core or a chip. Make the bundle-name the same name
as the one used in the interface configuration file name.

Use a bundle_name of ocp for OCP 1.0 bundles, ocp2 for OCP 2.x bundles,
and ocp3 for OCP 3.x bundles. The optional revision_string identifies
a specific revision for the bundle. If not provided, the revision_string
defaults to 0. The pre-defined ocp, ocp2, and ocp3 bundles use the default
value of revision_string to refer to the 1.0, 2.0, and 3.0 versions of the
OCP Specification, respectively. For ocp2 bundles, set revision_string
to 2 to refer to the 2.2 version of the OCP Specification.

interface_types
The interface_types statement lists the legal values for the interface
types associated with the bundle. Interface types are used by the toolset
in conjunction with the direction statement to determine whether an
interface uses a net as an input or output signal. This statement is
required and must have at least one type defined.

Predefined interface types for OCP bundles are slave, master,
system_slave, system_master, and monitor. These are explained in
Table 18 on page 35.

net
The net statement defines the signals that comprise the bundle. There
should be one net statement for each signal that is part of the bundle. A
net can also represent a bus of signals. In this case the net width is
specified using the width statement. If no width statement is provided,
the net width defaults to one. A bundle is required to contain at least one
net. The net-name field is the same as the one used in the net-name field
of the port statements in the core RTL file described in Chapter 8.

proprietary
For a description, see ”Proprietary Statement” on page 137.

direction
The direction statement indicates whether the net is of type input,
output, or inout. This field is required and must have as many direction-
values as there are interface types. The order of the values must duplicate
the order of the interface types in the interface_types statement. The legal
values are input, output, and inout.

vhdl_type
By default VHDL signals and ports are assumed to be std_logic and
std_logic_vector, but if you have ports on a core that are of a different
type, the vhdl_type command can be used on a net. This type will be
used only when soccomp is run with the design_top=vhdl option to
produce a VHDL top-level netlist.

126 Open Core Protocol Specification

OCP-IP Confidential

type
The type statement specifies that a net has special handling needs for
downstream tools such as synthesis and layout. Table 44 shows the
allowed <net-type> options. If no <net-type> is specified, normal is
assumed.

Table 44 net-type Options

proprietary
For a description, see ”Proprietary Statement” on page 137.

The following example defines an SRAM interface. The bundle being defined
is called sram16.

bundle "sram16" {

Two interface types are defined, one is labeled
"controller" and the other is labeled "memory"
interface_types controller memory

A net named Address is defined to be part of this bundle.
net "Address" {

The direction of the "Address" net is defined to be
"output" for interfaces of type "controller" and "input"
for interfaces of type "memory".
direction output input

The width statement indicates that there are 14 bits in

<net-type> Description

clock clock net

clock_sample clock sample net

jtag_tck JTAG test clock

jtag_tdi JTAG test data in

jtag_tdo JTAG test data out

jtag_tms JTAG test mode select

jtag_trstn JTAG test logic reset

normal default for nets without special handling needs

reset reset net

scan_enable scan enable net, serves as mode control between functional and
scan data inputs

scan_in scan input net

scan_out scan output net

test_mode test mode net, puts logic into a special mode for use during
production testing

Interface Configuration File 127

OCP-IP Confidential

the "Address" net.
width 14

}
net "WData" {

direction output input
width 16

}
net "RData" {

The direction of the "RData" net is defined to be
"input" for bundle of type "controller" and "output" for
bundles of type "memory".
direction input output
width 16

}
net "We_n" {

direction output input
}
net "Oe_n" {

direction output input
}
net "Reset" {

direction output input
type reset

}
close the bundle
}

OCP-IP Confidential

8 Core RTL Configuration File

The required core RTL configuration file provides a description of the core and
its interfaces. The name of the file needs to be <corename>_rtl.conf, where
corename is the name of the module to be used. For example, the file defining
a core named uart must be called uart_rtl.conf.

For a description of the lexical grammar, see page 123.

8.1 Syntax
The core RTL configuration file is written using standard Tcl syntax. Syntax
is described using the following conventions:

[] optional construct
| or, alternate constructs
* zero or more repetitions
+ one or more repetitions
<> enclose names of syntactic units
() are used for grouping
{ } are part of the format and are required. An open brace must always

appear on the same line as the statement
comments

The syntax for the core RTL configuration file is:

version <version_string>

module <core_name> {<core_stmt>+}

core_name is the name of the core being described and:

<core_stmt>:
| icon <file_name>
| core_id <vendor_code> <core_code> <revision_code>

130 Open Core Protocol Specification

OCP-IP Confidential

 [<description>]
| interface <interface_name> bundle <bundle_name> [revision
 <revision_string>]

[{<interface_body>*}]
| addr_region <name> {<addr_region_body>*}
| proprietary <vendor_code> <organization_name>
 {<proprietary_statements>}

The file must contain a single version statement followed by a single module
statement. The module statement contains multiple core statements. One
core_id must be included. At least one interface statement must be included.
One icon statement and one or more addr_region and proprietary statements
may also be included.

8.2 Components
This section describes the core RTL configuration file components.

Version Statement
The version statement identifies the version of the core RTL configuration file
format. The version string consists of major and minor version numbers
separated by a period. The current version of the file is 4.5.

Icon Statement
This statement specifies the icon to display on a core. The syntax is:

icon <file_name>

file_name is the name of the graphic file, without any directory names. Store
the file in the design directory of the core. For example:

icon "myCore.ppm"

The supported graphic formats are GIF, PPM, and PGM. Graphics should be
no larger than 80x80 pixels. Since the text used for the core is white, use a
dark background for your icon, otherwise it will be difficult to read.

Core_id Statement
The core_id statement provides identifying information to the tools about the
core. This information is required. Syntax of the core_id statement is:

core_id <vendor_code> <core_code> <revision_code> [<description>]

where:

vendor_code An OCP-IP-assigned vendor code that uniquely identifies the core developer.
OCP-IP maintains a registry of assigned vendor codes. The allowed range is
0x0000 - 0xFFFF. Use 0x5555 to denote an anonymous vendor. For a list of codes
check www.ocpip.org.

Core RTL Configuration File 131

OCP-IP Confidential

core_code A developer-assigned core code that (in combination with the vendor code)
uniquely identifies the core. OCP-IP provides suggested values for common
cores. See “Defined Core Code Values” on page 131. The allowed range is 0x000
- 0xFFF.

revision_code A developer-assigned revision code that can provide core revision information.
The allowed range is 0x0–0xF.

description An optional Tcl string that provides a short description of the core.

Defined Core Code Values
0x000 - 0x7FF: Pre-defined

0x000 - 0x0FF: Memory
Sum values from following choices:

ROM:
0x0: None
0x1: ROM/EPROM
0x2: Flash (writable)
0x3: Reserved
SRAM:
0x0: None
0x4: Non-pipelined SRAM
0x8: Pipelined SRAM
0xC: Reserved
DRAM:
0x00: None
0x10: DRAM (trad., page mode, EDO, etc.)
0x20: SDRAM (all flavors)
0x30: RDRAM (all flavors)
0x40: Several
0x50: Reserved
0x60: Reserved
0x70: Reserved
Built-in DMA:
0x00: No
0x80: Yes

Values from 0x000 - 0x0FF are defined/reserved
Example: Memory controller supporting only SDRAM & Flash
 would have <cc> = 0x2 + 0x20 = 0x022

0x100 - 0x1FF: General-purpose processors
Sum values from following choices plus offset 0x100:

Word size:
0x0: 8-bit
0x1: 16-bit
0x2: 32-bit
0x3: 64-bit
0x4 - 0x7: Reserved
Embedded cache:
0x0: No cache

132 Open Core Protocol Specification

OCP-IP Confidential

0x8: Cache (Instruction, Data, combined, or both)
Processor Type:
0x00: CPU
0x10: DSP
0x20: Hybrid
0x30: Reserved

Only values from 0x100 - 0x13F are defined/reserved
Example: 32-bit CPU with embedded cache
 would have <cc> = 0x100 + 0x2 + 0x8 + 0x00 = 0x10A

0x200 - 0x2FF: Bridges
Sum values from following choices plus offset 0x200:

Domain:
0x00 - 0x7F: Computing

0x00 - 0x3F: PC's
0x00: ISA (inc. EISA)
0x01 - 0x0F: Reserved
0x10: PCI (33MHz/32b)
0x11: PCI (66MHz/32b)
0x12: PCI (33MHz/64b)
0x13: PCI (66MHz/64b)
0x14 - 0x1F: AGP, etc.
0x40 - 0x7F: Reserved

0x80 - 0xBF: Telecom
0xA0 - 0xAF: ATM
0xA0: Utopia Level 1
0xA1: Utopia Level 2
...

0xC0 - 0xFF: Datacom

0x300 - 0x3FF: Reserved

0x400 - 0x5FF: Other processors
(enumerate types: MPEG audio, MPEG video, 2D Graphics,
 3D Graphics, packet, cell, QAM, Vitterbi, Huffman,
 QPSK, etc.)

0x600 - 0x7FF: I/O
(enumerate types: Serial UART, Parallel, keyboard, mouse,
 gameport, USB, 1394, Ethernet 10/100/1000, ATM PHY,
 NTSC, audio in/out, A/D, D/A, I2C, PCI, AGP, ISA,
 etc.)

0x800 - 0xFFF: Vendor-defined
(explicitly left up to vendor)

Core RTL Configuration File 133

OCP-IP Confidential

Interface Statement
The interface statement defines and names the interfaces of a core. The
interface name is required so that cores with multiple interfaces can specify
to which interface a particular connection should be made. Syntax for the
interface statement is:

interface <interface_name> bundle <bundle_name> [revision
<revision_string>]
[{<interface_body>*}]

Parameters lacking a default must be specified using a param statement. For
a list of the required parameters, see Section 4.9.6 on page 67. All other
interface body statements are optional

The <bundle_name> must be a defined bundle such as ocp or ocp2 or a
bundle specified in an interface configuration file as described on page 123.
The optional <revision_string> must match that of the referenced bundle.
Different interfaces can refer to different revisions of the same bundle. The
pre-defined ocp, ocp2, and ocp3 bundles use the default revision_string to
refer to the 1.0, 2.0, or 3.0 versions of the OCP Specification, respectively. For
ocp2 bundles, set revision_string to 2 to refer to the 2.2 version of the OCP
Specification.

In the following example, an interface named xyz is defined as an OCP 3.0
bundle. The quotation marks around xyz are not required but help to
distinguish the format.

interface "xyz" bundle ocp3 revision 0

<interface_body>:
| interface_type <type_name>
| port <port_name> net <net_name>
| reference_port <interface_name>.<port_name> net <net_name>
| prefix <name>
| param <name> <value> [{(<attribute> <value>)*}]
| subnet <net_name> <bit_range_list> <subnet_name>
| location (n|e|w|s|) <number>
| proprietary <vendor_code> <organization_name>

 {<proprietary_statements>}

Ports on a core interface may have names that are different than the nets
defined in the bundle type for the interface. In this case, each port in the
interface must be mapped to the net in the bundle with which it is associated.
Mapping links the module port <prefix><port_name> with the bundle
<net_name>.

The default rules for mapping are that the port_name is the same as the
net_name and the prefix is the name of the interface. These rules can be
overridden using the Port and Prefix statements.

134 Open Core Protocol Specification

OCP-IP Confidential

Interface_type Statement
The interface_type statement defines characteristics of the bundle. Typically,
the different types specify whether the core drives or receives a particular
signal within the bundle. Syntax for the interface_type statement is:

interface_type <type_name>

The type_name must be a type defined in the bundle definition. If the bundle
is OCP, the allowed types are: master, system_master, slave, system_slave,
and monitor as described in Table 18 on page 35. To define a type, specify it
in the interface configuration file (described on page 123).

Port Statement
Use the port statement to map a single port corresponding to a signal that is
defined in the bundle. Syntax for the port statement is:

port <port_name> net <net_name>

The module port named <prefix><port name> implements the <net_name>
function of the bundle. The legal net_name values are defined in the bundle
definition. For OCP bundles, the net names are defined in Section 3 on
page 13.

Reference_port Statement
The reference_port statement re-directs a net to another bundle. Syntax for
the port statement is:

reference_port <interface_name>.<port_name> net <net_name>

The interface (in which the reference_port is declared) does not have the
reference port and the bundle does not have the reference net. The
reference_port statement declares that the net is internally connected to the
given port of the referenced interface. For example, consider the following two
interfaces:

interface tp bundle ocp {
reference_port ip.Clk_i net Clk
reference_port ip.SReset_ni net MReset_n
reference_port ip.EnableClk_i net EnableClk
port Control_i net Control
port MCmd_i net MCmd

}

interface ip bundle ocp {
port Clk_i net Clk
port SReset_ni net SReset_n
port EnableClk_i net EnableClk
port Control_i net Control
port MCmd_o net MCmd

}

Core RTL Configuration File 135

OCP-IP Confidential

Figure 14 Reference Port

Figure 14 illustrates the operation of a reference port. In the interface tp, no
ports exist for bundle signals Clk, EnableClk, and MReset_n. Neither do the
bundle signals themselves exist. Instead, they reference the corresponding
ports in the ip interface and nets in the bundle connected to that interface.
The internal signals in the tp interface that would have been connected to the
Clk, EnableClk, and MReset_n signals of the OCP bundle connected to the tp
interface are instead connected to the referenced ports in the ip interface.

Prefix Command
The prefix command applies to all ports in an interface. It supplies a string
that serves as the prefix for all core port names in the interface. Syntax for the
prefix command is:

prefix <name>

For example, the statement prefix external_ specifies that the names for all
ports in the interface are of the form external_*.

If the prefix command is omitted, the interface name will be inserted as the
default prefix. To omit the prefix from the port name, specify it as an empty
string, that is prefix "".

Configurable Interfaces Parameters
For configurable interfaces, parameters specify configurations. The specific
parameters for OCP are described in Chapters 3 and 4 and summarized in
Table 29 on page 68. The syntax for setting a parameter is:

param <name> <value> [{(<attribute> <value>)*}]
<value>: <number>|<name>
<attribute>: tie_off|width

If the parameter is used to configure a signal, the attribute list can be used to
attach additional values to that signal. The supported attributes are the tie-
off (if the signal is configured out of the interface) and the signal width (if the

ip tp

Clk_
i

SRes
et

_n
i

Con
tro

l_i

M
Cm

d_
o

C
lk

S
R

es
et

_n

C
on

tr
ol

M
C

m
d

C
lk

M
R

es
et

_n

C
on

tr
ol

M
C

m
d

internal use of signals

OCP bundle OCP bundle

Con
tro

l_i

M
Cm

d_
i

port

reference port

136 Open Core Protocol Specification

OCP-IP Confidential

signal is configured into the interface). Specifying the signal width using an
attribute attached to the signal parameter is equivalent to using the
corresponding signal width parameter but the attribute syntax is preferred.
The width of the signals MData, SData, MByteEn, and MDataByteEn are
derived from the single data_wdth parameter, so cannot have their width
specified using an attribute. For example, an OCP might be configured to
include an interrupt signal as follows.

param interrupt 1

The following example shows the MBurstLength field tied off to a constant
value of 4.

param burstlength 0 {tie_off 4}

The following code shows two equivalent ways of setting the address width to
16 bits though the second method is preferred.

param addr_wdth 16

param addr 1 {width 16}

Subnet Statement
The subnet statement assigns names to bits or contiguous bit-fields within a
net. Syntax for the subnet statement is:

subnet <net_name> <bit_range_list> <subnet_name>
<bit_range_list>: <bit_range>[,<bit_range>]*
<bit_range>: <bit_number>[:<bit_number>]

The subnet_name is assigned to the bit_range within the given net_name.
Bit_range can be either a single bit or a range. Subnet_name is a Tcl string.

For example bit 3 of the MReqInfo net may be assigned the name “cacheable”
as follows:

subnet MReqInfo 3 cacheable

Location Statement
The location statement provides a way for the core to indicate where to place
this interface when a schematic symbol for the core is drawn. The location is
specified as a compass direction of north(n), south(s), east(e), west(w) and a
number. The number indicates a percentage from the top or left edge of the
block. Syntax for the location statement is:

location (n|e|w|s) <number>

To place an interface on the bottom (south-side) in the middle (50% from the
left edge) of the block, for example, use this definition:

location s 50

Core RTL Configuration File 137

OCP-IP Confidential

Address Region Statement
The address region statement specifies address regions within the complete
address space of a core. It allows you to give a symbolic name to a region, and
to specify its base, size, and behavior.

addr_region <name> {<addr_region_body>*}

where:

<addr_region_body>: addr_base <integer> | addr_size <integer>
| addr_space <integer>
| proprietary <vendor_code> <organization_name>
{<proprietary_statements>}

• The addr_base statement specifies the base address of the region being
defined and is specified as an integer.

• The addr_size statement similarly specifies the size of the region.

• The addr_space statement specifies to which OCP address space the
region belongs. If the addr_space statement is omitted, the region belongs
to all address spaces.

Proprietary Statement
The proprietary statement enables proprietary extensions of the core RTL
configuration file syntax. Standard parsers must be able to ignore the
extensions, while proprietary parsers can extract additional information
about the core. Syntax for the proprietary statement is:

proprietary <vendor_code> <organization_name>
{<proprietary_statements>}

The vendor_code uniquely identifies the vendor associated with the
proprietary extensions and is described in more detail on page 130.

The organization_name specifies the name of the organization that specified
the extensions. Any number of proprietary statements can be included
between the braces but must follow legal Tcl syntax.

The proprietary statement can be included at multiple levels of the syntax
hierarchy, allowing it to use scoping to imply context. If multiple proprietary
statements are included in a single scope, the parser must process these in
an additive fashion.

138 Open Core Protocol Specification

OCP-IP Confidential

8.3 Sample RTL Configuration File
The format for a core RTL configuration file for a core is shown in Example 1.

Example 1 Sample flashctrl_rtl.conf File

define the module
version 4.5

module flashctrl {
core_id 0xBBBB 0x001 0x1 “Flash/Rom Controller”

Use the Vista icon
icon “vista.ppm”

addr_region “FLASHCTRL0” {
addr_base 0x0
addr_size 0x100000
}

one of the interfaces is an OCP slave using the pre-defined ocp2 bundle
Revision is "1", indicating compliance with OCP 2.1
interface tp bundle ocp2 revision 1 {

this is a slave type ocp interface
interface_type slave

this OCP is a basic interface with byteen support plus a named SFlag
and MReset_n
param mreset 1
param sreset 0
param byteen 1
param sflag 1 {width 1}
param addr 1 {width 32}
param mdata 1 {width 64}
param sdata 1 {width 64}

prefix tp
since the signal names do not exactly match the signal
names within the bundle, they must be explicitly linked
port Reset_ni net MReset_n
port Clk_i net Clk
port TMCmd_i net MCmd
port TMAddr_i net MAddr
port TMByteEn_i net MByteEn
port TMData_i net MData
port TCCmdAccept_o net SCmdAccept
port TCResp_o net SResp
port TCData_o net SData
port TCError_o net SFlag

Core RTL Configuration File 139

OCP-IP Confidential

name SFlag[0] access_error
subnet SFlag 0 access_error

stick this interface in the middle of the top of the module
location n 50

} # close interface tp defininition

The other interface is to the flash device defined in an interface file
Define the interface for the Flash control
interface emem bundle flash {

the type indicates direction and drive of the control signals
 interface_type controller

since this module has direction indication on some of the signals
('_o','_b') and is missing assertion level indicators '_n' on
some of the signals, the names must again be directly linked to
the signal names within the bundle
 port Addr_o net addr
 port Data_b net data
 port OE net oe_n
 port WE net we_n
 port RP net rp_n
 port WP net wp_n

 # all of the signals on this port have the prefix 'emem_'
 prefix "emem_"

 # stick this interface in the middle of the bottom of the module
 location s 50

 } # close interface emem defininition

} # close module definition

The flash bundle is defined in the following interface configuration file. See
Section 7 on page 123 for the syntax definition of the interface configuration
file.

bundle flash {
#types of flash interfaces
#controller: flash controller; flash: flash device itself.
interface_types controller flash
net addr {

#Address to the Flash device
direction output input
width 19

}

140 Open Core Protocol Specification

OCP-IP Confidential

net data {
#Read or Write Data
direction inout inout
width 16

}
net oe_n {

Output Enable, active low.
direction output input

}
net we_n {

Write Enable, active low.
direction output input

}
net rp_n {

Reset, active low.
direction output input

}
net wp_n {

Write protect bit, Active low.
direction output input

}
}

OCP-IP Confidential

9 Core Timing

To connect two entities together, allowing communication over an OCP
interface, the protocols, signals, and pin-level timing must be compatible.
This chapter describes how to define interface timing for a core. This process
can be applied to OCP and non-OCP interfaces.

Use the core synthesis configuration file to set timing constraints for ports in
the core. The file consists of any of the constraint sections: port, max delay,
and false path. If the core has additional non-OCP clocks, the file should
contain their definitions.

When implementing IP cores in a technology independent manner it is
difficult to specify only one timing number for the interface signals, since
timing is dependent on technology, library and design tools. The methodology
specified in this chapter allows the timing of interface signals to be specified
in a technology independent way.

To make your core description technology independent use the technology
variables defined in the Core Preparation Guide. The technology variables
range from describing the default setup and clock-to-output times for a port
to defining a high drive cell in the library.

142 Open Core Protocol Specification

OCP-IP Confidential

9.1 Timing Parameters
There is a set of minimum timing parameters that must be specified for a core
interface. Additional optional parameters supply more information to help the
system designer integrate the core. Hold-time parameters allow hold time
checking. Physical-design parameters provide details on the assumptions
used for deriving pin-level timing.

9.1.1 Minimum Parameters
At a minimum, the timing of an OCP interface is specified in terms of two
parameters:

• setuptime is the latest time an input signal is allowed to change before
the rising edge of the OCP clock.

• c2qtime is the latest time an output signal is guaranteed to become stable
after the rising edge of the OCP clock.

Figure 15 shows the definition of setuptime and c2qtime. See
Section 9.2.5.1 on page 149 for a description of these parameters.

Figure 15 OCP Timing Parameters

9.1.2 Hold-time Parameters
Hold-time parameters are needed to allow the system integrator to check hold
time requirements. On the output side, c2qtimemin specifies the minimum
time for a signal to propagate from a flip-flop to the given output pin. On the
input side, holdtime specifies the minimum time for a signal to propagate
from the input pin to a flip-flop.

1 clock cycle

c2qtime setuptime

logic logic

Core Timing 143

OCP-IP Confidential

9.1.3 Technology Variables
To give meaning to the timing values, timing requirements on input and
output pins must be accompanied by information on the assumed
environment for which these numbers are determined. This information also
adds detail on the expected connection of the pin.

For an input signal, the parameter drivingcellpin indicates the cell library
name for a cell representative of the strength of the driver that needs to be
used to drive the signal. This is shown in Figure 16.

Figure 16 Driver Strength

For an output signal, the variable loadcellpin indicates the input load of the
gate that the signal is expected to drive. The variable loads indicates how
many loadcellpins the signal is expected to drive. Additionally, information on
the capacitive load of the wire must be included. There are two options. Either
the variable wireloaddelay can be specified, as shown in Figure 17. Or, the
combination wireloadcapacitance/wireloadresistance must be
specified, as shown in Figure 18.

Figure 17 Variable Loads - wireloaddelay

For instructions on calculating a delay, refer to the Synopsys Design Compiler
Reference.

logic

drivingcellpin core

loadslogic

 wireloaddelay

loadcellpin

144 Open Core Protocol Specification

OCP-IP Confidential

Figure 18 Variable Loads - wireloadresistance/wireloadcapacitance

9.1.4 Connecting Two OCP Cores
Figure 19 shows the timing model for interconnecting two OCP compliant
cores.

The sum of setuptime, c2qtime and wire delay must be less than the clock
period or cycle time minus the clock-skew. Similarly, the minimum clock-
cycle for two cores to interoperate is determined by the maximum of the sum
of c2qtime, setuptime, wire delay and clock-skew over all interface signals.

The wireload delay is defined by either the variable wireloaddelay or the set
wireloadcapacitance/wireloadresistance.

Figure 19 Connecting Two OCP Compliant Cores

logic

loadcellpin

loads

wireloadresistance

wireloadcapacitance

logic

loads * loadcellpin

wireloadresistance

wireloadcapacitance

drivingcellpin

logic logic

c2qtime wireloaddelay

1 clock cycle

clock skew setuptime

logiclogic

loads * loadcellpin

wireloadresistance

wireloadcapacitance

drivingcellpin

logiclogic logiclogic

c2qtime wireloaddelay

1 clock cycle

clock skew setuptime

Core Timing 145

OCP-IP Confidential

9.1.4.1 Max Delay
In addition to the setup and c2qtime paths for a core, there may also be
combinational paths between input and output ports. Use maxdelay to
specify the timing for these paths.

Figure 20 Max Delay Timing

9.1.4.2 False Paths
It is possible to identify a path between two ports as being logically impossible.
Such paths can be specified using the falsepath constraint syntax.

For instructions on specifying the core’s timing parameters, see Section 9.2.7
on page 154.

max delay

logic
input output

146 Open Core Protocol Specification

OCP-IP Confidential

9.2 Core Synthesis Configuration File
The core synthesis configuration file contains the following sections:

Version
Specifies the current version of the synthesis configuration file format.
The current version is 1.3.

Clock
Describes clocks brought into the core.

Area
Defines the area in gates of the core.

Port
Defines the timing of IP block ports.

Max Delay
Specifies the delay between two ports on a combinational path.

False Path
Specifies that a path between input and output ports is logically
impossible.

9.2.1 Syntax Conventions
Observe the following syntax conventions:

• Enclose all expr statements within braces { }, to differentiate between
expressions that are to be evaluated while the file is being parsed (without
braces) and those that are to be evaluated during synthesis constraint file
generation (with braces).

• Although not required by Tcl, enclose strings within quotation marks ““,
to show that they are different than keywords.

• Specify keywords using lower case.

Parameter values are specified using Tcl syntax. Expressions can use any of
the technology or environment variables, and any of the following variables:

clockperiod
This variable should only be used in calculations of timing values for
ports. When evaluating expressions that use $clockperiod, the program
will determine which clock the port is relative to, determine its period (in
nanoseconds), and apply that value to the equation. For example:

port "in" {
setuptime {[expr $clockperiod * .5]}

}

Core Timing 147

OCP-IP Confidential

rootclockperiod
This variable is set to the period of the main system clock, usually referred
to as the root clock. It is typically used when a value needs to be a multiple
of the root clock, such as for non-OCP clocks. For example:

clock "myClock" {
 period {[expr $rootclockperiod * 4]}

}

The design_syn.conf file can also use conditional settings of the parameters
in the design as outlined by the following arrays. These variables are only
used at the time the file is read into the tools.

param
This array is indexed by the configuration parameters that can be found
on a particular instance. Only use param for core_syn.conf files since it is
only applicable to the instance being processed. For example:

if { $param("dma_fd") == 1 } {
port "T12_ipReset_no" {
c2qtime {[expr $clockperiod * 0.7]}
}

}

chipparam
This array is indexed by the configuration parameters that are defined at
the chip or design level. These variables can be used in both the
design_syn.conf and core_syn.conf files as they are more global in nature
than those specified by param. For example:

if { $chipparam("full") == 1 } {
instance "bigcore" {
port "in" {

 setuptime {[expr $clockperiod * 0.7]}
}
}

}

interfaceparam
This array is indexed by the interface name and the configuration param-
eters that are on an interface. It should only be used for core_syn.conf files
since it is only applicable to the interfaces on the instance being pro-
cessed. In the following example the interface name is ip.

if { $interfaceparam("ip_respaccept") == 1 } {
port "ipMRespAccept_o" {
c2qtime {[expr $clockperiod * 21/25]}
}

}

148 Open Core Protocol Specification

OCP-IP Confidential

9.2.2 Version Section
The version of the core synthesis configuration file is required. Specify the
version with the version command, for example: version 1.3

9.2.3 Clock Section
If you have non-OCP clocks for an IP block or want to specify the
worstcasedelay of any clock (including OCP clocks) used in the core, specify
the names of the clocks in the core synthesis configuration file. Use the
following syntax to specify the name of the clock and its worstcasedelay:

clock <clockName> {
worstcasedelay <delay Value>

}

clockName refers to the name of the port that brings the clock into the core
for the core synthesis configuration file. For example:

clock “myClock”

worstcasedelay
The worst case delay value is the longest path through the core or
instance for a particular clock. The value is used to check that the core
can meet the timing requirements of the current design. To help make this
value more portable, you may want to use the technology variable
gatedelay. For example:

clock "myClock" {
worstcasedelay {[10.5 * $gatedelay]}
}

clock "otherClock" {
worstcasedelay 5
}

Constant values are specified in nanoseconds. For consistency, use
expressions that can be interpreted in nanoseconds.

9.2.4 Area Section
The area is the size in gates of the core or instance. By specifying the size in
gates the area can be calculated based on the size of a typical two input nand
gate in a particular synthesis library. For example:

area {[expr 20500 / $gatesize]}
area 5000

Constant values are specified in two input nand gate equivalents. For
consistency, use expression that can be interpreted in gates.

Core Timing 149

OCP-IP Confidential

9.2.5 Port Constraints Section
Use the port constraints section to specify the timing parameters. Input port
information that can be specified includes the setup time, related clock (non-
OCP ports), and driving cell. For output ports, the clock to output times,
related clock (non-OCP ports), and the loading information must be supplied.

9.2.5.1 Port Constraint Keywords
The keywords that can be used to specify information about port constraints
are:

c2qtime
The c2q (clock to q or clock to output) time is the longest path using worst
case timing from a starting point in the core (register or input port) to the
output port. This includes the c2qtime of the register. To maintain port-
ability, most cores specify this as a percentage of the fastest clock period
used while synthesizing the core. For example:

c2qtime {[expr $timescale * 3500]}
c2qtime {[expr $clockperiod * 0.25]}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

c2qtimemin
The c2q (clock to q or clock to output) time min is the shortest path using
best case timing from a starting point in the core (register or input port)
to the output port. This includes the c2qtime of the register. Most cores
use the default from the technology section, defaultc2qtimemin. For ex-
ample:

c2qtimemin {[expr $timescale * 100]}
c2qtimemin {$defaultc2qtimemin}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

clockname
This is an optional field for all OCP ports and is a string specifying the
associated clock portname. For input ports, input delays use this clock as
the reference clock. For output ports, output delays use this clock as the
reference clock. For example:

clockname “myClock”

drivingcellpin
This variable describes which cell in the synthesis library is expected to
be driving the input. To maintain portability set this variable to use one of
the technology values of high/medium/lowdrivegatepin.

Values are a string that specifies the logical name of the synthesis library,
the cell from the library, and the pin that will be driving an input for the
core. The pin is optional. For example:

150 Open Core Protocol Specification

OCP-IP Confidential

drivingcellpin {$mediumdrivegatepin}
drivingcellpin "pt25u/nand2/O"

holdtime
The hold time is the shortest path using best case timing from an input
port to any endpoint in the core. Most cores use the default from the tech-
nology section, defaultholdtime. For example:

holdtime {[expr $timescale * 100]}
holdtime {$defaultholdtime}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

loadcellpin
The name of the load library/cell/pin that this output port is expected to
drive. The value is specified to the synthesis tool as the gate to use (along
with the number of loads) in its load calculations for output ports of a
module. For portability use the default.

Values are a string that specifies the logical name of the synthesis library,
the cell from the library, and the pin that the load calculation is derived
from. The pin is optional. For example:

loadcellpin "pt25u/nand2/I1"
loadcellpin {$defaultloadcellpin}

loads
The number of loadcellpins that this output port is expected to drive. The
value is communicated to the synthesis tool as the number of loads to use
in load calculations for output ports of a module. The typical setting for
this is the technology value of defaultloads. Values are an expression
that evaluates to an integer. For example:

loads 5
loads {$defaultloads}

maxfanout
This keyword limits the fanout of an input port to a specified number of
fanouts. To maintain portability set this variable in terms of the
technology variable defaultfanoutload.Constant values are specified
in library units. For example:

maxfanout {[expr $defaultfanoutload * 1]}

setuptime
The longest path using worst case timing from an input port to any end-
point in the core. To maintain portability, most cores specify this as a per-
centage of the fastest clock period used during synthesis of the core. For
example:

setuptime {[expr $timescale * 2500]}
setuptime {[expr $clockperiod * 0.25]}

Core Timing 151

OCP-IP Confidential

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

wireloaddelay
Replaces capacitance/resistance as a way to specify expected delays
caused by the interconnect. To maintain portability set this variable to use
a technology value of long/medium/shortnetdelay.

The resulting values get added to the worst case clock-to-output times of
the ports to anticipate net delays of connections to these ports. To improve
the accuracy of the delay calculation cores should use the resistance and
capacitance settings.

You cannot specify both wireloaddelay and wireloadresistance/ca-
pacitance for the same port. For example:

wireloaddelay {[expr $clockperiod * .25]}
wireloaddelay {$mediumnetdelay}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

wireloadresistance
wireloadcapacitance

Specify expected loading and resistance caused by the interconnect. If
available, specify both resistance and capacitance. To maintain portability
set this variable to use one of the technology values of long/medium/
shortnetrcresistance/capacitance.

If these constraints are specified they show up as additional loads and re-
sistances on output ports of a module. You cannot use both wireloaddelay
and wireloadresistance/capacitance for the same port.

Specify constant values as expressions that result in kOhms for resis-
tance and picofarads (pf) for capacitance. For example:

wireloadresistance {[expr $resistancescale * .09]}
wireloadcapacitance {[expr $capacitancescale * .12]}
wireloadresistance {$mediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}

9.2.5.2 Input Port Syntax
For input and inout ports (inout ports have both an input and an output
definition) use the following syntax:

port <portName> {
clockname <clockName>
drivingcellpin <drivingCellName>
setuptime <Value>
holdtime <Value>
maxfanout <Value>

}

152 Open Core Protocol Specification

OCP-IP Confidential

Examples
In the following example, the clock is not specified since this is an OCP port
and is known to be controlled by the OCP clock. If a clock were specified as
something other than the OCP clock, an error would result.

port “MCmd_i” {
drivingcellpin {$mediumdrivegatepin}
setuptime {[expr $clockperiod * 0.2]}

}

In the following example, the setup time is required to be 2ns. Time constants
are assumed to be in nanoseconds. Use the timescale variable to convert
library units to nanoseconds.

port “MAddr_i” {
drivingcellpin {$mediumdrivegatepin}
setuptime 2

}

The following example shows how to associate a non OCP clock to a port. The
example uses maxfanout to limit the fanout of myInPort to 1. If the logic for
myInPort required it to fanout to more than one connection, the synthesis tool
would add a buffer to satisfy the maxfanout requirement.

port “myInPort” {
clockname “myClock”
drivingcellpin {$mediumdrivegatepin}
setuptime 2
maxfanout {[expr $defaultfanoutload * 1]}

}

9.2.5.3 Output Port Syntax
For output and inout ports (inout ports have both an input and an output
definition) use the following syntax:

port <portName> {
clockname <clockName>
loadcellpin <loadCellPinName>
loads <Value>
wireloadresistance <Value>
wireloadcapacitance <Value>
wireloaddelay <Value>
c2qtime <Value>
c2qtimemin <Value>

}

You cannot specify both wireloaddelay and wireloadresistance/
capacitance for the same port.

Core Timing 153

OCP-IP Confidential

Examples
In the following example, the clock is not specified since this is an OCP port
and is known to be controlled by the OCP clock.

port “SCmdaccept_o”
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {$mediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}
c2qtime {[expr $clockperiod * 0.2]}

}

In the following example, the clock to output time is required to be 2 ns. Time
constants are assumed to be in nanoseconds. Use the timescale variable to
convert library units to nanoseconds.

port “SResp_o”
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {$mediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}
c2qtime 2

}

The following example shows how to associate a clock to an output port.

port “myOutPort”
clockname “myClock”
loadcellpin {$defaultloadcellpin}
loads 10
wireloaddelay {$longnetdelay}
c2qtime {[expr $clockperiod * .2]}

}

InOut Port Example
port “Signal_io”

drivingcellpin {$mediumdrivegatepin}
setuptime {[expr $clockperiod * 0.2]}

}
port “Signal_io”

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {$mediumnetrcresistance}
wireloadresistance {$mediumnetrccapacitance}
c2qtime {[expr $clockperiod * 0.2]}

}

154 Open Core Protocol Specification

OCP-IP Confidential

9.2.6 Max Delay Constraints
Using the max delay constraints you can specify the delay between two ports
on a combinational path. This is useful when synthesizing two communi-
cating OCP interfaces. The syntax for maxdelay is:

maxdelay {
delay <delayValue> fromport <portName> toport <portName>
.
.
.

}

where: <delayValue> can be a constant or a Tcl expression.

In the following example, a maxdelay of 3 ns is specified for the combinational
path between myInPort1 and myOutPort1. A maxdelay of 50% of the
clockperiod is specified for the path between myInPort2 and myOutPort2. The
braces around the expression delay evaluation until the expression is used by
the mapping program.

maxdelay {
delay 3 fromport “myInPort1” toport “myOutPort1
delay {[expr $clockperiod *.5]} fromport “myInPort2” toport “myOutPort2”

}

9.2.7 False Path Constraints
Using the false path constraints you can specify that a path between certain
input and output ports is logically impossible.

The syntax for falsepath is:

falsepath{
fromport <portName> toport <portName>

.

.

.
}

In the following example, a falsepath is set up between myInPort1 and
myOutPort1 as well as myInPort2 and myOutPort2. This tells the synthesis
tool that the path is not logically possible and so it will not try to optimize this
path to meet timing.

falsepath {
fromport “myInPort1” toport “myOutPort1”
fromport “myInPort2” toport “myOutPort2”

}

Core Timing 155

OCP-IP Confidential

9.2.8 Sample Core Synthesis Configuration File
The following example shows a complete core synthesis configuration file.

version 1.3
port “Reset_ni” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “MCmd_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .9]}

}
port “MAddr_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “MWidth_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “MData_i” {

drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}

}
port “SCmdAccept_o” {

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {$mediumnetdelay}
c2qtime {[expr $clockperiod * .9]}

}
port “SResp_o” {

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {$mediumnetdelay}
c2qtime {[expr $clockperiod * .8]}

}
port “SData_o” {

loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {$mediumnetdelay}
c2qtime {[expr $clockperiod * .8]}

}
maxdelay {

delay 2 fromport “MData_i” toport
“SResp_o”

}
falsepath {

fromport “MData_i” toport “SData_o”
}

Part II Guidelines

OCP-IP Confidential

10 Timing Diagrams

The timing diagrams within this chapter look at signals at strategic points and
are not intended to provide full explanations but rather, highlight specific
areas of interest. The diagrams are provided solely as examples. For related
information about phases, see Section 4.3 on page 40.

Most of the timing diagrams in this chapter are based upon simple OCP
clocking, where the OCP clock is completely determined by the Clk signal. A
few diagrams are repeated to show the impact of the EnableClk signal. Most
fields are unspecified whenever their corresponding phase is not asserted.
This is indicated by the striped pattern in the waveforms. For example, when
MCmd is IDLE the request phase is not asserted, so the values of MAddr,
MData, and SCmdAccept are unspecified.

Subscripts on labels in the timing diagrams denote transfer numbers that can
be helpful in tracking a transfer across protocol phases.

For a description of timing diagram mnemonics, see Tables 2 on page 15 and
3 on page 16.

10.1 Simple Write and Read Transfer
Figure 21 illustrates a simple write and a read transfer on a basic OCP
interface. This diagram shows a write with no response enabled on the write,
which is typical behavior for a synchronous SRAM or a register bank.

160 Open Core Protocol Specification

OCP-IP Confidential

Figure 21 Simple Write and Read Transfer

Sequence
A. The master starts a request phase on clock 1 by switching the MCmd field

from IDLE to WR. At the same time, it presents a valid address (A1) on
MAddr and valid data (D1) on MData. The slave asserts SCmdAccept in
the same cycle, making this a 0-latency transfer.

B. The slave captures the values from MAddr and MData and uses them
internally to perform the write. Since SCmdAccept is asserted, the request
phase ends.

C. The master starts a read request by driving RD on MCmd. At the same
time, it presents a valid address on MAddr. The slave asserts SCmdAccept
in the same cycle for a request accept latency of 0.

D. The slave captures the value from MAddr and uses it internally to
determine what data to present. The slave starts the response phase by
switching SResp from NULL to DVA. The slave also drives the selected
data on SData. Since SCmdAccept is asserted, the request phase ends.

E. The master recognizes that SResp indicates data valid and captures the
read data from SData, completing the response phase. This transfer has
a request-to-response latency of 1.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

A1

WR1

D1

NULL

A2

RD2

DVA2

D2

IDLEIDLE

NULL

2 3 4 5 6 71
R

eq
ue

st

P
ha

se
R

e
sp

on
se

P

h
a

se

A B C D E

Timing Diagrams 161

OCP-IP Confidential

10.2 Request Handshake
Figure 22 illustrates the basic flow-control mechanism for the request phase
using SCmdAccept. There are three writes with no responses enabled, each
with a different request accept latency.

Figure 22 Request Handshake

Sequence
A. The master starts a write request by driving WR on MCmd and valid

address and data on MAddr and MData, respectively. The slave asserts
SCmdAccept in the same cycle, for a request accept latency of 0.

B. The master starts a new transfer in the next cycle. The slave captures the
write address and data. It deasserts SCmdAccept, indicating that it is not
yet ready for a new request.

C. Recognizing that SCmdAccept is not asserted, the master holds all
request phase signals (MCmd, MAddr, and MData). The slave asserts
SCmdAccept in the next cycle, for a request accept latency of 1.

D. The slave captures the write address and data.

E. After 1 idle cycle, the master starts a new write request. The slave
deasserts SCmdAccept.

F. Since SCmdAccept is asserted, the request phase ends. SCmdAccept was
low for 2 cycles, so the request accept latency for this transfer is 2. The
slave captures the write address and data.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

NULL

A1

WR1

D1

IDLEWR2

A2

D2

A3

IDLEWR3

D3

NULL

2 3 4 5 6 71 8

A B C D E F

R
e

qu
es

t
P

ha
se

R
es

p
on

se

P
h

as
e

162 Open Core Protocol Specification

OCP-IP Confidential

10.3 Request Handshake and Separate
Response
Figure 23 illustrates a single read transfer in which a slave introduces delays
in the request and response phases. The request accept latency 2,
corresponds to the number of clock cycles that SCmdAccept was deasserted.
The request to response latency 3, corresponds to the number of clock cycles
from the end of the request phase (D) to the end of the response phase (F).

Figure 23 Request Handshake and Separate Response

Sequence
A. The master starts a request phase by issuing the RD command on the

MCmd field. At the same time, it presents a valid address on MAddr. The
slave is not ready to accept the command yet, so it deasserts SCmdAccept.

B. The master sees that SCmdAccept is not asserted, so it keeps all request
phase signals steady. The slave may be using this information for a long
decode operation, and it expects the master to hold everything steady
until it asserts SCmdAccept.

C. The slave asserts SCmdAccept. The master continues to hold the request
phase signals.

D. Since SCmdAccept is asserted, the request phase ends. The slave
captures the address, and although the request phase is complete, it is
not ready to provide the response, so it continues to drive NULL on the
SResp field. For example, the slave may be waiting for data to come back
from an off-chip memory device.

2 31 5 64 7

 A1

D1

DVA1 NULL

NULL

RD1 IDLEIDLE

A B C D E F

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

R
e

qu
e

st

P
ha

se
R

es
po

ns
e

P

h
as

e

Timing Diagrams 163

OCP-IP Confidential

E. The slave is ready to present the response, so it issues DVA on the SResp
field, and drives the read data on SData.

F. The master sees the DVA response, captures the read data, and the
response phase ends.

10.4 Write with Response
Figure 24 is the same example as the waveform on page 161 but with
response on write enabled. The response is typically provided to the master in
the same cycle as SCmdAccept, but could be delayed (if required to perform
an error check for instance). On the first write transaction, the slave uses a
default accept scheme, resulting in a 0-wait state write transaction. Using
fully-synchronous handshake, this condition is only possible when the slave’s
ability to accept a command depends solely on its internal state: any
command issued by the master can be accepted. Same-cycle SCmdAccept
could also be achieved using combinational logic.

Figure 24 Write with Response

Sequence
A. The master starts a write request by driving WR on MCmd and valid

address and data on MAddr and MData, respectively. The slave having
already asserted SCmdAccept for a request accept latency of 0, drives DVA
on SResp to indicate a successful transaction.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

NULL

A1

WR1

D1

IDLEWR2

A2

D2

IDLE

2 3 4 5 6 71 8

A B C D E G

R
e

q
ue

st

P
h

as
e

R
es

p
on

se

P
h

as
e DVA1 NULL DVA2

WR3

A3

D3

DVA3 NULLNULL

F

164 Open Core Protocol Specification

OCP-IP Confidential

B. The master starts a new transfer in the next cycle. The slave captures the
write address and data and deasserts SCmdAccept, indicating that it is
not ready for a new request.

C. With SCmdAccept not asserted, the master holds all request phase
signals (MCmd, MAddr, and MData). The slave asserts SCmdAccept in the
next cycle, for a request accept latency of 1 and drives DVA on SResp to
indicate a successful transaction.

D. The slave captures the write address and data.

E. After 1 idle cycle, the master starts a new write request. The slave
deasserts SCmdAccept.

F. Since SCmdAccept is asserted, the request phase ends. SCmdAccept was
low for 2 cycles, so the request accept latency for this transfer is 2. The
slave captures the write address and data. The slave drives DVA on SResp
to indicate a successful transaction.

G. The master samples the response.

10.5 Non-Posted Write
Figure 25 repeats the previous example for a non-posted write transaction. In
this case the response must be returned to the master once the write
operation commits. There is no difference in the command acceptance, but
the response may be significantly delayed. If this scheme is used for all
posting-sensitive transactions, the result is decreased data throughput but
higher system reliability.

Figure 25 Non-posted Write

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

NULL

A1

 WRNP1

D1

IDLE WRNP2

A2

D2

2 3 4 5 6 71

A B C D E G

R
e

qu
es

t
P

h
a

se
R

es
p

on
se

P

h
as

e DVA1 DVA2NULL

IDLE

F

Timing Diagrams 165

OCP-IP Confidential

Sequence
A. The master starts a non-posted write request by driving WRNP on MCmd

and valid address and data on MAddr and MData, respectively. The slave
asserts SCmdAccept combinationally, for a request accept latency of 0.

B. The slave drives DVA on SResp to indicate a successful first transaction.

C. The master starts a new transfer. The slave deasserts the SCmdAccept,
indicating it is not yet ready to accept a new request. The master samples
DVA on SResp and the first response phase ends.

D. The slave asserts SCmdAccept for a request accept latency of 1.

E. The slave captures the write address and data.

F. The slave drives DVA on SResp to indicate a successful second
transaction.

G. The master samples DVA on SResp and the second response phase ends.

10.6 Burst Write
Figure 26 illustrates a burst of four 32-bit words, incrementing precise burst
write, with optional burst framing information (MReqLast). As the burst is
precise (with no response on write), the MBurstLength signal is constant
during the whole burst. MReqLast flags the last request of the burst, and
SRespLast flags the last response of the burst. The slave may either count
requests or monitor MReqLast for the end of burst.

166 Open Core Protocol Specification

OCP-IP Confidential

Figure 26 Burst Write

Sequence
A. The master starts the burst write by driving WR on MCmd, the first

address of the burst on MAddr, valid data on MData, a burst length of four
on MBurstLength, the burst code INCR on MBurstSeq, and asserts
MBurstPrecise. MReqLast must be deasserted until the last request in the
burst. The burst signals indicate that this is an incrementing burst of
precisely four transfers. The slave is not ready for anything, so it deasserts
SCmdAccept.

B. The slave asserts SCmdAccept for a request accept latency of 1.

C. The master issues the next write in the burst. MAddr is set to the next
word-aligned address. For 32-bit words, the address is incremented by 4.
The slave captures the data and address of the first request.

D. The master issues the next write in the burst, incrementing MAddr. The
slave captures the data and address of the second request.

E. The master issues the final write in the burst, incrementing MAddr, and
asserting MBurstLast. The slave captures the data and address of the
third request.

F. The slave captures the data and address of the last request.

Clk

MAddr

MCmd

MData

SCmdAccept

IDLE

0x01

WR1 WR2

0x83 0xC4

WR4

D4

IDLE

D1

0x42

WR3

D2 D3

MBurstSeq INCR INCR INCRINCR

R
e

q
ue

st

P
ha

se
2 3 4 5 6 71

MBurstLength 4 44 4

MReqLast

MBurstPrecise

B C D E FA

Timing Diagrams 167

OCP-IP Confidential

10.7 Non-Pipelined Read
Figure 27 shows three read transfers to a slave that cannot pipeline responses
after requests. This is the typical behavior of legacy computer bus protocols
with a single WAIT or ACK signal. In each transfer, SCmdAccept is asserted
in the same cycle that SResp is DVA. Therefore, the request-to-response
latency is always 0, but the request accept latency varies from 0 to 2.

Figure 27 Non-Pipelined Read

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The slave asserts SCmdAccept, for a request accept
latency of 0. When the slave sees the read command, it responds with DVA
on SResp and valid data on SData. (This requires a combinational path in
the slave from MCmd, and possibly other request phase fields, to SResp,
and possibly other response phase fields.)

B. The master launches another read request. It also sees that SResp is DVA
and captures the read data from SData. The slave is not ready to respond
to the new request, so it deasserts SCmdAccept.

C. The master sees that SCmdAccept is low and extends the request phase.
The slave is now ready to respond in the next cycle, so it simultaneously
asserts SCmdAccept and drives DVA on SResp and the selected data on
SData. The request accept latency is 1.

D. Since SCmdAccept is asserted, the request phase ends. The master sees
that SResp is now DVA and captures the data.

E. The master launches a third read request. The slave deasserts
SCmdAccept.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

NULL

A1

RD1 IDLERD2

A2 A3

IDLERD3

DVA1 NULL NULLDVA2 DVA3NULL

D1 D2 D3

R
eq

u
es

t
P

h
a

se
R

es
po

ns
e

P
h

a
se

2 3 4 5 6 71 8

A B C D E F G

168 Open Core Protocol Specification

OCP-IP Confidential

F. The slave asserts SCmdAccept after 2 cycles, so the request accept latency
is 2. It also drives DVA on SResp and the read data on SData.

G. The master sees that SCmdAccept is asserted, ending the request phase.
It also sees that SResp is now DVA and captures the data.

10.8 Pipelined Request and Response
Figure 28 shows three read transfers using pipelined request and response
semantics. In each case, the request is accepted immediately, while the
response is returned in the same or a later cycle.

Figure 28 Pipelined Request and Response

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The slave asserts SCmdAccept, for a request accept
latency of 0.

B. Since SCmdAccept is asserted, the request phase ends. The slave
responds to the first request with DVA on SResp and valid data on SData.

C. The master launches a read request and the slave asserts SCmdAccept.
The master sees that SResp is DVA and captures the read data from
SData. The slave drives NULL on SResp, completing the first response
phase.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

NULL

A1

RD1 IDLE

A3

RD3

DVA3 NULL

D3

IDLE

DVA1

D1

A2

RD2

DVA2

D2

NULL

2 3 4 5 6 71

R
eq

ue
st

P

h
as

e
R

es
po

ns
e

P

h
as

e

B C D E F GA

NULL

Timing Diagrams 169

OCP-IP Confidential

D. The master sees that SCmdAccept is asserted, so it can launch a third
read even though the response to the previous read has not been received.
The slave captures the address of the second read and begins driving DVA
on SResp and the read data on SData.

E. Since SCmdAccept is asserted, the third request ends. The master sees
that the slave has produced a valid response to the second read and
captures the data from SData. The request-to-response latency for this
transfer is 1.

F. The slave has the data for the third read, so it drives DVA on SResp and
the data on SData.

G. The master captures the data for the third read from SData. The request-
to-response latency for this transfer is 2.

10.9 Response Accept
Figure 29 shows examples of the response accept extension used with two
read transfers. An additional field, MRespAccept, is added to the response
phase. This signal may be used by the master to flow-control the response
phase.

Figure 29 Response Accept

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

NULL

A1

RD1 IDLE

NULL

IDLE

A2

RD2

MRespAccept

D1

DVA1 DVA2

D2

R
eq

ue
st

P

h
a

se
R

e
sp

o
n

se

P
h

a
se

2 3 4 5 6 71

A B C D E F G

NULL

170 Open Core Protocol Specification

OCP-IP Confidential

Sequence
A. The master starts a read request by driving RD on MCmd and a valid

address on MAddr. The slave asserts SCmdAccept immediately, and it
drives DVA on SResp and the read data on SData as soon as it sees the
read request. The master is not ready to receive the response for the
request it just issued, so it deasserts MRespAccept.

B. Since SCmdAccept is asserted, the request phase ends. The master
continues to deassert MRespAccept, however. The slave holds SResp and
SData steady.

C. The master starts a second read request and is ready for the response
from its first request, so it asserts MRespAccept. This corresponds to a
response accept latency of 2.

D. Since SCmdAccept is asserted, the request phase ends. The master
captures the data for the first read from the slave. Since MRespAccept is
asserted, the response phase ends. The slave is not ready to respond to
the second read, so it drives NULL on SResp.

E. The slave responds to the second read by driving DVA on SResp and the
read data on SData. The master is not ready for the response, however, so
it deasserts RespAccept.

F. The master asserts MRespAccept, for a response accept latency of 1.

G. The master captures the data for the second read from the slave. Since
MRespAccept is asserted, the response phase ends.

10.10 Incrementing Precise Burst Read
Figure 30 illustrates a burst of four 32-bit words, incrementing precise burst
read, with burst framing information (MReqLast/SRespLast). Since the burst
is precise, the MBurstLength signal is constant during the whole burst.
MReqLast flags the last request of the burst, and SRespLast flags the last
response of the burst.

Timing Diagrams 171

OCP-IP Confidential

Figure 30 Incrementing Precise Burst Read

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts
MBurstPrecise. MBurstLength, MBurstSeq and MBurstPrecise must be
kept constant during the burst. MReqLast must be deasserted until the
last request in the burst. The slave is ready to accept any request, so it
asserts SCmdAccept.

B. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The slave captures
the address of the first request and keeps SCmdAccept asserted.

C. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The slave captures
the address of the second request and keeps SCmdAccept asserted. The
slave responds to the first read by driving DVA on SResp and the read data
on SData.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

0x01

RD1 RD2

0x83 0xC4

RD4

DVA4 NULL

D4

IDLE

DVA1

D1

0x42

RD3

DVA2

D2 D3

DVA3

MBurstLength 4 4 44

NULL

R
eq

u
e

st

P
h

a
se

R
es

po
n

se

P
h

as
e

2 3 4 5 6 71

MBurstSeq INCR INCR INCRINCR

MBurstPrecise

MReqLast

SRespLast

D E F GA B C

172 Open Core Protocol Specification

OCP-IP Confidential

D. The master issues the last request of the burst, incrementing MAddr and
asserting MReqLast. The master also captures the data for the first read
from the slave. The slave responds to the second request, and captures
the address of the third request.

E. The master captures the data for the second read from the slave. The slave
responds to the third request and captures the address of the fourth.

F. The master captures the data for the third read from the slave. The slave
responds to the fourth request and asserts SRespLast to indicate the last
response of the burst.

G. The master captures the data for the last read from the slave, ending the
last response phase.

10.11 Incrementing Imprecise Burst Read
Figure 31 illustrates a burst of four 32-bit words, incrementing imprecise
burst read, with burst framing information (MReqLast/SRespLast). MReqLast
flags the last request of the burst and SRespLast flags the last response of the
burst. The last burst request is signaled primarily by driving the value 1 on
MBurstLength.

The burst length sequence (3,3,2,1) is chosen arbitrarily for illustration
purposes. The protocol requires that the burst length of the last transfer of
the burst be equal to one.

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address

on MAddr, three on MBurstLength, INCR on MBurstSeq, and asserts
MBurstPrecise. The burst length is the best guess of the master at this
point. MBurstSeq and MBurstPrecise are kept constant during the burst.
MReqLast must be deasserted until the last request in the burst. The slave
is ready to accept any request, so it asserts SCmdAccept.

B. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The MBurstLength
is set to three, since the master knows the burst is longer than it originally
thought. The slave captures the address of the first request and keeps
SCmdAccept asserted.

C. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The MBurstLength
is set to two. The slave captures the address of the second request, and
keeps SCmdAccept asserted. The slave responds to the first read by
driving DVA on SResp and the read data on SData.

Timing Diagrams 173

OCP-IP Confidential

Figure 31 Incrementing Imprecise Burst Read

D. The master issues the last request of the burst, incrementing MAddr,
setting MBurstLength to one, and asserting MReqLast. The master also
captures the data for the first read from the slave. The slave responds to
the second request and captures the address of the last request.

E. The master captures the data for the second read from the slave. The slave
responds to the third request.

F. The master captures the data for the third read from the slave. The slave
responds to the fourth request and asserts SRespLast to indicate the last
response of the burst.

G. The master captures the data for the last read from the slave, ending the
last response phase.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

0x01

RD1 RD2

0x83 0xC4

RD4

DVA4 NULL

D4

IDLE

DVA1

D1

0x42

RD3

DVA2

D2 D3

DVA3

MBurstLength 3 2 13

NULL

R
eq

u
es

t
P

h
as

e
R

es
po

ns
e

P
ha

se

2 3 4 5 6 71

MBurstSeq INCR INCR INCRINCR

MBurstPrecise

MReqLast

SRespLast

D E F GB CA

174 Open Core Protocol Specification

OCP-IP Confidential

10.12 Wrapping Burst Read
Figure 32 illustrates a burst of four 32-bit words, wrapping burst read, with
optional burst framing information (MReqLast/SRespLast). MReqLast flags
the last request of the burst and SRespLast flags the last response of the
burst. As a wrapping burst is precise, the MBurstLength signal is constant
during the whole burst, and must be power of two. The wrapping burst
address must be aligned to boundary MBurstLength times the OCP word size
in bytes.

Figure 32 Wrapping Burst Read

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address

on MAddr, four on MBurstLength, WRAP on MBurstSeq, and asserts
MBurstPrecise. MBurstLength, MBurstSeq, and MBurstPrecise must be
kept constant during the burst. MReqLast must be deasserted until the
last request in the burst. The slave is ready to accept any request, so it
asserts SCmdAccept.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

0x81

RD1 RD2

0x03 0x44

RD4

DVA4 NULL

D4

IDLE

DVA1

D1

0xC2

RD3

DVA2

D2 D3

DVA3

MBurstLength 4 4 44

NULL

R
e

q
u

e
st

P

h
a

se
R

es
p

o
n

se

P
h

a
se

2 3 4 5 6 71

MBurstSeq WRAP WRAP WRAPWRAP

MBurstPrecise

MReqLast

SRespLast

D E F GA B C

Timing Diagrams 175

OCP-IP Confidential

B. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The slave captures
the address of the first request, and keeps SCmdAccept asserted.

C. If incremented, the next address would be 0x10. Since the first transfer
was from address 0x8 and the burst length is 4, the addresses must be
between 0 and 0xF. The master wraps the MAddr to 0, which is the closest
alignment boundary. (If the first address were 0x14, the address would
wrap to 0x10, rather than 0x20.) The slave captures the address of the
second request, and keeps SCmdAccept asserted. The slave responds to
the first read by driving DVA on SResp and valid data on SData.

D. The master issues the last request of the burst, incrementing MAddr and
asserting MReqLast. The master also captures the data for the first read
from the slave. The slave responds to the second request and captures the
address of the third.

E. The master captures the data for the second read from the slave. The slave
responds to the third request and captures the address of the fourth.

F. The master captures the data for the third read from the slave. The slave
responds to the fourth request and asserts SRespLast to indicate the last
response of the burst.

G. The master captures the data for the last read from the slave, ending the
last response phase.

10.13 Incrementing Burst Read with IDLE Request
Cycle
Figure 33 illustrates a burst of four 32-bit words, incrementing precise burst
read, with an IDLE cycle inserted in the middle. The master may insert IDLE
requests in any burst type.

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts
MBurstPrecise. MBurstLength, MBurstSeq, and MBurstPrecise must be
kept constant during the burst. MReqLast must be deasserted until the
last request in the burst. The slave is ready to accept any request, so it
asserts SCmdAccept.

B. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The slave captures
the address of the first request and keeps SCmdAccept asserted.

C. The master inserts an IDLE request in the middle of the burst. The slave
does not have to deassert SCmdAccept, anticipating more burst requests
to come. The slave captures the address of the second request. The slave
responds to the first read by driving DVA on SResp and the read data on
SData. The slave must keep SRespLast deasserted until the last response.

176 Open Core Protocol Specification

OCP-IP Confidential

Figure 33 Incrementing Precise Burst Read with IDLE Cycle

D. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The master also
captures the data for the first read from the slave. The slave responds to
the second read by driving DVA on SResp and the read data on SData. If
it has the data available for response, the slave does not have to insert a
NULL response cycle.

E. The master issues the last request of the burst, incrementing MAddr, and
asserting MReqLast. The master also captures the data for the second
read from the slave. The slave captures the address of the third request
and responds to the third request.

F. The master captures the data for the third read from the slave. The slave
captures the address of the fourth request. The slave responds to the
fourth request, and asserts SRespLast to indicate the end of the slave
burst.

G. The master captures the data for the last read from the slave, ending the
last response phase.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

0x01

RD1 RD2

0x83 0xC4

RD4

DVA4 NULL

D4

IDLE

DVA1

D1

0x42

RD3

DVA2

D2 D3

DVA3

MBurstLength 4 4 44

NULL

R
eq

u
es

t
P

ha
se

R
es

po
n

se

P
ha

se

MBurstSeq INCR INCR INCRINCR

MBurstPrecise

MReqLast

SRespLast

G

IDLE

E F

1 2 3 4 5 6 7

DB CA

Timing Diagrams 177

OCP-IP Confidential

10.14 Incrementing Burst Read with NULL
Response Cycle
Figure 34 illustrates a burst of four 32-bit words, incrementing precise burst
read, with a NULL response cycle (wait state) inserted by the slave. Null cycles
can be inserted into any burst type by the slave.

Figure 34 Incrementing Burst Read with Null Cycle

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts
MBurstPrecise. MBurstLength, MBurstSeq and MBurstPrecise must be
kept constant during the burst. MReqLast must be deasserted until the
last request in the burst. The slave is ready to accept any request, so it
asserts SCmdAccept.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

0x01

RD1 RD2

0x83 0xC4

RD4

DVA4 NULL

D4

IDLE

DVA1

D1

0x42

RD3

DVA3

D3

NULL

MBurstLength 4 4 44

NULL

R
e

qu
es

t
P

h
as

e
R

e
sp

o
ns

e
P

ha
se

MBurstSeq INCR INCR INCRINCR

MBurstPrecise

MReqLast

SRespLast

C D E

1 2 3 4 5 6 7

DVA2

D2

GFA B

178 Open Core Protocol Specification

OCP-IP Confidential

B. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The slave captures
the address of the first request and keeps SCmdAccept asserted. The slave
responds to the first request by driving DVA on SResp and the read data
on SData. The slave must keep SRespLast deasserted until the last
response.

C. The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The master also
captures the data for the first read from the slave. The slave captures the
address of the second request and keeps SCmdAccept asserted. The slave
responds to the second request.

D. The master issues the last request of the burst, incrementing MAddr and
asserting MReqLast. The master also captures the data for the second
read from the slave. The slave captures the address of the third request
and keeps SCmdAccept asserted. The slave responds to the third request.

E. The master captures the data for the third read from the slave. The slave
captures the address of the fourth request and keeps SCmdAccept
asserted. The slave cannot respond to the fourth request, so it inserts
NULL to SResp.

F. The slave responds to the fourth request and asserts SRespLast to
indicate the last response of the burst.

G. The master captures the data for the last read from the slave, ending the
last response phase.

10.15 Single Request Burst Read
Figure 35 illustrates a single request, multiple data burst read. The master
provides the burst length, start address, and burst sequence, and identifies
the burst as a single request with the MBurstSingleReq signal. A single
request burst is always precise.

Sequence
A. The master starts a read request by driving RD on MCmd, a valid address

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts
MBurstPrecise, and MBurstSingleReq. The MBurstPrecise and
MBurstSingleReq signals would normally be tied off to logic 1, which is not
supplied by the master. The slave is ready to accept any request, so it
asserts SCmdAccept.

B. The master completes the request cycles. The slave captures the address
of the request. The slave responds to the request by driving DVA on SResp
and the first response data on SData. The slave must keep SRespLast
deasserted until the last response.

Timing Diagrams 179

OCP-IP Confidential

Figure 35 Single Request Burst Read

C. The master captures the first response data. The slave issues the second
response.

D. The master captures the second response data. The slave issues the third
response.

E. The master captures the third response data. The slave issues the fourth
response, and asserts SRespLast to indicate the last response of the
burst.

F. The master captures the last response data.

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

0x01

RD1

DVA4 NULL

IDLE

DVA1

D1

DVA3

D3

MBurstLength 4

NULL

R
eq

ue
st

P

ha
se

R
es

po
n

se

P
ha

se

MBurstSeq INCR

MBurstSingleReq

MBurstPrecise

SRespLast

1 2 3 4 5 6

DVA2

D2

FC D E

D4

A B

180 Open Core Protocol Specification

OCP-IP Confidential

10.16 Datahandshake Extension
Figure 36 shows three writes with no responses using the datahandshake
extension. This extension adds the datahandshake phase, which is
completely independent of the request and response phases. Two signals,
MDataValid and SDataAccept, are added, and MData is moved from the
request phase to the datahandshake phase.

Figure 36 Datahandshake Extension

Sequence
A. The master starts a write request by driving WR on MCmd and a valid

address on MAddr. It does not yet have the write data, however, so it
deasserts MDataValid. The slave asserts SCmdAccept. It does not need to
assert or deassert SDataAccept yet, because MDataValid is still
deasserted.

B. The slave captures the write address from the master. The master is now
ready to transfer the write data, so it asserts MDataValid and drives the
data on MData, starting the datahandshake phase. The slave is ready to
accept the data immediately, so it asserts SDataAccept. This corresponds
to a data accept latency of 0.

C. The master deasserts MDataValid since it has no more data to transfer.
(Like MCmd and SResp, MDataValid must always be in a valid, specified
state.) The slave captures the write data from MData, completing the
transfer. The master starts a second write request by driving WR on
MCmd and a valid address on MAddr.

Clk

MAddr

MCmd

MData

SCmdAccept

IDLE

A1

WR1 IDLE

A3

WR3 IDLE

D2

A2

SDataAccept

MDataValid

WR2

D1 D3

R
eq

ue
st

P

h
a

se

2 3 4 5 6 71

A B C D E F G

D

a
ta

H
an

ds
ha

ke

P
h

a
se

Timing Diagrams 181

OCP-IP Confidential

D. Since SCmdAccept is asserted, the master immediately starts a third write
request. It also asserts MDataValid and presents the write data of the
second write on MData. The slave is not ready for the data yet, so it
deasserts SDataAccept.

E. The master sees that SDataAccept is deasserted, so it holds the values of
MDataValid and MData. The slave asserts SDataAccept, for a data accept
latency of 1.

F. Since SDataAccept is asserted, the datahandshake phase ends. The
master is ready to deliver the write data for the third request, so it keeps
MDataValid asserted and presents the data on MData. The slave captures
the data for the second write from MData, and keeps SDataAccept
asserted, for a data accept latency of 0 for the third write.

G. Since SDataAccept is asserted, the datahandshake phase ends. The slave
captures the data for the third write from MData.

10.17 Burst Write with Combined Request and
Data
Figure 37 illustrates a single request, multiple data burst write, with
datahandshake signaling. Through the request handshake, the master
provides the burst length, the start address, and burst sequence, and
identifies the burst as a single request with the MBurstSingleReq signal.

The write data is transferred with a datahandshake extension (see Figure 36).
The parameter reqdata_together forces the first data phase to start with the
request, making the design of a slave state machine easier, since it only needs
to track one request handshake during the burst. Without this parameter, the
MDataValid signal could be asserted any time after the first request. If
datahandshake is not used, a single-request write burst is not possible;
instead a request is required for each burst word.

Sequence
A. The master starts a write request by driving WR on MCmd, a valid address

on MAddr, INCR on MBurstSeq, five on MBurstLength, and asserts the
MBurstPrecise and MBurstSingleReq signals. The master also asserts the
MDataValid signal, drives valid data on MData, and deasserts MDataLast.
The MDataLast signal must remain deasserted until the last data cycle.

B. Since it has not received SCmdAccept or SDataAccept, the master holds
the request phase signals, keeps MDataValid asserted, and MData steady.
The slave asserts SCmdAccept and SDataAccept to indicate it is ready to
accept the request and the first data phase.

C. The master completes the request phase, asserts MDataValid and drives
new data to MData. The slave captures the initial data and keeps
SDataAccept asserted to indicate it is ready to accept more data.

182 Open Core Protocol Specification

OCP-IP Confidential

D. The master asserts MDataValid and drives new data to MData. The slave
captures the second data phase and keeps SDataAccept asserted to
indicate it is ready to accept more data.

Figure 37 Burst Write with Combined Request and Data

E. The master asserts MDataValid and drives new data to MData. The slave
captures the third data phase and keeps SDataAccept asserted to indicate
it is ready to accept more data.

F. The master asserts MDataValid, drives new data to MData, and asserts
MDataLast to identify the last data in the burst. The slave captures the
fourth data phase and keeps SDataAccept asserted to indicate it is ready
to accept more data.

G. The slave captures the last data phase and address.

Clk

MAddr

MCmd

MData

SCmdAccept

IDLE

A1

WR1 IDLE

D2

SDataAccept

MDataValid

D1 D3

R
eq

ue
st

P

ha
se

2 3 4 5 6 71

D
at

a
H

a
nd

sh
ak

e
P

ha
se

D4 D5

MBurstLength 5

MBurstSingleReq

MBurstPrecise

MBurstSeq INCR

MDataLast

SResp DVA NULLNULL

R
es

po
ns

e
P

ha
se

C E F

8

H

SRespLast

GBA D

Timing Diagrams 183

OCP-IP Confidential

This example also shows how the slave issues SResp at the end of a burst
(when the optional write response is configured in the interface). For single
request / multiple data bursts there is only a single response, and it can be
issued after the last data has been detected by the slave. The SResp is NULL
until point G. in the diagram. The slave may use code DVA to indicate a
successful burst, or ERR for an unsuccessful one.

10.18 2-Dimensional Block Read
Figure 38 illustrates two read bursts with a 2-dimensional block burst
address sequence and optional response phase end-of-row (SRespRowLast)
and end-of-burst (SRespLast) framing information. The first transaction is a
single-request, multiple-data style block burst of two rows by two words per
row, with an address stride of S1 bytes. The second transaction is a multiple-
request, multiple-data style block burst of two rows by one word per row, with
an address stride of S2 bytes. Block bursts are always precise.

184 Open Core Protocol Specification

OCP-IP Confidential

Figure 38 2 Dimensional Block Read

Sequence
A. The master begins the first block read by asserting RD on MCmd, a valid

address (A1) on MAddr, BLCK on MBurstSeq, 2 words per row on
MBurstLength, 2 rows on MBlockHeight, and the row-to-row spacing (S1)
on MBlockStride. The master identifies this as the only request for the
read burst by asserting MBurstSingleReq. The slave asserts SCmdAccept
signifying that it is ready to accept the request.

B. The rising edge of the OCP clock ends the first request phase as the slave
captures the request. The master starts the second block read at address
A2, with only a single word per row, and requests 2 rows at a spacing of
S2. The master deasserts MBurstSingleReq, indicating that there will be
one request phase for each data phase. The slave keeps SCmdAccept
asserted. The slave also returns a response to the original block burst,

Clk

MAddr

MCmd

MBlockStride

SCmdAccept

SResp

SData

IDLE

A1 A2

RD1 IDLE

R
eq

ue
st

P

h
as

e
R

es
po

ns
e

P

ha
se

A B C D E

NULL

2 3 4 5 6 71 8

RD2 RD2

F G H

DVA1 NULLDVA1 DVA2 DVA2

D1 D2 D2

MBurstSeq BLCK BLCK BLCK

MBurstLength 2 1

DVA1

D1D1

MBlockHeight 2 2

MBurstSingleReq

S1 S2 S2

A2+S2

1

2

SRespRowLast

D1

DVA1

SRespLast

Timing Diagrams 185

OCP-IP Confidential

including the first word of data. Since there are more data words
remaining in the first row of this burst, the slave deasserts SRespRowLast
and SRespLast.

C. The slave captures the first request for the second transaction, and keeps
SCmdAccept asserted for the next cycle. The master presents the second
(and last) request in the second block burst. The master sets MAddr to the
starting address for the second row (A2 + S2). The master accepts the first
response for the first burst. The slave returns the second data word for
the first burst, which ends the first row, so the slave also asserts
SRespRowLast.

D. The slave accepts the second request for the second transaction. The
master accepts the second response for the first burst. The slave returns
the third data word for the first burst, which is the first word of the second
row, so the slave deasserts SRespRowLast.

E. The master accepts the third response for the first burst. The slave
returns the fourth (and final) data word for the first burst, and asserts
SRespLast and SRespRowLast.

F. The master accepts the last response for the first burst. The slave returns
the first data word for the second burst, which ends the first row, so the
slave keeps SRespRowLast asserted and deasserts SRespLast.

G. The master accepts the first response for the second burst. The slave
returns the second (and final) data word for the second burst, and asserts
SRespLast.

H. The master accepts the last response for the second burst.

10.19 Tagged Reads
Figure 39 illustrates out-of-order completion of read transfers using the OCP
tag extension. The tag IDs, MTagID and STagID, have been added, along with
the MTagInOrder and STagInOrder signals. Writes are configured to have
responses. There is significant reordering of responses, together with in-order
responses forced by both MTagInOrder and address overlap.

186 Open Core Protocol Specification

OCP-IP Confidential

Figure 39 Tagged Reads

Sequence
A. The master starts the first read request, driving a RD on MCmd and a

valid address on MAddr. The master drives a 0 on MTagID, indicating that
this read request is for tag 0. The master also deasserts MTagInOrder,
allowing the slave to reorder the responses.

B. Since SCmdAccept is sampled asserted, the request phase ends with a
request accept latency of 0. The master begins a write request to a second
address, providing the write data on MData. The master asserts
MTagInOrder, indicating that the slave may not reorder this request with
respect to other in-order transactions and that MTagID is a “don’t care.”

C. When SCmdAccept is sampled asserted, the second request phase ends.
The master launches a third request, which is a read to an address that
matches the previous write. MTagInOrder is deasserted, enabling
reordering, and the assigned tag value is 1.

D. Since SCmdAccept is sampled asserted, the third request phase ends. The
master launches a fourth request, which is a read. MTagInOrder is
asserted, forcing ordering with respect to the earlier in-order write. The

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

A1 A2

RD1 WR2 IDLE

A3 = A2

RD3

R
eq

u
es

t
P

ha
se

R
es

po
n

se

P
ha

se

A B C D E

MTagID IDLE 01 13

STagID

MTagInOrder

NULL

2 3 4 5 6 71 8

RD4

A4

D2

F G H

STagInOrder

DVA2 NULLDVA4 DVA3 DVA1

0113

D4 D3 D1

Timing Diagrams 187

OCP-IP Confidential

slave responds to the second request (the in-order write presented at B)
by driving DVA on SResp. Since the transaction is in-order, STagInOrder
is asserted and STagID is a “don’t care.”

E. SCmdAccept is sampled asserted so the fourth request phase ends. Since
the response phase is sampled asserted, the response to the second
request ends with a request-to-response latency of 2 cycles. The slave
responds to the fourth request (D) by driving DVA on SResp and read data
on SData. STagInOrder is asserted to match the associated request. This
response was reordered with respect to the first (A) and third (C) requests,
which allow reordering.

F. The response phase is sampled asserted so the response to the fourth
request ends with a request-to-response latency of 1 cycle. The slave
responds to the third request (C) by driving DVA on SResp, read data on
SData, and a 1 on STagID. STagInOrder is deasserted, indicating that
reordering is allowed. This response is reordered with respect to the first
request (A), but must occur after the second request (B), which has a
matching address.

G. Since the response phase is sampled asserted, the response to the third
request ends with a request-to-response latency of 3 cycles. The slave
responds to the first request (A) by driving DVA on SResp, read data on
SData, and a 0 on STagID. STagInOrder is deasserted.

H. When the response phase is sampled asserted, the response to the first
request ends with a request-to-response latency of 6 cycles.

10.20 Tagged Bursts
Figure 40 illustrates out-of-order completion of packing single-request/
multiple data read transactions using the OCP tag extension. With the
burstprecise parameter set to 0, and the MBurstPrecise signal tied-off to
the default, all bursts are precise. The burstsinglereq parameter is 0, and
the MBurstSingleReq signal is tied-off to 1 (not the default), so all requests
have a single request phase.The taginorder parameter is set to 0, allowing
all transactions to be reordered, subject to the tagging rules. The
tag_interleave_size parameter is set to 2, so packing bursts must not
interleave at a granularity finer than 2 words. Note that the first two words of
the second read return before the only word associated with the first read.

188 Open Core Protocol Specification

OCP-IP Confidential

Figure 40 Tagged Burst Transactions

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The request is for a single-word incrementing burst,
as driven on MBurstLength and MBurstSeq, respectively. The master also
drives a 0 on MTagID, indicating that this read request is for tag 0.

B. Once SCmdAccept is sampled asserted, the request phase ends with a
request accept latency of 0. The master begins a four-word read request
to a second, non-conflicting address, on tag 1.

C. SCmdAccept is sampled asserted ending the second request phase. The
slave responds to the second request by driving DVA on SResp together
with 1 on STagID. The slave provides the first data word from the burst on
SData.

D. When the response phase is sampled asserted, the first response to the
second request ends with a request-to-response latency of 1 cycle. The
slave provides the second word of read data for tag 1 on SData, together

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

A1 A2

RD1 IDLE

R
eq

u
e

st

P
h

as
e

R
es

p
o

ns
e

P

h
as

e

A B C D E

MTagID IDLE 01 12

STagID

NULL

2 3 4 5 6 71 8

RD2

F G H

DVA2 NULLDVA1 DVA2 DVA2

0112

D2 D2 D2

MBurstSeq INCR INCR

MBurstLength 1 4

12 12 12

DVA2

D1D2

Timing Diagrams 189

OCP-IP Confidential

with a DVA response. Because tag_interleave_size is 2 and the read
burst sequence is packing, the slave was forced to return the second word
of tag 1’s data before responding to tag 0.

E. The response phase is sampled asserted, terminating the second response
to the second request with a request-to-response latency of 2 cycles. The
slave responds to the first request by providing the read data for tag 0
together with a DVA response.

F. When the response phase is sampled asserted, the response to the first
request ends with a request-to-response latency of 4 cycles. Since the
burst length of the first request is 1, the transaction on tag 0 is complete.
The slave provides the third word of read data for tag 1 on SData, together
with a DVA response.

G. The response phase is sampled asserted so the third response to the
second request ends with a request-to-response latency of 4 cycles. The
slave provides the fourth word of read data for tag 1 on SData, together
with a DVA response.

H. When the response phase is sampled asserted, the fourth and final
response to the second request ends with a request-to-response latency of
5 cycles.

10.21 Threaded Read
Figure 41 illustrates out-of-order completion of read transfers using the OCP
thread extension. This diagram is developed from Figure 28 on page 168. The
thread IDs, MThreadID and SThreadID, have been added, and the order of two
of the responses has been changed.

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The master also drives a 0 on MThreadID, indicating
that this read request is for thread 0. The slave asserts SCmdAccept, for
a request accept latency of 0. When the slave sees the read command, it
responds with DVA on SResp and valid data on SData. The slave also
drives a 0 on SThreadID, indicating that this response is for thread 0.

B. Since SCmdAccept is asserted, the request phase ends. The master sees
that SResp is DVA and captures the read data from SData. Because the
request was accepted and the response was presented in the same cycle,
the request-to-response latency is 0.

C. The master launches a new read request, but this time it is for thread 1.
The slave asserts SCmdAccept, however, it is not ready to respond.

190 Open Core Protocol Specification

OCP-IP Confidential

Figure 41 Threaded Read

D. Since SCmdAccept is asserted, the master can launch another read
request. This request is for thread 0, so MThreadID is switched back to 0.
The slave captures the address of the second read for thread 1, but it
begins driving DVA on SResp, data on SData, and a 0 on SThreadID. This
means that it is responding to the third read, before the second read.

E. Since SCmdAccept is asserted, the third request ends. The master sees
that the slave has produced a valid response to the third read and
captures the data from SData. The request-to-response latency for this
transfer is 0.

F. The slave has the data for the second read, so it drives DVA on SResp,
data on SData, and a 1 on SThreadID.

G. The master captures the data for the second read from SData. The
request-to-response latency for this transfer is 3.

10.22 Threaded Read with Thread Busy
Figure 42 illustrates the out-of-order completion of read transfers using the
OCP thread extension. The change to Figure 41 is the addition of thread busy
signals. In this example, the thread busy is only a hint, since the

Clk

MAddr

MCmd

MData

SCmdAccept

SResp

SData

IDLE

NULL

A1

RD1 IDLE

NULL

A3

RD3

DVA2 NULL

D2

IDLE

DVA1

D1

A2

RD2

DVA3

D3

NULL

MThreadID 01 0312

SThreadID 1201 03

A B C D E F G

2 3 4 5 6 71
R

eq
ue

st
P

ha
se

R
es

p
on

se
P

h
a

se

Timing Diagrams 191

OCP-IP Confidential

sthreadbusy_exact parameter is not set. In this case the master may ignore
the SThreadBusy signals, and the slave does not have to accept requests even
when it is not busy.

When thread busy is treated as a hint and a request or thread is not accepted,
the interface may block for all threads. Blocking of this type can be avoided
by treating thread busy as an exact signal using the sthreadbusy_exact
parameter. For an example, see Section 10.23.

This example shows only the request part of the read transfers. The response
part can use a similar mechanism for thread busy.

Figure 42 Threaded Read with Thread Busy

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The master also drives a 0 on MThreadID, associating
this read request with thread 0. The slave asserts SCmdAccept for a
request accept latency of 0.

B. Since SCmdAccept is asserted, the request phase ends.

C. The slave asserts SThreadBusy[1] since it is not ready to accept requests
on thread 1. The master ignores the hint, and launches a new read
request for thread 1. The master can issue a request even though the slave
asserts SThreadbusy (see transfer 2). All threads are now blocked.

Clk

MAddr

MCmd

MData

SCmdAccept

IDLE

A1

RD1 IDLE IDLE

A2

RD2

MThreadID 01 12

A B

2 3 4 5 61

R
eq

ue
st

P

ha
se

SThreadBusy[1]

SThreadBusy[0]

A3

RD3

02

7

GC D FE

192 Open Core Protocol Specification

OCP-IP Confidential

D. The slave deasserts SThreadBusy[1] and asserts SCmdAccept to complete
the request for thread 1.

E. Since SCmdAccept is asserted, the second request ends. The master
issues a new request to thread 0. The slave is not ready to accept the
request, and indicates this condition by keeping SCmdAccept deasserted.
It chooses not to assert SThreadBusy[0]. The slave does not have to assert
SCmdAccept for a request, even if it did not assert SThreadbusy (see
transfer 3).

F. The slave asserts the SCmdAccept to complete the request on thread 0.

G. The master captures the SCmdAccept to complete the requests.

10.23 Threaded Read with Thread Busy Exact
Figure 43 illustrates the out-of-order completion of read transfers using the
OCP thread extension. Because the sthreadbusy_exact parameter is set,
the master may not ignore the SThreadBusy signals. The master is using
SThreadBusy to control thread arbitration, so it cannot present a command
on Thread 1 as the slave asserts SThreadbusy[1].

The diagram only shows the request part of the read transfers. The response
part can use a similar mechanism for thread busy.

Figure 43 Threaded Read with Thread Busy Exact

Clk

MAddr

MCmd

MData

IDLE

A1

RD1 IDLE

A3

RD3 IDLE

A2

RD2

MThreadID 01 0312

A B D E

2 3 4 5 61

R
e

qu
e

st

P
h

a
se

SThreadBusy[1]

SThreadBusy[0]
C

Timing Diagrams 193

OCP-IP Confidential

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The master also drives a 0 on MThreadID, indicating
that this read request is for thread 0.

B. Since SThreadBusy[0] is not asserted, the request phase ends. The slave
samples the data and address and asserts SThreadBusy[1] since it is
unready to accept requests on thread 1. The master is prevented from
sending a request on thread 1, but it can send a request on another
thread.

C. The slave deasserts SThreadBusy[1] and the master can send the request
on thread 1.

D. Since SThreadBusy[1] is not asserted, the request phase ends and the
slave must sample the data and address. The master can send a request
on thread 0 (or thread 1).

E. Since SThreadBusy[0] is not asserted, the request phase ends and the
slave must sample the data and address.

10.24 Threaded Read with Pipelined Thread Busy
Figure 44 illustrates a set of threaded read requests on an interface where the
sthreadbusy_pipelined parameter is set. Because pipelining a phase’s
ThreadBusy signals also forces exact flow control (sthreadbusy_exact must
be set), the master must obey the SThreadBusy signals.

In this example, the master asserts a single read request phase on thread 0,
and multiple requests on thread 1. The slave’s SThreadBusy assertions
control when the master may assert request phases on each thread. The
diagram only shows the request part of the read transfers. The response part
uses a similar mechanism for thread busy.

Sequence
A. Because both SThreadBusy signals were sampled asserted on this rising

edge of the OCP clock, the master may not present requests on either
thread. The slave indicates its readiness to accept a request on thread 0
in the next cycle by de-asserting SThreadBusy[0].

B. After sampling SThreadBusy[0] deasserted, the master asserts the first
read request on thread 0 by driving a 0 on MThreadID, RD on MCmd and
a valid address on MAddr. The slave indicates that it can accept requests
on both threads in the next cycle by de-asserting SThreadBusy[1] and
leaving SThreadBusy[0] deasserted.

194 Open Core Protocol Specification

OCP-IP Confidential

Figure 44 Threaded Read with Pipelined Thread Busy

C. The master’s first request is sampled by the slave and the request phase
ends. The master samples SThreadBusy[1] deasserted and uses the
information to assert a second read request, this time on thread 1. The
slave asserts SThreadBusy[1] since it cannot guarantee that it can accept
another request on thread 1 in the next cycle.

D. The master’s second request is sampled by the slave and the request
phase ends. The master samples SThreadBusy[1] asserted, and is forced
to drive MCmd to IDLE, since it has no more requests for thread 0 and the
slave cannot accept a request on thread 1. The slave signals that it will be
ready to accept requests on both threads in the next cycle by de-asserting
SThreadBusy[1] and leaving SThreadBusy[0] deasserted.

E. The master samples SThreadBusy[1] deasserted, and uses this
information to assert a third read request on thread 1. The slave asserts
SThreadBusy[1] since it cannot guarantee that it can accept another
request on thread 1 in the next cycle.

F. The master’s third request is sampled by the slave and the request phase
ends. The master samples SThreadBusy[1] asserted, and is forced to drive
MCmd to IDLE.

Clk

MAddr

MCmd

MData

A1 A2

RD1 RD2

A3

RD3IDLE

MThreadID 01 12 13

A B D

2 3 4 5 61

R
eq

ue
st

P

ha
se

SThreadBusy[1]

SThreadBusy[0]

C

IDLE

FE

Timing Diagrams 195

OCP-IP Confidential

10.25 Reset
Figure 45 shows the timing of the reset sequence with MReset_n driven from
the master to the slave. MReset_n must be asserted for at least 16 cycles of
the OCP clock to ensure that the master and slave reach a consistent internal
state. Because the interface does not include the EnableClk signal, the OCP
clock is simply Clk.

Figure 45 Reset Sequence

Sequence
A. MReset_n is sampled active on this clock edge. Master and slave now

ignore all other OCP signals, except for the connection signals, if present.
In the first cycle a response to a previously issued request is presented by
the slave and ready to be received by the master. Since the master is
asserting MReset_n, the response is not received. The associated
transaction is terminated by OCP reset so the response is withdrawn by
the slave.

B. MReset_n is asserted for at least 16 Clk cycles.

C. A new transfer may begin on the same clock edge that MReset_n is
sampled deasserted.

10.26 Reset with Clock Enable
Figure 46 shows the timing of the reset signal with the EnableClk signal
enabled on the interface. In this figure, the EnableClk signal is asserted on
every other rising edge of Clk, delivering an OCP clock that is one-half the
frequency of Clk. The MReset_n signal is driven from the master to the slave.

 VALID

MCmd

SCmdAccept

SResp

BA

MReset_n

Clk

2 3 15 161

 VALID

14

 VALID
 CMD

C

17

196 Open Core Protocol Specification

OCP-IP Confidential

However, the presence of EnableClk means that MReset_n must be asserted
for 16 cycles of the OCP clock (that is, when the rising edge of Clk samples
EnableClk asserted), which will require 31 cycles of Clk.

Figure 46 Reset with Clock Enable

Sequence
A. MReset_n and EnableClk are sampled active on this clock edge. Master

and slave now ignore all other OCP signals, except for the connection
signals, if present.

B. MReset_n is asserted for at least 16 Clk cycles with EnableClk sampled
high.

C. A new transfer may begin on the same clock edge that MReset_n is
sampled deasserted and EnableClk sampled high.

10.27 Basic Read with Clock Enable
Figure 47 illustrates a simple read transaction of length one with the
EnableClk signal enabled on the interface. In this figure, the EnableClk signal
is asserted on every other rising edge of Clk, delivering an OCP clock that is
one-half the frequency of Clk. As is shown, interface state only advances on
rising edges of Clk that coincide with EnableClk being asserted.

 VALID

MCmd

SCmdAccept

SResp

BA

MReset_n

Clk

2 30 311

 VALID

 VALID
 CMD

33

EnableClk

C

353 4 29 32 34

Timing Diagrams 197

OCP-IP Confidential

Figure 47 Basic Read with Clock Enable Signal

Sequence
A. The master starts a read request by driving RD on MCmd. At the same

time, it presents a valid address on MAddr.

B. This clock edge is not valid since EnableClk is sampled low. The slave
asserts SCmdAccept in this cycle for a request accept latency of 0.

C. The slave uses the value from MAddr to determine what data to return.
The slave starts the response phase by switching SResp from NULL to
DVA. The slave also drives the selected data on SData. Since SCmdAccept
is asserted, the request phase ends.

D. Invalid clock edge.

E. The master recognizes that SResp indicates data valid and captures the
read data from SData, completing the response phase. This transfer has
a request-to-response latency of 1.

10.28 Slave Disconnect
Figure 48 illustrates a sequence where a slave device votes for disconnecting
from the master. After the master ensures that the interface is quiescent (all
transactions are completed), it changes the connection state to a slave-
requested disconnect. Just as the state change occurs, the slave votes to re-
connect. After the minimum allowed delay of 2 cycles, the master changes the
connection state back to fully connected.

D

DVA NULL

NULL

IDLEIDLE

A B C D E

MAddr

MCmd

SCmdAccept

SResp

SData

R
e

q
ue

st

P
h

a
se

R
es

p
on

se

P
h

as
e

Clk

EnableClk

RD

 A

1 2 3 4 5 6 7

198 Open Core Protocol Specification

OCP-IP Confidential

Figure 48 Slave-requested Disconnect Sequence

Sequence
A. The master samples the slave’s vote to disconnect on SConnect. The

master begins draining the interface by completing the request and
datahandshake phases for any transactions that have already begun.

B. Having sequenced the final request phase for the last in-flight transaction,
the master has drained the request phase and asserts MCmd to IDLE. The
master continues draining the interface by waiting for any outstanding
response phases from the slave.

C. Having sequenced the final response phase for the last in-flight
transaction, the slave has drained the response phase and asserts SResp
to NULL. The master samples the final response and can change the
connection state directly to M_DISC without passing through M_WAIT,
since SWait is negated and the interface is quiescent. Independently, the
slave votes to connect by asserting SConnect.

D. The master samples the slave’s vote to connect, but cannot change the
connection state until 2 cycles have passed.

E. The master re-establishes connection by changing the connection state to
M_CON. The master may not assert any new transaction until the slave
samples the new connection state.

F. The slave samples MConnect and the interface is fully connected. The
master asserts a read transaction on MCmd.

10.29 Connection Transitions with Slave Pacing
Figure 49 illustrates a sequence where several connection state transitions
are delayed by the slave using SWait. This slave asserts SWait so it can pace
(i.e., control) when the master may transition between stable connection

Clk

SWait

MConnect M_CON M_CON

A B C D

6 7 12 13 14 151

E F

SConnect

M_DISC

MCmd IDLE

SResp NULL

RD

Timing Diagrams 199

OCP-IP Confidential

states. In each case, the master is thus forced to transition through the
M_WAIT transient state on the way to the desired stable state. The data flow
and other sideband signals are not shown in the figure for clarity; their
behavior is described in the sequence description, below.

Figure 49 Connection Transition Sequences with Slave Pacing

Sequence
A. The master votes to disconnect (not visible from the interface). Because all

data flow transactions are complete, the interface is quiescent and the
master changes the connection state by asserting MConnect to M_WAIT,
since SWait is asserted.

B. The slave samples the M_WAIT state and determines that all sideband
signaling is quiescent and the slave is ready to allow disconnect. The slave
negates SWait to enable the master to complete the disconnection
sequence.

C. The master samples SWait negated and changes the connection state to a
master-requested disconnect by asserting MConnect to M_OFF.

D. The slave samples the M_OFF state and asserts SWait to pace future state
changes. The slave also votes to disconnect by negating SConnect.

E. The master votes to connect (not visible from the interface) but samples
SConnect negated and begins the transition to a slave-requested
disconnect. Because SWait is asserted, the master first asserts MConnect
to M_WAIT.

F. The slave samples the M_WAIT state and determines that it is ready to
allow the connection state change, so it negates SWait.

G. The master samples SWait negated and changes the connection state to a
slave-requested disconnect by asserting MConnect to M_DISC.

H. The slave samples the M_DISC state and asserts SWait to pace future
state changes.

Clk

SWait

MConnect M_CON M_WAIT

A B C D

6 7 12 13 14 151

E F

SConnect

M_OFFM_WAIT

H

M_DISC

G

200 Open Core Protocol Specification

OCP-IP Confidential

OCP-IP Confidential

11 OCP Coherence Extensions:
Timing Diagrams

The following timing diagrams show the basic transfer flow on the
intervention port.

202 Open Core Protocol Specification

OCP-IP Confidential

Figure 50 Transfer without Data Phase, intport_split_tranx=0

This example has port parameter intport_split_tranx=0.

Sequence
A. The master starts the request on clock 1 by driving the associated

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The
slave's cache does not contain the requested address so the response of
“OK” is given on the SResp signal.

D. The master recognizes the value on SResp and the transfer is
completed.

Clk

MAddr

MCmd

SCmdAccept

SResp

IDLE

0x01

RDOW
1 IDLE

OK1

MBurstLength 4

NULL

R
e

q
u

e
st

P

ha
se

R
e

sp
o

ns
e

P

h
a

se

2 3 4 5 6 71

MBurstSeq WRAP

MBurstPrecise

NULL

A B C D E F G

OCP Coherence Extensions: Timing Diagrams 203

OCP-IP Confidential

Figure 51 Transfer with Data Phase, intport_split_tranx=0

This example has port parameter intport_split_tranx=0.

Sequence
A. The master starts the request on clock 1 by driving the associated

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request
phase completes. The slave does the snoop intervention operation.

Clk

MAddr

MCmd

SCmdAccept

SResp

SData

IDLE

0x01

RDOW
1 IDLE

MBurstLength 4

NULL

R
e

q
u

e
st

P

ha
se

R
es

p
o

n
se

P

h
a

se

2 3 4 5 6 71

MBurstSeq WRAP

MBurstPrecise

SDataLast

D1B3D1B0 D1B1 D1B2

D
a

ta
P

h
a

se

SCohState

GFED

NULL

STATE

A B C

DVA1

204 Open Core Protocol Specification

OCP-IP Confidential

C. The slave reports the results of the snoop intervention operation. The
slave's cache contains the most up-to-date copy of the requested
address so the response of “DVA” is given on the SResp signal.
Simultaneously, the slave drives the first data beat onto SData. Also
simultaneously, the slave drives the cacheline state onto SCohState.

D. The Master recognizes the SResp value to denote valid data and latches
the value of the first data beat on SData.

E. Similarly for the 2nd data beat

F. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote
it is driving the last data beat.

G. The Master latches the 4th data beat and recognizes SDataLast to
complete the transfer.

OCP Coherence Extensions: Timing Diagrams 205

OCP-IP Confidential

Figure 52 Transfer with Data Phase, intport_split_tranx=1

When the port parameter intport_split_tranx=1, a separate handshake
mechanism is used for the data phase. Two additional signals—SDataValid
and MDataAccept—are used for this data handshake.

Clk

MAddr

MCmd

SCmdAccept

SResp

SData

IDLE

0x01

RDOW
1 IDLE

DVA1

MBurstLength 4

NULL

R
e

q
u

e
st

P

h
a

se
R

e
sp

o
n

se

P
h

as
e

2 3 4 5 6 71

MBurstSeq WRAP

MBurstPrecise

SDataLast

SDataValid

NULL

MDataAccept

D1B3D1B0 D1B1 D1B2

D
a

ta
P

h
a

se

SCohState

GFEDCBA

STATE

206 Open Core Protocol Specification

OCP-IP Confidential

In this configuration, the signal SResp is no longer used to indicated the
presence of valid data on the intervention port, instead the new signal
SDataValid is used for that purpose. The signal SResp now only indicates
whether the local processor contains a copy of the requested memory location
or not and thus is only asserted for a single cycle per transaction.

In the current example, the data transfer is still co-incident with the response
phase. In the following examples, the data transfer is delayed after the
response phase using these new signals.

Sequence
A. The master starts the request on clock 1 by driving the associated

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The
slave's cache contains the most up-to-date copy of the requested
address so the response of “DVA” is given on the SResp signal.
Simultaneously, since the MDataAccept signal is asserted, the slave
drives the first data beat onto SData and asserts SDataValid. Also
simultaneously, the slave drives the cacheline state onto SCohState.

D. The Master recognizes the SResp value and the response phase
completes. The Master recognizes the SDataValid signal is asserted and
latches the value of the first data beat.

E. Similarly for the 2nd data beat

F. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote
it is driving the last data beat.

G. The Master latches the 4th data beat and recognizes SDataLast to
complete the transfer.

OCP Coherence Extensions: Timing Diagrams 207

OCP-IP Confidential

Figure 53 Transfer with Data Phase delayed by MdataAccept, intport_split_tranx=1

The next diagram shows the use of the MDataAccept signal as a way for the
Master to apply flow-control on the slave's data responses.

Sequence
A. The master starts the request on clock 1 by driving the associated

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The
slave's cache contains the most up-to-date copy of the requested
address so the response of “DVA” is given on the SResp signal.
Simultaneously, the slave drives the first data beat onto SData and

STATE

Clk

MAddr

MCmd

SCmdAccept

SResp

SData

IDLE

0x01

RDOW

1
IDLE

DVA

MBurstLength 4

NULL

R
eq

ue
st

P

ha
se

R
e

sp
o

ns
e

P
h

as
e

2 3 4 5 6 71

MBurstSeq WRAP

MBurstPrecise

SDataLast

SDataValid

NULL

MDataAccept

C D

D1B3D1B0 D1B1 D1B2

8 9

D
a

ta
P

ha
se

A B E F G H I

SCohState

208 Open Core Protocol Specification

OCP-IP Confidential

asserts SDataValid. Also simultaneously, the slave drives the cacheline
state onto SCohState. However, since MDataAccept is de-asserted, the
data phase signal group is held.

D. The Master recognizes the SResp value and the response phase
completes. The slave continues holding the data phase signals, awaiting
the assertion of MDataAccept.

E. The Master is finally ready to accept the data and asserts MDataAccept.

F. The Master latches the data value for the 1st data beat. The Slave
recognizes MDataAccept and drives the data value for the 2nd data
beat.

G. The Master latches the data value for the 2nd data beat.

H. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote
it is driving the last data beat.

I. The Master latches the 4th data beat and recognizes SDataLast to
complete the transfer.

OCP Coherence Extensions: Timing Diagrams 209

OCP-IP Confidential

Figure 54 Transfer with Data Phase delayed by SDataValid, intport_split_tranx=1

The next diagram shows the use of the SDataValid signal as a way for the
slave to separate the Response phase from the Data Transfer Phase. In
systems with shadow copies of the cache tags, the response of the cache tags
can be delivered earlier than the data.

Sequence
A. The master starts the request on clock 1 by driving the associated

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request
phase completes. The slave does the snoop intervention operation.

C. The slave reports the results of the snoop intervention operation. The
slave's cache contains the most up-to-date copy of the requested
address so the response of “DVA” is given on the SResp signal.
Simultaneously, the slave drives the cacheline state onto SCohState.

STATE

Clk

MAddr

MCmd

SCmdAccept

SResp

SData

IDLE

0x01

RDOW

1
IDLE

DVA

MBurstLength 4

NULL

R
eq

u
e

st

P
ha

se
R

es
p

o
ns

e

P
ha

se

2 3 4 5 6 71

MBurstSeq WRAP

MBurstPrecise

SDataLast

SDataValid

NULL

MDataAccept

D1B3D1B0 D1B1 D1B2

8 9 10

D
a

ta
P

h
as

e

A B C D E F G H I J

SCohState

210 Open Core Protocol Specification

OCP-IP Confidential

D. The Master recognizes the SResp value and the response phase
completes. Since SDataValid is not asserted, the Master waits for the
data values.

E. The Master continues waiting for SDataValid signal to assert.

F. The Slave is finally ready to drive the data and asserts SDataValid and
the first data value on SData.

G. The Master latches the data value for the 1st data beat. The Slave drives
the data value for the 2nd data beat since MDataAccept was asserted.

H. The Master latches the value for the 2nd data beat. The Slave drives the
value for the 3rd data beat.

I. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote
it is driving the last data beat.

J. The Master latches the 4th data beat and recognizes SDataLast to
complete the transfer.

OCP Coherence Extensions: Timing Diagrams 211

OCP-IP Confidential

Figure 55 Overlapped Transactions

The following figure shows overlapped transactions with the response phase
for the second transaction happening before the data transfer of the first
transaction is completed.

Sequence
A. The master starts the first request on clock 1 by driving the associated

request group signals. The slave asserts SCmdAccept in the same cycle.

B. The slave captures the request signal group values and the request
phase completes. The slave does the first snoop intervention operation.
The master starts the second request by driving new values for the
request group signals. The slave accepts the second request by
asserting SCmdAccept in the same cycle.

Clk

MAddr

MCmd

SCmdAccept

SResp

SData

IDLE

0x01

RDOW
1 IDLE

DVA1

MBurstLength 4

NULL

R
eq

u
es

t
P

ha
se

R
e

sp
on

se

P
ha

se

2 3 4 5 6 71

MBurstSeq WRAP

MBurstPrecise

SRespLast

SDataValid

NULL

MDataAccept

D1B3D1B0 D1B1 D1B2

8 9 10

RDOW
2

0x1002

4

WRAP

OK2

D
at

a
P

ha
se

A B C D E F G H I J

STATE
1

SCohState

212 Open Core Protocol Specification

OCP-IP Confidential

C. The slave reports the results of the first snoop intervention operation.
The slave's cache contains the most up-to-date copy of the requested
address so the response of “DVA” is given on the SResp signal. Also
simultaneously, the slave drives the cacheline state onto SCohState. In
the same cycle, the slave does the second snoop intervention operation.

D. The Master recognizes the first SResp value and the first response
phase completes. Since SDataValid is not asserted, the Master waits for
the data values. The slave reports the results of the second snoop
intervention operation. The slave's cache does not contain the second
requested address so the response of “OK” is given on the SResp signal.

E. The Master continues waiting for SDataValid signal to assert. The
Master recognizes the second SResp value and the second response
phase is completed. Since the second transaction does not have a data
phase, it is completed.

F. The Slave is finally ready to drive the data for the first request and
asserts SDataValid and the first data value on SData.

G. The Master latches the data value for the 1st data beat. The Slave drives
the data value for the 2nd data beat since MDataAccept was asserted.

H. The Master latches the value for the 2nd data beat. The Slave drives the
value for the 3rd data beat.

I. Similarly for the 3rd data beat. The Slave asserts SDataLast to denote
it is driving the last data beat.

J. The Master latches the 4th data beat and recognizes SDataLast to
complete the transfer.

OCP-IP Confidential

12 Developers Guidelines

This chapter collects examples and implementation tips that can help you
make effective use of the Open Core Protocol and does not provide any
additional specification material. This chapter groups together a variety of
topics including discussions of:

1. The basic OCP with an emphasis on signal timing, state machines and
OCP subsets

2. Simple extensions that cover byte enables, multiple address spaces and
in-band information

3. An overview of burst capabilities

4. The concepts of threading, tagging extensions, and connections

5. OCP features addressing write semantics, synchronization issues, and
endianness

6. Sideband signals with an emphasis on reset management and the
connection protocol

7. A description of the debug and test interface

12.1 Basic OCP
This section considers the different OCP phases, their relationships, and
identifies sensitive timing-related areas and begins with a discussion of
support for variable-rate divided clocks. The section includes descriptions of
OCP compliant state machines, and also discusses the OCP parameters
needed to define simple OCP interfaces.

214 Open Core Protocol Specification

OCP-IP Confidential

12.1.1 Divided Clocks
The EnableClk signal allows OCP to provide flexible support for multi-rate
systems. When set with the enableclk parameter, the EnableClk signal
provides a sampling signal that specifies which rising edges of the Clk signal
are rising edges of the OCP clock. By driving the appropriate waveforms on
EnableClk, the system can control the effective clocking rate of the interface,
and frequently the attached cores, without introducing extra outputs from
PLLs, or requiring delay matching across multiple clock distribution
networks.

When EnableClk is on, the interfaces behave as if the EnableClk signal is not
present. All rising edges of Clk are treated as rising edges of the OCP clock
allowing the OCP to operate at the Clk frequency. If EnableClk is off, no rising
edges of the OCP clock occur, and the OCP clock is effectively stopped.

This feature can be used to reduce dynamic power by idling the attached
cores, although the Clk signal may still be active. In normal operation the
system drives EnableClk with a periodic signal. For instance, asserting
EnableClk for every third Clk cycle causes OCP to operate at one third of the
Clk frequency. The system can modify the frequency by changing the
repeating pattern on EnableClk.

OCP is fully synchronous (with the exception of reset assertion). All timing
paths traversing OCP close in a single OCP clock period. If EnableClk has a
maximum duty cycle less than 100%, these timing paths may be constrained
as multi-cycle timing paths of the underlying clock domain.

12.1.1.1 OCP Clock Shape
The OCP Specification defines synchronous signals with respect to the rising
edge of the OCP clock and makes no assertions about the duty cycle of the
OCP clock. Since most designs use the rising-edge clocked flip-flops as the
storage element in synchronous designs this is usually not an issue. The OCP
Clk signal is frequently the output of a PLL or DLL, which tend to output clock
signals with near 50% duty cycles.

An OCP interface with a repeating pattern on EnableClk tends to produce
pulsed OCP clock waveforms. For instance, with EnableClk asserted every
third Clk cycle, the rising edge of the OCP clock is coincident with the rising
edge of Clk that samples EnableClk asserted. For most implementations that
use this sampling function, the falling edge of the effective (internal) OCP
clock is coincident with the next falling edge of Clk. The effective OCP clock is
high for one-half of a Clk period every third Clk cycle, yielding an effective
duty cycle of 16.7%.

12.1.1.2 Divided Clock Timing
Most design flows treat EnableClk as a standard synchronous signal that
could have any value for a cycle. If EnableClk is asserted on consecutive
cycles the OCP operates at the full Clk frequency, requiring internal and
external timing paths to meet the maximum Clk frequency.

Developers Guidelines 215

OCP-IP Confidential

The internal and external timing can be relaxed by recognizing that the
EnableClk signal permits a restricted duty cycle (for instance, only high for
every third Clk cycle). Taking advantage of this extra timing margin requires
careful control over the timing flow, which may include definition and
analysis of multi-cycle paths and other challenges. The design flow must
assure that the system-side logic that generates EnableClk does not violate
the duty cycle assumption. Finally, the timing flow must ensure that no
timing issues arise due to the low duty cycle of the effective OCP clock.

12.1.2 Signal Timing
The Open Core Protocol data transfer model allows many different types of
existing legacy IP cores to be bridged to the OCP without adding expensive
glue logic structures that include address or data storage. As such, it is
possible to draw many state machine diagrams that are compliant with the
protocol. This section describes some common state machine models that can
be used with the OCP, together with guidance on the use of those models.

Dataflow signals in the OCP interface follow the general principle of two-way
handshaking. A group of signals is asserted and must be held steady until the
corresponding accept signal is asserted. This allows the receiver of a signal to
force the sender to hold the signals steady until it has completely processed
them. This principle produces implementations with fewer latches for
temporary storage.

OCP principles are built around three fundamental decoupled phases: the
request phase, the response phase, and the datahandshake phase.

12.1.2.1 Request Phase
Request flow control relies on standard request/accept handshaking signals:
MCmd and SCmdAccept. Note that in version 2.0 of this specification,
SCmdAccept becomes an optional signal, enabled by the cmdaccept
parameter. When the signal is not physically present on the interface, it
naturally defaults to 1, meaning that a request phase in that case lasts
exactly one clock cycle.

The request phase begins when the master drives MCmd to a value other than
Idle. When MCmd != Idle, MCmd is referred to as asserted. All of the other
request phase outputs of the master must become valid during the same clock
cycle as MCmd asserted, and be held steady until the request phase ends. The
request phase ends when SCmdAccept is sampled asserted (true) by the rising
edge of the OCP clock. The slave can assert SCmdAccept in the same cycle
that MCmd is asserted, or stay negated for several OCP clock cycles. The latter
choice allows the slave to force the master to hold its request phase outputs
until the slave can accomplish its access without latching address or data
signals.

The slave designer chooses the delay between MCmd asserted and
SCmdAccept asserted based on the desired area, timing, and throughput
characteristics of the slave.

216 Open Core Protocol Specification

OCP-IP Confidential

As the request phase does not begin until MCmd is asserted, SCmdAccept is
a “don’t care” while MCmd is not asserted so SCmdAccept can be asserted
before MCmd. This allows some area-sensitive, low frequency slaves to tie
SCmdAccept asserted, as long as they can always complete their transfer
responsibilities in the same cycle that MCmd is asserted. Since an MCmd
value of Idle specifies the absence of a valid command, the master can assert
MCmd independently of the current setting of SCmdAccept.

The highest throughput that can be achieved with the OCP is one data
transfer per OCP clock cycle. High-throughput slaves can approach this rate
by providing sufficient internal resources to end most request phases in the
same OCP clock cycle that they start. This implies a combinational path from
the master’s MCmd output into slave logic, then back out the slaves
SCmdAccept output and back into a state machine in the master. If the
master has additional requests to present, it can start a new request phase
on the next OCP clock cycle. Achieving such high throughput in high-
frequency systems requires careful design including cycle time budgeting as
described in Section 14.3 on page 316.

12.1.2.2 Response Phase
The response phase begins when the slave drives SResp to a value other than
NULL. When SResp != NULL, SResp is referred to as asserted. All of the other
response phase outputs of the slave must become valid during the same OCP
clock cycle as SResp asserted, and be held steady until the response phase
ends. The response phase ends when MRespAccept is sampled asserted (true)
by the rising edge of the OCP clock; if MRespAccept is not configured into a
particular OCP, MRespAccept is assumed to be always asserted (that is, the
response phase always ends in the same cycle it begins). If present, the
master can assert MRespAccept in the same cycle that MResp is asserted, or
it may stay negated for several OCP clock cycles. The latter choice allows the
master to force the slave to hold its response phase outputs so the master can
finish the transfer without latching the data signals.

Since the response phase does not begin until SResp is asserted,
MRespAccept is a “don’t care” while SResp is not asserted so MRespAccept
can be asserted before SResp. Since an SResp value of NULL specifies the
absence of a valid response, the slave can assert SResp independently of the
current setting of MRespAccept.

In high-throughput systems, careful use of MRespAccept can result in
significant area savings. To maintain high throughput, systems traditionally
introduce pipelining, where later requests begin before earlier requests have
finished. Pipelining is particularly important to optimize Read accesses to
main memory.

The OCP supports pipelining with its basic request/response protocol, since
a master is free to start the second request phase as soon as the first has
finished (before the first response phase, in many cases). However, without
MRespAccept, the master must have sufficient storage resources to receive all
of the data it has requested. This is not an issue for some masters, but can
be expensive when the master is part of a bridge between subsystems such
as computer buses. While the original system initiator may have enough
storage, the intermediate bridge may not. If the slave has storage resources

Developers Guidelines 217

OCP-IP Confidential

(or the ability to flow control data that it is requesting), then allowing the
master to de-assert MRespAccept enables the system to operate at high
throughput without duplicating worst-case storage requirements across the
die.

If a target core natively includes buffering resources that can be used for
response flow control at little cost, using MRespAccept can reduce the
response buffering requirement in a complex SOC interconnect.

Most simple or low-throughput slave IP cores need not implement
MRespAccept. Misuse of MRespAccept makes the slave’s job more difficult,
because it adds extra conditions (and states) to the slave’s logic.

12.1.2.3 Datahandshake Phase
The datahandshake extension allows the de-coupling of a write address from
write data. The extension is typically only useful for master and slave devices
that require the throughput advantages available through transfer pipelining
(particularly memory). When the datahandshake phase is not present in a
configured OCP, MData becomes a request phase signal.

The datahandshake phase begins when the master asserts MDataValid. The
other datahandshake phase outputs of the master must become valid during
the same OCP clock cycle while MDataValid is asserted, and be held steady
until the datahandshake phase ends. The datahandshake phase ends when
SDataAccept is sampled asserted (true) by the rising edge of the OCP clock.
The slave can assert SDataAccept in the same cycle that MDataValid is
asserted, or it can stay negated for several OCP clock cycles. The latter choice
allows the slave to force the master to hold its datahandshake phase outputs
so the slave can accomplish its access without latching data signals.

The datahandshake phase does not begin until MDataValid is asserted. While
MDataValid is not asserted, SDataAccept is a “don’t care”. SDataAccept can
be asserted before MDataValid. Since MDataValid not being asserted specifies
the absence of valid data, the master can assert MDataValid independently of
the current setting of SDataAccept.

12.1.3 State Machine Examples
The sample state machine implementations in this section use only the
features of the basic OCP, request and response phases (the datahandshake
phase is not discussed here but can be derived). The examples highlight the
flexibility of the basic OCP.

12.1.3.1 Sequential Master
The first example is a medium-throughput, high-frequency master design. To
achieve high frequency, the implementation is a completely sequential (that
is, Moore state machine) design. Figure 56 shows the state machine
associated with the master’s OCP.

218 Open Core Protocol Specification

OCP-IP Confidential

Figure 56 Sequential Master

Not shown is the internal circuitry of the master. It is assumed that the
master provides the state machine with two control wire inputs, WrReq and
RdReq, which ask the state machine to initiate a write transfer and a read
transfer, respectively. The state machine indicates back to the master the
completion of a transfer as it transitions to its Idle state.

Since this is a Moore state machine, the outputs are only a function of the
current state. The master cannot begin a request phase by asserting MCmd
until it has entered a requesting state (either write or read), based upon the
WrReq and RdReq inputs. In the requesting states, the master begins a
request phase that continues until the slave asserts SCmdAccept. At this
point (this example assumes write posting with no response on writes), a
Write command is complete, so the master transitions back to the idle state.

In case of a Read command, the next state is dependent upon whether the
slave has begun the response phase or not. Since MRespAccept is not enabled
in this example, the response phase always ends in the cycle it begins, so the
master may transition back to the idle state if SResp is asserted. If the
response phase has not begun, then the next state is wait resp, where the
master waits until the response phase begins.

The maximum throughput of this design is one transfer every other cycle,
since each transfer ends with at least one cycle of idle. The designer could
improve the throughput (given a cooperative slave) by adding the state
transitions marked with dashed lines. This would skip the idle state when
there are more pending transfers by initiating a new request phase on the
cycle after the previous request or response phase. Also, the Moore state

Idle

Write Read

MCmd=Idle

MCmd=Write MCmd=Read

Legend:

State

Input/output

Required Arc

Optional Arc

SResp == NULL

~SCmdAccept ~SCmdAccept

~(WrReq | RdReq)

Wr
Re
q RdReq

SC
md
Ac
ce
pt

SCmdAccept

S
R
e
s
p

!
=

N
U
L
L

&(SResp != NULL)

SCmdAccept
&(SResp == NULL)

Wait
Resp

MCmd=Idle

Developers Guidelines 219

OCP-IP Confidential

machine adds up to a cycle of latency onto the idle to request transition,
depending on the arrival time of WrReq and RdReq. This cost is addressed in
Section 12.1.3.3 on page 220.

The benefits of this design style include very simple timing, since the master
request phase outputs deliver a full cycle of setup time, and minimal logic
depth associated with SResp.

12.1.3.2 Sequential Slave
An analogous design point on the slave side is shown in Figure 57. This
slave’s OCP logic is a Moore state machine. The slave is capable of servicing
an OCP read with one OCP clock cycle of latency. On an OCP write, the slave
needs the master to hold MData and the associated control fields steady for a
complete cycle so the slave’s write pulse generator will store the desired data
into the desired location. The state machine reacts only to the OCP (the
internal operation of the slave never prevents it from servicing a request), and
the only non-OCP output of the state machine is the enable (WE) for the write
pulse generator.

Figure 57 Sequential OCP Slave

The state machine begins in an idle state, where it de-asserts SCmdAccept
and SResp. When it detects the start of a request phase, it transitions to either
a read or a write state, based upon MCmd. Since the slave will always
complete its task in one cycle, both active states end the request phase (by
asserting SCmdAccept), and the read state also begins the response phase.
Since MRespAccept is not enabled in this example, the response phase will
end in the same cycle it begins. Writes without responses are assumed so
SResp is NULL during the write state. Finally, the state machine triggers the
write pulse generator in its write state, since the request phase outputs of the
master will be held steady until the state machine transitions back to idle.

Write Read
SCmdAccept SCmdAccept

Legend:

State

Input/output

Required Arc

(MCmd == Idle)

(M
Cm
d
==
 W
ri
te
) (MCmd == Read)

SResp=NULL
WE

SResp=DVA
~WE

Idle
~SCmdAccept
SResp=NULL

~WE

220 Open Core Protocol Specification

OCP-IP Confidential

As is the case for the sequential master shown in Figure 56 on page 218, this
state machine limits the maximum throughput of the OCP to one transfer
every other cycle. There is no simple way to modify this design to achieve one
transfer per cycle, since the underlying slave is only capable of one write every
other cycle. With a Moore machine representation, the only way to achieve one
transfer per cycle is to assert SCmdAccept unconditionally (since it cannot
react to the current request phase signals until the next OCP clock cycle).
Solving this performance issue requires a combinational state machine.

Since the outputs depend upon the state machine, the sequential OCP slave
has attractive timing properties. It will operate at very high frequencies
(providing the internal logic of the slave can run that quickly).

This state machine can be extended to accommodate slaves with internal
latency of more than one cycle by adding a counting state between idle and
one or both of the active states.

12.1.3.3 Combinational Master
Section 12.1.3.1 on page 217 describes the transfer latency penalty
associated with a Moore state machine implementation of an OCP master. An
attractive approach to improving overall performance while reducing circuit
area is to consider a combinational Mealy state machine representation.
Assuming that the internal master logic is clocked from the OCP clock, it is
acceptable for the master’s outputs to be dependent on both the current state,
the internal RdReq and WrReq signals, and the slave’s outputs, since all of
these are synchronous to the OCP clock. Figure 58 shows a Mealy state
machine for the OCP master. The assumptions about the internal master logic
are the same as in Section 12.1.3.1 on page 217, except that there is an
additional acknowledge (Ack) signal output from the state machine to the
internal master logic to indicate the completion of a transfer.

This state machine asserts MCmd in the same cycle that the request arrives
from the internal master logic, so transfer latency is improved. In addition, the
state machine is simpler than the Moore machine, requiring only two states
instead of four. The request state is responsible for beginning and waiting for
the end of the request phase. The wait resp state is only used on Read
commands where the slave does not assert SResp in the same cycle it asserts
SCmdAccept. The arcs described by dashed lines are optional features that
allow a transition directly from the end of the response phase into the
beginning of the request phase, which can reduce the turn-around delay on
multi-cycle Read commands.

Developers Guidelines 221

OCP-IP Confidential

Figure 58 Combinational OCP Master

The cost of this approach is in timing. Since the master request phase outputs
become valid a combinational logic delay after RdReq and WrReq, there is less
setup time available to the slave. Furthermore, if the slave is capable of
asserting SCmdAccept on the first cycle of the request phase, then the total
path is:

Clk -> (RdReq | WrReq) -> MCmd -> SCmdAccept -> Clk.

To successfully implement this path at high frequency requires careful
analysis. The effort is appropriate for highly latency-sensitive masters such
as CPU cores. At much lower frequencies, where area is often at a premium,
the Mealy OCP master is attractive because it has fewer states and the timing
constraints are much simpler to meet. This style of master design is
appropriate for both the highest-performance and lowest-performance ends of
the spectrum. A Moore state machine implementation may be more
appropriate at medium performance.

12.1.3.4 Combinational Slave
Achieving peak OCP data throughput of one transfer per cycle is most
commonly implemented using a combinational Mealy state machine
implementation. If a slave can satisfy the request phase in the cycle it begins
and deliver read data in the same cycle, the Mealy state machine represen-
tation is degenerate - there is only one state in the machine. The state
machine always asserts SCmdAccept in the first request phase cycle, and
asserts SResp in the same cycle for Read commands (assuming no response
on writes as in the write posting model).

Request
Wait

Legend:

State

Input/output

Required Arc

Optional Arc

RdReq & SCmdAccept &

Resp
(SResp != NULL)/MCmd = Idle, Ack

(SResp == NULL)/
(MCmd = Read), ~Ack

(SResp == NULL)/
(MCmd = Read), ~Ack

~(WrReq | RdReq) /MCmd=Idle, ~Ack

WrReq/MCmd=Write, Ack=SCmdAccept
RdReq & ~SCmdAccept/MCmd=Read, ~Ack
RdReq & SCmdAccept &
(SResp != NULL) /MCmd=Read, Ack

222 Open Core Protocol Specification

OCP-IP Confidential

Figure 59 Combinational OCP Slave

The implementation shown in Figure 59, offers the ideal throughput of one
transfer per cycle. This approach typically works best for low-speed I/O
devices with FIFOs, medium-frequency but low-latency asynchronous SRAM
controllers, and fast register files. This is because the timing path looks like:

Clk -> (master logic) -> MCmd -> (access internal slave resource) -> SResp ->
Clk

This path is simplest to make when:

• OCP clock frequency is low

• Internal slave access time is small

• SResp can be determined based only on MCmd assertion (and not other
request phase fields nor internal slave conditions)

To satisfy the access time and operating frequency constraints of higher-
performance slaves such as main memory controllers, the OCP supports
transfer pipelining. From the state machine perspective, pipelining splits the
slave state machine into two loosely-coupled machines: one that accepts
requests, and one that produces responses. Such machines are particularly
useful with the burst extensions to the OCP.

12.1.4 OCP Subsets
It is possible to define simple interfaces - OCP subsets that are frequently
required in complex SOC designs. The subsets provide simple interfaces for
HW blocks, typically with one-directional, non-addressed, or odd data size
capabilities. Since most of the OCP signals can be individually enabled or
disabled, a variety of subsets can be defined. For the command set, any OCP
command needs to be explicitly declared as supported by the core with at
least one command enabled in a subset.

Legend:

State

Input/output

Required Arc

Optional Arc

(MCmd == Write)/
SCmdAccept,
SResp=NULL

Idle

(MCmd == Idle)/
SCmdAccept,
SResp=NULL

(MCmd == Read)/
SCmdAccept,
SResp=DVA

Developers Guidelines 223

OCP-IP Confidential

Some sample interfaces are listed in Table 45. For each example the non-
default parameter settings are provided. The list of the corresponding OCP
signals is provided for reference. Subset variants can further be derived from
these examples by enabling various OCP extensions. For guidelines on
suggested OCP feature combinations, see Section 15 on page 319.

Table 45 OCP Subsets

12.2 Simple OCP Extensions
The simple extensions to the OCP signals add support for higher-performance
master and slave devices. Extensions include byte enable capability, multiple
address spaces, and the addition of in-band socket-specific information to
any of the three OCP phases (request, response, and datahandshake).

12.2.1 Byte Enables
Byte enable signals can be driven during the request phase for read or write
operations, providing byte addressing capability, or partial OCP word
transfer. This capability is enabled by setting the byteen parameter to 1.

Usage Purpose
Non-default
parameters

Signals

Handshake-only
OCP

Simple request/acknowledge
handshake, that can be used to
synchronize two processing modules.
Using OCP handshake signals with well-
defined timing and semantics allows
routing this synchronization process
through an interconnect. The OCP
command WR is used for requests, other
commands are disabled.

read_enable=0,
addr=0, mdata=0,
sdata=0, resp=0

Clk, MCmd,
SCmdAccept

Write-only OCP Interface for cores that only need to
support writes.

read_enable=0,
sdata=0, resp=0

Clk, MAddr,
MCmd, MData,
SCmdAccept

Read-only OCP Interface for cores that only need to
support reads.

write_enable=0,
mdata=0

Clk, MAddr,
MCmd,
SCmdAccept,
SData, SResp

FIFO Write-only
OCP

Interface to FIFO input. read_enable=0
addr=0, sdata=0,
resp=0

Clk, MCmd,
MData,
SCmdAccept

FIFO Read-only
OCP

Interface to FIFO output. write_enable=0,
addr=0, mdata=0

Clk, MCmd,
SCmdAccept,
SData, SResp

FIFO OCP Read and write interface to FIFO. addr=0 Clk, MCmd,
MData,
SCmdAccept,
SData, SResp

224 Open Core Protocol Specification

OCP-IP Confidential

Even for simpler OCP cores, it is good practice to implement the byte enable
extension, making byte addressing available at the chip level with no
restrictions for the host processors.

When a datahandshake phase is used (typically for a single request-multiple
data burst), bursts must have the same byte enable pattern on all write data
words. It is often necessary to send or receive write byte enables with the write
data. To provide full byte addressing capability, the MDataByteEn field can be
added to the datahandshake phase. This field indicates which bytes within
the OCP data write word are part of the current write transfer.

For example, on its master OCP port, a 2D-graphics accelerator can use
variable byte enable patterns to achieve good transparent block transfer
performance. Any pixel during the memory copy operation that matches the
color key value is discarded in the write by de-asserting the corresponding
byte enable in the OCP word. Another example is a DRAM controller that,
when connected to a x16-DDR device, needs to use the memory data mask
lines to perform byte or 16-bit writes. The data mask lines are directly derived
from the byte enable pattern.

Unpacking operations inside an interconnect can generate variable byte
enable patterns across a burst on the narrower OCP side, even if the pattern
is constant on the wider OCP side. Such unpacking operations may also
result in a byte enable pattern of all zeros. Therefore, it is mandatory that
slave cores fully support 0 as a legal pattern.

An OCP interface can be configured to include partial word transfers by using
either the MByteEn field, or the MDataByteEn field, or both.

• If only MByteEn is present, the partial word is specified by this field for
both read and write type transfers as part of the request phase. This is the
most common case.

• If only MDataByteEn is present, the partial word is specified by this field
for write type transfers as part of the datahandshake phase, and partial
word reads are not supported.

• If both MByteEn and MDataByteEn are present, MByteEn specifies partial
words for read transfers as part of the request phase, and is don’t care for
write type transfers. MDataByteEn specifies partial words for write
transfers as part of the datahandshake phase, and is don’t care for read
type transfers.

12.2.2 Multiple Address Spaces
Logically separate memory regions with unique properties or behavior are
often scattered in the system address map. The MAddrSpace signal permits
explicit selection of these separate address spaces.

Address spaces typically differentiate a memory space within a core from the
configuration register space within that same core, or differentiate several
cores into an OCP subsystem including multiple OCP cores that can be
mapped at non-contiguous addresses, from the top level system perspective.

Developers Guidelines 225

OCP-IP Confidential

Another example of the usage of the addrspace extension is the case of an
OCP-to-PCI bridge, since PCI natively supports address spaces for configu-
ration registers, memory spaces and i/o spaces.

12.2.3 In-Band Information
OCP can be extended to communicate information that is not assigned
semantics by the OCP protocol. This is true for out-of-band information (flag,
control/status signals) and also for in-band information. The designer or the
chip level architect can define in-band extensions for the OCP phases.

The fields provided for that purpose are MReqInfo for the request phase,
SRespInfo for the response phase, MDataInfo for the request phase or the
datahandshake phase, and SDataInfo for the response phase. The presence
and width of these fields can be controlled individually.

MReqInfo
Uses for MReqInfo can include user/supervisor storage attributes, cacheable
storage attributes, data versus program access, emulation versus application
access or any other access-related information, such as dynamic endianness
qualification or access permission information.

MReqInfo bits have no assigned meanings but have behavior restrictions.
MReqInfo is part of the request phase, so when MCmd is Idle, MReqInfo is a
“don’t care.” When MCmd is asserted, MReqInfo must be held steady for the
entire request phase. MReqInfo must be constant across an entire
transaction, so the value may not change during a burst. This facilitates
simple packing and unpacking of data at mismatched master/slave data
widths, eliminating the transformation of information.

SRespInfo
Uses for SRespInfo can include error or status information, such as FIFO full
or empty indications, or data response endianness information.

SRespInfo bits have no assigned meaning, but have behavior restrictions.
SRespInfo is part of the response phase, so when SResp is NULL, SRespInfo
is a “don’t care.” When SResp is asserted, SRespInfo must be held steady for
the entire response phase. Whenever possible, slaves that generate SRespInfo
values should hold them constant for the duration of the transaction, and
choose semantics that favor sticky status bits that stay asserted across
transactions. This simplifies the design of interconnects and bridges that
span OCP interfaces with different configurations. Holding SRespInfo
constant improves simple packing and unpacking of data at mismatched data
widths. The spanning element may need to break a single transaction into
multiple smaller transactions, and so manage the combination of multiple
SRespInfo values when the original transaction has fewer responses than the
converted ones.

If you implement SRespInfo as specified, your implementation should work in
future versions of the specification. If the current implementation does not
meet your needs, please contact techsupport@ocpip.org so that the Specifi-
cation Working Group can investigate how to satisfy your requirements.

226 Open Core Protocol Specification

OCP-IP Confidential

MDataInfo and SDataInfo
MDataInfo and SDataInfo have slightly different semantics. While they have
no OCP-defined meaning, they may have packing/unpacking implications.
MDataInfo and SDataInfo are only valid when their associated phase is
asserted (request or datahandshake phase for MDataInfo, response phase for
SDataInfo).

Uses for the MDataInfo and SDataInfo fields might include byte data parity in
the low-order bits and/or data ECC values in the high-order (non-packable)
bits.

The low-order mdatainfobyte_wdth bits of MDataInfo are associated with
MData[7:0], and so forth for each higher-numbered byte within MData, so
that the low-order mdatainfobyte_wdth*(data_wdth/8) bits of MDataInfo
are associated with individual data bytes. Any remaining (upper) bits of
MDataInfo cannot be packed or unpacked without further specification,
although such bits may be used in cases with matched data width, where no
transformation is required.

The difference between MReqInfo and the upper bits of MDataInfo is that only
MDataInfo is allowed to change during a transaction. Use SDataInfo for
information that may change during a transaction.

A slave should be operable when all bits of MReqInfo and MDataInfo are
negated; in other words, any MReqInfo or MDataInfo signals defined by an
OCP slave, but not present in the master will normally be negated (driven to
logic 0) in the tie off rules. A master should be operable when all bits of
SRespInfo and SDataInfo are negated.

12.3 Burst Extensions
A burst is basically a set of related OCP words. Burst framing signals provide
a method for linking together otherwise-independent OCP transfers. This
mechanism allows various parts of a system to optimize transfer performance
using such techniques as SDRAM page-mode operation, burst transfers, and
pre-fetching.

Burst support is a key enabler of SOC performance. The burst extension is
frequently used in conjunction with pipelined master and slave devices. For a
pipelined OCP device, the request phase is de-coupled from the response
phase - that is, the request phase may begin and end several cycles before the
associated response phase begins and ends. As such, it is useful to think of
separate, loosely-coupled state machines to support either the master or the
slave. Decoupling for pipeline efficiency remains true even if the OCP includes
a separate datahandshake phase.

12.3.1 OCP Burst Capabilities
The OCP burst model includes a variety of options permitting close matching
of core design requirements.

Developers Guidelines 227

OCP-IP Confidential

Exact Burst Lengths and Imprecise Burst Lengths
A burst can be either precise, of known length when issued by the initiator,
or imprecise, the burst length is not specified at the start of the burst.

For precise bursts, MBurstLength is driven to the same value throughout the
burst, but is really meaningful only during the first request phase. Precise
bursts with a length that is a power-of-two can make use of the WRAP and
XOR address sequence types.

For imprecise bursts, MBurstLength can assume different values for words in
the burst, reflecting a best guess of the burst length. MBurstLength is a hint.
Imprecise bursts are completed by a request with an MBurstLength=1, and
cannot make use of the WRAP and XOR address sequence types.

Use the precise burst model whenever possible:

• It is compatible with the single request-multiple data model that provides
advantages to the SOC in terms of performance and power.

• Since it is deterministic, it simplifies burst conversion. Restricting burst
lengths to power-of-two values and using aligned incrementing bursts (by
employing the burst_aligned parameter) also reduces the interconnect
complexity needed to maintain interoperability between cores.

Address Sequences
Using the MBurstSeq field, the OCP burst model supports commonly-used
address sequences. Benefits include:

• A simple incrementing scheme for regular memory type accesses

• A constant addressing mode for FIFO oriented targets (typically
peripherals)

• Wrapping on power-of-two boundaries

• XOR for processor cache line fill

• A block transfer scheme for 2-dimensional data stored in memory

User-defined sequences can also be defined. They must be carefully
documented in the core specification, particularly the rules to be applied
when packing or unpacking. The address behavior for the different sequence
types is:

INCR
Each address is incremented by the OCP word size. Used for regular
memory type accesses, SDRAM, SRAM, and burst Flash.

STRM
The address is constant during the burst. Used for streaming data to or
from a target, typically a peripheral device including a FIFO interface that
is mapped at a constant address within the system.

DFLT1
User-specified address sequence. Maximum packing is required.

228 Open Core Protocol Specification

OCP-IP Confidential

DFLT2
User-specified address sequence. Packing is not allowed.

WRAP
Similar to INCR, except that the address wraps at aligned MBurstLength
* OCP word size. This address sequence is typically used for processor
cache line fill. Burst length is necessarily a power-of-two, and the burst is
aligned on its size.

XOR
Addr = BurstBaseAddress + (index of first request in burst) ^ (current
word number). XOR is used by some processors for critical-word first
cache line fill from wide and slow memory systems.

While it does not always deliver the next sequential words as quickly as
WRAP, the XOR sequence maps directly into the interleaved burst type
supported by many DRAM devices. The XOR sequence is convenient when
there are width differences between OCP interfaces, since the sequence is
chosen to successively fill power-of-two sized and aligned words of greater
width until the burst length is reached.

BLCK
Describes a sequence of MBlockHeight row transfers, with the starting
address MAddr, row-to-row offset MBlockStride (measured from the start
of one row to the start of the next row), and rows that are MBurstLength
words long in an incrementing row address per word. MBlockHeight and
MBlockStride can be considered as don’t care for burst sequences other
than BLCK. Figure 60 depicts a block transaction representing a 2-
dimensional region out of a larger buffer, showing the various parameters.

Figure 60 BLCK Address Sequence

MBlockStride

MBlockHeight

MBurstLength

Developers Guidelines 229

OCP-IP Confidential

The following example shows how to decompose a BLCK burst into a
sequence of INCR bursts.

addr = MAddr;
for (row = 0; row < MBlockHeight; row++, addr += MBlockStride) {

issue INCR using all provided fields (including
MBurstLength), except use "addr" for MAddr

}

UNKN
Indicates that there is no specified relationship between the addresses of
different words in the burst. Used to group requests within a burst
container, when the address sequence does not match the pre-defined
sequences. For example, an initiator can group requests to non-
consecutive addresses on the same SDRAM page, so that the target
memory bandwidth can be increased.

For targets that have support for some burst sequence, adding support for
the UNKN burst sequence can improve the chances of interoperability
with other cores and can ease verification since it removes all
requirements from the address sequence within a burst.

For single requests, MBurstSeq is allowed to be any value that is legal for that
particular OCP interface configuration.

The BLCK, INCR, DFLT1, WRAP, and XOR burst sequences are always
considered packing, whereas STRM and DFLT2 sequences are non-packing.
Transfers in a packing burst sequence are aggregated / split when translating
between OCP interfaces of different widths while transfers in a non-packing
sequence are filled / truncated.

The packing behavior of a bridge or interconnect for an UNKN burst sequence
is system-dependent. A common policy is to treat an UNKN sequence as
packing in a wide-to-narrow OCP request width converter, and as non-
packing in a narrow-to-wide OCP request width converter.

Single Request, Multiple Data Bursts for Reads and Writes
A burst model of this type can reduce power consumption, bandwidth
congestion on the request path, and buffering requirement at various
locations in the system. This model is only applicable for precise bursts, and
assumes that the target core can reconstruct the full address sequence using
the code provided in the MBurstSeq field.

While the model assumes that the datahandshake extension is on, for those
cores that cannot accept the first-data word without the corresponding
request, datahandshake can increase design and verification complexity.

For such cores, use the OCP parameter reqdata_together to specify the
fixed timing relationship between the request and datahandshake phases.
When reqdata_together is set, each request phase for write-type bursts
must be presented and accepted together with the corresponding
datahandshake phase. For single request / multiple data write bursts, the
request must be presented with the first write data. For multiple request /

230 Open Core Protocol Specification

OCP-IP Confidential

multiple data write bursts, the datahandshake phase is locked to the request
phase, so this interface configuration only makes sense when both single and
multiple request bursts are mixed (that is, burstsinglereq is set).

Unit of Atomicity
Use this option when there is a requirement to limit burst interleaving
between several threads. Specifying the atomicity allows the master to define
a transfer unit that is guaranteed to be handled as an atomic group of
requests within the burst, regardless of the total burst length. The master
indicates the size of the atomic unit using the MAtomicLength field.

Burst Framing with all Transfer Phases
Without burst framing information, cores and interconnects incorporate
counters in their control logic: To limit this extra gate count and complexity,
enable end-of-burst information for each phase. Use MReqLast to specify the
last request within a burst, SRespLast to specify the last response within a
burst, and MDataLast to specify the last write data during the datahandshake
phase.

If BLCK burst sequences are enabled, additional framing information can be
provided to eliminate additional counters associated with the INCR
subsequences that comprise a BLCK burst. To limit extra gate count and
complexity, enable end-of-row information for each phase using:

• MReqRowLast to specify the last request in each row for multiple request/
multiple data bursts

• SRespRowLast to specify the last response in each row

• MDataRowLast to specify the last write data in each row

12.3.2 Compatibility with the OCP 1.0 Burst Model
The OCP 2.0 burst model replaces the OCP 1.0 model, providing a super set
in terms of available functionality. To maintain interoperability between cores
using the OCP 1.0 burst and cores using the OCP 2.0 bursts requires a thin
adaptation layer. Guidelines for the wrapping logic are described in this
section.

1.0 Master to 2.0 Slave
For converting an OCP 1.0 burst into an OCP 2.0 burst the suggested
mapping is:

• MBurstPrecise is available only when the OCP 1.0 burst_aligned
parameter is set. When set, all incrementing bursts once converted to OCP
2.0 stay precise. Any other OCP 1.0 burst type is mapped to an imprecise
burst. When burst_aligned is not set, MBurstPrecise is tied off to 0, so
all bursts are imprecise.

• MBurstSeq is derived from MBurst as follows:

Developers Guidelines 231

OCP-IP Confidential

MBurstSeq = INCR for MBurst {CONT, TWO, FOUR, EIGHT}
STRM for MBurst {STRM}
DFLT1 for MBurst {DFLT1}
DFLT2 for MBurst {DFLT2}

The logic must guarantee that MBurstSeq is constant during the whole
burst and must continue driving that MBurstSeq when MBurst=LAST is
detected.

• The value of MBurstLength is derived as follows:

MBurstLength = 8 for MBurst {EIGHT}
4 for MBurst {FOUR}
2 for MBurst {TWO, CONT, DFLT1, DFLT2, STRM}
1 for MBurst {LAST}

For precise bursts, MBurstLength is held constant for the entire burst.
For imprecise bursts, a new MBurstLength can be derived for each
transfer.

• MReqLast is derived from MBurst - it is set when MBurst is LAST.

• SRespLast has no equivalent in OCP1.0, and is discarded by the wrapping
logic.

• If required, MDataLast must be generated from a counter or from a queue
updated during the request phase.

2.0 Master to 1.0 Slave
For converting an OCP 2.0 burst into an OCP 1.0 burst the suggested
mapping is:

• MBurst is derived from MBurstPrecise, MBurstSeq, and MBurstLength,
as follows:

MBurst =
If MBurstPrecise
if MBurstSeq {INCR}

EIGHT if MBurstLength >= 8 at start of burst
FOUR if MBurstLength >= 4 at start of burst
TWO if MBurstLength >= 2 at start of burst
load counter with MBurstLength at start of burst,
decrement counter after every transfer
subsequent MBurst are generated from counter logic
LAST when counter==1

else if MBurstSeq {DFLT1, DFLT2, STRM}
same as MBurstSeq, except when counter==1, must be LAST

else if MBurstSeq {WRAP, XOR, UNKN}
LAST always: map to consecutive non-burst single transactions

Else if not MBurstPrecise
if MBurstSeq {INCR}

EIGHT if MBurstLength >= 8
FOUR if MBurstLength >= 4

232 Open Core Protocol Specification

OCP-IP Confidential

TWO if MBurstLength >= 2
LAST if MBurstLength == 1

else if MBurstSeq {DFLT1, DFLT2, STRM}
LAST if MBurstLength == 1
same as MBurstSeq if MBurstLength != 1

else if MBurstSeq {WRAP, XOR, UNKN}
LAST always (map to non-burst)

• MAtomicLength, MReqLast, and MDataLast have no equivalents in OCP
1.0, and are discarded by the wrapping logic.

• SRespLast must be generated from counter logic.

The logic described above is not suitable if the OCP 2.0 master generates
single request / multiple data bursts. In that case, more complex conversion
logic is required.

12.4 Tags
Tags are labels that associate requests with responses in order to enable out-
of-order return of responses. In the face of different latencies for different
requests (for instance, DRAM controllers, or multiple heterogeneous targets),
allowing the out-of-order delivery of responses can enable higher
performance. Responses are returned in the order they are produced rather
than having to buffer and re-order them to satisfy strict response order
requirements. Tagged transactions to overlapping addresses have to be
committed in order but their responses may be reordered if the transactions
have different tag IDs (see Section 4.7.1 on page 57). As is the case for
threads, to make use of tags, the master will normally need a buffer.

The tag value generally only has meaning to the master as it is made up by
the master and often corresponds to a buffer ID. The tag is carried by the slave
and returned with the response. In the case of datahandshake, the master
also tags the datahandshake phase with the tag of the corresponding request.

Out-of-order request and response delivery can also be enabled using
multiple threads. The major differences between threads and tags are that
threads can have independent flow control per thread and have no ordering
rules for transfers on different threads. Tags, on the other hand, exist within
a single thread so are restricted to a single flow control for all tags. Also,
transfers within the same thread still have some (albeit looser) ordering rules
when tags are in use. The need for independent flow control requires
independent buffering per thread, leading to more complex implementations.
Tags enable lower overhead implementations for out-of-order return of
responses.

Tags are local to a single OCP interface. In a system with multiple cores
connected to a bridge or interconnect, it is the responsibility of the
interconnect to translate the tags from one interface to the other so that a
target sees different tags for requests issued from different initiators. Target
core implementation can facilitate the job of the bridge or interconnect by
supporting a large set of tags.

Developers Guidelines 233

OCP-IP Confidential

The MTagInOrder and STagInOrder signals allow both tagged and non-tagged
(in-order) initiators to talk to a tagged target. Requests issued with
MTagInOrder asserted must be completed in-order with respect to other in-
order transactions, so an in-order initiator can guarantee that its responses
are returned in request order. To retain compatibility with non-tagged
initiators, targets that support tags should also support MTagInOrder and
STagInOrder.

When MTagInOrder is asserted any MTagID and MDataTagID values are
“don’t care”. Similarly, the STagID value is “don’t care” when STagInOrder is
asserted. Nonetheless, it is suggested that the slave return whatever tag value
the master provided.

Multi-threaded OCP interfaces can also have tags. Each thread’s tags are
independent of the other threads’ tags and apply only to the ordering of
transfers within that thread. There are no ordering restrictions for transfers
on different threads. The number of tags supported by all threads must be
uniform, but a master need not make use of all tags on all threads.

12.5 Threads and Connections
Thread extensions add support for concurrency. Without these extensions,
there is no way to apply flow control to one set of transfers while allowing
another set to proceed. With threading, each transfer is associated with a
thread, and independent flow control can be applied to each thread.
Additionally, there are no ordering restrictions between transfers associated
with different threads. Without threads, ordering is either strict or (if tags are
used) somewhat looser.

12.5.1 Threads
The thread capability relies on a thread ID to identify and separate
independent transfer streams (threads). The master labels each request with
the thread ID that it has assigned to the thread. The thread ID is passed to
the slave on MThreadID together with the request (MCmd). When the slave
returns a response, it also provides the thread ID (on SThreadID) so the
master knows which request is now complete.

The transfers in each thread must remain in-order with respect to each other
(as in the basic OCP) or must follow the ordering rules for tagging (if tags are
in use), but the order between threads can change between request and
response.

The thread capability allows a slave device to optimize its operations. For
instance, a DRAM controller could respond to a second read request from a
higher-priority initiator before servicing a first request from a lower-priority
initiator on a different thread.

As routing congestion and physical effects become increasingly difficult at the
back-end stage of the ASIC process, multithreading offers a powerful method
of reducing wires. Many functional connections between initiator and target
pairs do not require the full bandwidth of an OCP link, so sharing the same

234 Open Core Protocol Specification

OCP-IP Confidential

wires between several connections, based on functional requirements and
floor planning data, is an attractive mechanism to perform gate count versus
performance versus wire density trade-offs.

Multi-threaded behavior is most frequently implemented using one state
machine per thread. The only added complexity is the arbitration scheme
between threads. This is unavoidable, since the entire purpose for building a
multi-threaded OCP is to support concurrency, which directly implies
contention for any shared resources.

The MDataThreadID signal simplifies the implementation of the
datahandshake extension along with threading, by providing the thread ID
associated with the current write data transfer. When datahandshake is
enabled, but sdatathreadbusy is disabled, the ordering of the
datahandshake phases must exactly match the ordering of the request
phases.

The thread busy signals provide status information that allows the master to
determine which threads will not accept requests. That information also
allows the slave to determine which threads will not accept responses. These
signals provide for cooperation between the master and the slave to ensure
that requests are not presented on busy threads.

While multithreading support has a cost in terms of gate count (buffers are
required on a thread-per-thread basis for maximum efficiency), the protocol
can ensure that the multi-threaded interface is non-blocking.

Blocked OCP interfaces introduce a thread dependency. If thread X cannot
proceed because the OCP interface is blocked by another thread, Y that is
dependent on something downstream that cannot make progress until thread
X makes progress, there is a classic circular wait condition that can lead to
deadlock.

In the OCP1.0 Specification, the semantics of SThreadBusy and MThreadBusy
allow these signals to be treated as hints. To guarantee that a multi-threaded
interface does not block, both master and slave need to be held to tighter
semantics.

OCP 2.2 allows cores to follow exact thread busy semantics. This process
enables tighter protocol checking at the interface and guarantees that a
multi-threaded OCP interface is non-blocking. Parameters to enable these
extensions are sthreadbusy_exact, sdatathreadbusy_exact, and
mthreadbusy_exact. There is one parameter for each of the OCP phases,
request, datahandshake (assuming separate datahandshake) and response
(assuming response flow control). The following conditions are true:

• On an OCP interface that satisfies sthreadbusy_exact semantics, the
master is not allowed to issue a command to a busy thread.

• On an OCP interface that complies with sdatathreadbusy_exact
semantics, the master is not allowed to issue write data to a busy thread.

• On an OCP interface that complies with mthreadbusy_exact semantics,
the slave is not allowed to issue a response to a busy thread.

Developers Guidelines 235

OCP-IP Confidential

These rules allow the phase accept signals (SCmdAccept, SDataAccept or
MRespAccept) to be tied off to 1 on multi-threaded interfaces for which the
corresponding phase handshake satisfies exact thread busy semantics. By
eliminating an additional combinational dependency between master and
slave, an exact thread busy based handshake can be considered as a
substitute for the standard request/accept protocol handshake. For more
information, see Section 12.5.1.2 on page 237.

12.5.1.1 Intra-Phase Signal Relationships on a Multithreaded OCP
This section extends the timing discussion of the “Basic OCP” section, to a
multithreaded interface. The ordering and timing relationships between the
signals within an OCP phase are designed to be flexible. As described in
Section , it is legal for SCmdAccept to be driven either combinationally,
dependent upon the current cycle’s MCmd or independently from MCmd,
based on the characteristics of the OCP slave. Some restrictions are required
to ensure that independently-created OCP masters and slaves will work
together. For instance, the MCmd cannot respond to the current state of
SCmdAccept; otherwise, a combinational cycle could occur.

Request Phase
If enabled, a slave’s SThreadBusy request phase output should not depend
upon the current state of any other OCP signal. SThreadBusy should be
stable early enough in the cycle so that the master can factor the current
SThreadBusy into the decision of which thread to present a request; that is,
all of the master’s request phase outputs may depend upon the current
SThreadBusy. SThreadBusy is a hint so the master is not required to include
a combinational path from SThreadBusy into MCmd, but such paths become
unavoidable if the exact semantics apply (sthreadbusy_exact = 1). In that
case the slave must guarantee that SThreadBusy becomes stable early in the
OCP cycle to achieve good frequency performance. A common goal is that
SThreadBusy be driven directly from a flip-flop in the slave.

A master’s request phase outputs should not depend upon any current slave
output other then SThreadBusy. This ensures that there is no combinational
loop in the case where the slave’s SCmdAccept depends upon the current
MCmd.

If a slave’s SCmdAccept request phase output is based upon the master’s
request phase outputs from the current cycle, there is a combinational path
from MCmd to SCmdAccept. Otherwise, SCmdAccept may be driven directly
from a flip-flop, or based upon some other OCP signals. It is legal for
SCmdAccept to be derived from MRespAccept. This case arises when the slave
delays SCmdAccept to force the master to hold the request fields for a multi-
cycle access. Once read data is available, the slave attempts to return it by
asserting SResp. If the OCP has MRespAccept enabled, the slave then must
wait for MRespAccept before negating SResp, so it may need to continue to
hold off SCmdAccept until it sees MRespAccept asserted.

While the phase relationships of the OCP specification do not allow the
response phase to end before the request phase, it is legal for both phases to
complete in the same OCP cycle.

The worst-case combinational path for the request phase could be:

236 Open Core Protocol Specification

OCP-IP Confidential

Clk -> SThreadBusy -> MCmd -> SResp -> MRespAccept -> SCmdAccept -> Clk

The preceding path has too much latency at typical clock frequencies, so must
be avoided. Fortunately, a multi-threaded slave (with SThreadBusy enabled)
is not likely to exhibit non-pipelined read behavior, so this path is unlikely to
prove useful. Slave designers need to limit the combinational paths visible at
the OCP. By pipelining the read request, the previous path could be:

Clk -> SThreadBusy -> MCmd -> Clk
Clk -> SCmdAccept -> Clk # Slave accepts if pipeline reg empty
Clk -> SResp -> Clk
Clk -> MRespAccept -> Clk # Master accepts independent of SResp

Response Phase
If enabled, a master’s MThreadBusy response phase output should not be
dependent upon the current state of any other OCP signal. From the
perspective of the OCP, MThreadBusy should become stable early enough in
the cycle that the slave can factor the current MThreadBusy into the decision
on which thread to present a response; that is, all of the slave’s response
phase outputs may depend upon the current MThreadBusy. If MThreadBusy
is simply a hint (in other words mthreadbusy_exact = 0) the slave is not
required to include a combinational path from MThreadBusy into SResp, but
such paths become unavoidable if the exact semantics apply
(mthreadbusy_exact = 1). In that case the master must guarantee that
MThreadBusy becomes stable early in the OCP cycle to achieve good
frequency performance. A common goal is that MThreadBusy be driven
directly from a flip-flop in the master.

The slave’s response phase outputs should not depend upon any current
master output other than MThreadBusy. This ensures that there is no
combinational loop in the case where the master’s MRespAccept depends
upon the current SResp.

The master’s MRespAccept response phase output may be based upon the
slave’s response phase outputs from the current cycle or not. If this is true,
there is a combinational path from SResp to MRespAccept. Otherwise,
MRespAccept can be driven directly from a flip-flop; MRespAccept should not
be dependent upon other master outputs.

Datahandshake Phase
If enabled, a slave’s SDataThreadBusy datahandshake phase output should
not depend upon the current state of any other OCP signal. SDataThreadBusy
should be stable early enough in the cycle so that the master can factor the
current SDataThreadBusy into the decision of which thread to present a data;
that is, all of the master’s data phase outputs may depend upon the current
SDataThreadBusy. If SDataThreadBusy is simply a hint (in other words
sdatathreadbusy_exact = 0) the master is not required to include a
combinational path from SDataThreadBusy into MDataValid, but such path
becomes unavoidable if the exact semantics apply (sdatathreadbusy_exact =
1). In that case, the slave must guarantee that SDataThreadBusy becomes

Developers Guidelines 237

OCP-IP Confidential

stable early in the OCP cycle to achieve good frequency performance. A
common goal is that SDataThreadBusy be driven directly from a flip-flop in
the slave.

The master’s datahandshake phase outputs should not depend upon any
current slave output other than SThreadBusy. This ensures that there is no
combinational loop in the case where the slave’s SDataAccept depends upon
the current MDataValid. The slave’s SDataAccept output may or may not be
based upon the master’s datahandshake phase outputs from the current
cycle. In the former case, there is a combinational path from MDataValid to
SDataAccept. In the latter case, SDataAccept should be driven directly from
a flip-flop; SDataAccept should not be dependent upon other master outputs.

12.5.1.2 Multi-Threaded OCP Implementation
Figure 61 on page 237 shows the typical implementation of the combinational
paths required to make a multi-threaded OCP work within the framework set
by Level-2 timing. While the figure shows a request phase, similar logic can
be used for the response and datahandshake phases. The top half of the
figure shows logic in the master; the bottom half shows logic in the slave. The
width of the figure represents a single OCP cycle.

Figure 61 Multithreaded OCP Interface Implementation

12.5.1.3 Slave
Information about space available on the per-port buffers comes out of a latch
and is used to generate SThreadBusy information, which must be generated
within the initial 10% of the OCP cycle (as described in Section 14.3 on
page 316). These signals are also used to generate SCmdAccept: if a particular
port has room, a command on the corresponding thread is accepted. The

M
as

te
r

S
la

ve

Thread
Arbitration

10%
50%

Valid
Threads

MThreadID

Request
Group

Buffer
Update

SThreadBusy

Buffer has Room

60%

Buffer
Update

Request Group

75%

New Thread
Valid Info

New
Buffer
Status

SCmdAccept

238 Open Core Protocol Specification

OCP-IP Confidential

correct port information is selected through a multiplexer driven by
MThreadID at 50% of the clock cycle, making it easy to produce SCmdAccept
by 75% of the OCP cycle. When the request group arrives at 60% of the OCP
cycle, it is used to update the buffer status, which in turn becomes the
SThreadBusy information for the next cycle.

12.5.1.4 Master
The master keeps information on what threads have commands ready to be
presented (thread valid bits). When SThreadBusy arrives at 10% of the OCP
clock, it is used to mask off requests, that is any thread that has its
SThreadBusy signal set is not allowed to participate in arbitration for the
OCP. The remaining thread valid bits are fed to thread arbitration, the result
is the winning thread identifier, MThreadId. This is passed to the slave at 50%
of the OCP clock period. It is also used to select the winning thread’s request
group, which is then passed to the slave at 60% of the clock period. When the
SCmdAccept signal arrives from the slave, it is used to compute the new
thread valid bits for the next cycle.

The request phase in Figure 61 assumes a non-exact thread busy model. The
exact model shown in Figure 62 is similar, but SCmdAccept is tied off to 1, so
any request issued to a non-busy thread is accepted in the same cycle by the
slave.

Figure 62 Multithreaded OCP Interface with threadbusy_exact

12.5.2 Connections
In multi-threaded, multi-initiator systems, it is frequently useful to associate
a transfer request with a thread operating on a particular initiator. Initiator
identification can enable a system to restrict access to shared resources, or

M
as

te
r

S
la

ve

Thread
Arbitration

10%
50%

Valid
Threads

MThreadID

Request
Group

Buffer
Update

SThreadBusy

Buffer has Room

60%

Buffer
Update

Request Group

New Thread
Valid Info

New
Buffer
Status

Developers Guidelines 239

OCP-IP Confidential

foster an error logging mechanism to identify an initiator whose request has
created an error in the system. For devices where these concerns are
important, the OCP extensions support connections.

Connections are closely related to threads, but can have end-to-end meaning
in the system, rather than the local meaning (that is, master to slave) of a
thread.

The connection ID and thread ID seem to provide similar functionality, so it
is useful to consider why the OCP needs both. A thread ID is an identifier of
local scope that simply identifies transfers between the master and slave. In
contrast, the connection ID is an identifier of global scope that identifies
transfers between a system initiator and a system target. A thread ID must be
small enough (that is, a few bits) to efficiently index tables or state machines
within the master and slave. There are usually more connection IDs in the
system than any one slave is prepared to simultaneously accept. Using a
connection ID in place of a thread ID requires expensive matching logic in the
master to associate the returned connection ID (from the slave) with specific
requests or buffer entries.

Using a networking analogy, the thread ID is a level-2 (data link layer)
concept, whereas the connection ID is more like a level-3 (transport/session
layer) concept. Some OCP slaves only operate at level-2, so it doesn’t make
sense to burden them or their masters with the expense of dealing with level-
3 resources. Alternatively, some slaves need the features of level-3
connections, so in this case it makes sense to pass the connection ID through
to them.

A connection ID is not usually provided by an initiator core on its OCP
interface but is allocated to that particular initiator in the interconnect logic
of the system. The connection ID is system-specific, not core-specific; only the
system integrator has the global knowledge of the number of initiators instan-
tiated in the application, and what the requirements are in terms of
differentiation.

As an exception to that rule, if the global interconnect consists of multiple
hierarchical structures, a complete subsystem can be integrated (including
another interconnect with multiple embedded initiators). In that case, the
OCP interface between the two interconnects should implement the connid
extension, so that the end-to-end meaning of that OCP field can be preserved
at the system level.

For a target core, the connid extension is included when such features as
access control, error logging or similar initiator-related features require
initiator identification.

240 Open Core Protocol Specification

OCP-IP Confidential

12.6 OCP Specific Features

12.6.1 Write Semantics
As detailed in Section 4.4.2 on page 51, OCP writes support posted and non-
posted models. A non-posted write model is preferred whenever the originator
of the request must be aware of the completion of its write command, i.e.,
command commitment. An example is clearing an interrupt in a peripheral
module using a write command. In that case the processor must be sure that
the interrupt line has been effectively released before it can acknowledge the
interrupt service in the chip-level interrupt controller.

The concept of the posting semantics diverges from the concept of responses
on writes in the following ways:

• A write with a response could have posted semantics in a system (so that
a response is returned immediately) or it could have non-posted
semantics (so that a response is returned only after the write is completed
at the final target, i.e., the command is committed).

• A write without a response normally has posted semantics and carries
forward the OCP 1.0 Specification for backward compatibility.

• A write without a response can be assigned non-posted semantics by not
accepting the command until the write has completed, but this is not
recommended since it de-pipelines the OCP interface. Since posting
makes sense at a system level, adopting a delayed-SCmdAccept scheme
can only be efficient locally, with no guarantee of the non-posting
semantics at the system level.

The writeresp_enable parameter controls whether the write-type
commands WR and BCST have responses. The write-type commands WRNP
and WRC, which are non-posted, always have responses. Table 46
summarizes the behavior with respect to the writeresp_enable parameter.

Table 46 Write Command Response Behavior

Note that in Table 46, WR and WRNP are the general-purpose write
commands; WRC is always associated with an RLC command.

Use of the Broadcast command must be limited to a specific category of
designs (some interconnect designs may benefit from simultaneous update
through distributed registers). It is not expected that standard cores will
support the Broadcast command.

writeresp_enable

0 1

WR, BCST (without response)
WRNP, WRC (with response)

WR, BCST, WRNP, WRC (with response)

Developers Guidelines 241

OCP-IP Confidential

By separating whether writes have responses (writeresp_enable) from
whether the core has control over where the responses are generated
(writenonpost_enable), the OCP specification provides the following
features:

• The simple, posted model remains intact. The simplest cores only
implement WR, and need not worry about write responses.

• Cores that can generate or use write responses should enable write
responses, providing support for in-band error reporting on write
commands. The read and write state machines are duplicated from the
standpoint of flow control, producing a simpler design. Such cores would
normally only implement the WR command. In this case, the system
integrator is in control of where in the write path the write response is
generated, allowing a choice of the level of posting based upon
performance and coherence trade-offs.

• Cores that can distinguish between performance and coherence (really
only CPUs and bridges) can enable WRNP to implement dynamic choice
between WR and WRNP. The additional signaling gives the system
integrator the dynamic information needed to choose the posting point as
the CPU requests. The only practical difference between WR and WRNP at
the protocol level is the expected latency between request and response.
This permits some embedded CPUs to achieve high performance—
particularly as interconnects become pipelined and posting buffers are
needed.

12.6.2 Lazy Synchronization
Most processors support semaphores through a read-modify-write type of
instruction and swap, test-and-set, etc. Using an OCP interconnect, these
instructions are mapped onto a pair of OCP commands. A RDEX command
sets a lock to the memory location, followed by a WR (or WRNP) command to
release the lock. The system must ensure that no other thread will be granted
access to that memory location between the RDEX and the unlocking WR.

Because the Write that clears the lock must immediately follow the ReadEx
(on the same thread), only a limited number of operations can be performed
by a processor between RDEX and WR. Competing requests to the locked
location are not committed until the lock is released. It is highly
recommended that this requirement be enforced at the final target with non-
blocking flow control for multithreaded applications. Otherwise, for example,
if the logic is implemented on the master’s side in an interconnect, part of the
interconnect could be locked for the duration of the RDEX-WR or RDEX-
WRNP pair. This mechanism of using a RDEX-write pair, often referred to as
locked synchronization, is efficient for handling exclusive accesses to a shared
resource, but can result in a significant performance loss when used
extensively.

For these reasons, some processors use non-blocking instructions for
semaphore handling, breaking the atomicity of the exclusive read/write pair.
For the processor, this allows other instructions to be executed by the
processor between the read and write accesses. For the system interconnect,
it allows requests from other threads to be inserted between the read and

242 Open Core Protocol Specification

OCP-IP Confidential

write commands. Referred to as lazy synchronization, this mechanism
requires read and write semantics, commonly known as LL/SC semantics, for
Load-Linked and Store-Conditional.

OCP’s support for lazy synchronization uses the ReadLinked, and WriteCon-
ditional commands. A single OCP parameter rdlwrc_enable is set to 1, to
enable the commands. Because some processors might use both semantics
(locked and lazy), the OCP interface supports RDEX, RDL, WR(WRNP) and
WRC.

The system relies upon the existence of monitor logic, that can be located
either in the system interconnect, or in the memory controller. The
ReadLinked command sets a reservation in the logic, associating the
accessing thread with a particular address. The WriteConditional command,
being transmitted on the same thread, is locally transformed into a memory
write access only if the reservation is still set when the command is received.
As the tagged address is not locked, the tag can be reset by competing traffic
directed to the same location from other threads between RDL and WRC.

Consequently, the WRC command expects a response from the monitor logic,
reflecting whether the write operation has been performed. To answer that
requirement, OCP provides the value, FAIL for the SResp field (meaning that
writeresp_enable is on if rdlwrc_enable is on). WRC is the only OCP
command that makes use of the FAIL code, though new commands in future
revisions may. FAIL responses are frequently received in a system using lazy
synchronization that operates normally. Do not confuse FAIL with
SResp=ERR, which effectively signals a system interconnect error or a target
error.

Both RDL and WRC commands assume a single transaction model and
cannot be used in a burst.

The semantics of lazy synchronization are defined on the previous page. Some
specific sequences resulting from the usage of the RDL and WRC semantics
are:

• A thread can issue more than one RDL before issuing a WRC, or issue
more than one RDL without issuing WRC. Whether the subsequent RDL
clears the reservation or sets a new one is implementation-specific,
depending on the number of hardware monitors. At least one monitor per
thread is required.

• If a thread issues a WR or WRNP command to an address it previously
tagged with a RDL command, the write access clears all reservations from
other threads for the same address (but not its own reservation).

• If a thread issues a WRC without having issued a RDL, the WRC will fail.

• If a thread issues a RDEX between the RDL and WRC, the RDEX is
executed, sets the lock and waits for the corresponding write to clear the
lock. RDL-WRC reservations will not be affected by the RDEX. The WR or
WRNP that clears the lock, also clears any reservation set by other
initiators for the same address (with the same MAddr, MByteEn and
MAddrSpace if applicable).

Developers Guidelines 243

OCP-IP Confidential

Because competing requests of any type from other threads to a locked (by
RDEX) location are blocked from proceeding until the lock is released, a RDEX
command being issued between RDL and WRC commands, also blocks the
WRC until the WR or WRNP command clearing the lock is issued. This favours
RDEX-WR or WRNP sequence over RDL-WRC, in the sense that competing
RDEX-WR or WRNP and RDL-WRC sequences will always result in having the
RDEX-WR or WRNP sequence win.

Incorrect use of the two synchronization mechanisms can result in deadlock
so for example, the sequence of commands shown in Figure 63 might result
in a deadlock. In this example Processor 1 tries to release the semaphore
using RDL-WRC commands, Processor 2 tries to acquire the semaphore using
RDEX-WR or WRNP commands. The RDEX-WR or WRNP sequence always
occurs between the RDL and WRC. Because the WR or WRNP clearing the lock
in Processor2 will also clear the reservation for Processor 1, the RDL-WRC
sequence will never succeed. Processor 1 will never be able to release the lock
or Processor2 to acquire it.

Figure 63 Synchronization Deadlock

The deadlock depicted in Figure 63 is a result of bad programming in
Processor 2, and is very unlikely to happen in a real application environment.
As shown in Figure 64, to achieve forward progress, Processor 2 should read
the semaphore value and wait for the semaphore to be free before trying to
retrieve it by issuing a RDEX-WR or WRNP.

Figure 64 Correct Synchronization Sequence

Processor 1 uses RDL/WRC
to release the semaphore

get_sem1:
RDL

…
…
…

WRC

Processor 2 uses test-and-set
to acquire the semaphore

get_sem2:
RDEX
WR(NP)

Processor 1 uses RDL/WRC
to release the semaphore

get_sem1:
RDL

…
…
…

WRC

Processor 2 uses test and
test-and-set to acquire the semaphore

get_sem2:
RD

RDEX
WR(NP)

244 Open Core Protocol Specification

OCP-IP Confidential

12.6.3 OCP and Endianness
As described in Section 4.5 on page 51, OCP is nearly endian-neutral. While
OCP specifies a byte address on MAddr, the address must be aligned to the
data width of the interface. Sub-word quantities are specified using one bit for
each enabled byte in the transfer on MByteEn or MDataByteEn.

While the bit ordering of OCP fields is consistently described in a little-endian
fashion, this is conventional, where even big-endian systems tend to number
their bits little-endian. Similarly, the MByteEn numbering seems to imply a
little-endian byte ordering, but is simply intended to maintain consistency.
For example, MByteEn[m] refers to the byte transferred on MData/
SData[(8m+7):8m] (provided m < data width/8), regardless of the effective
transfer endianness attributes.

If the master OCP and the slave OCP are the same data width, endianness
does not matter. Addresses, data, and byte enables must remain consistent
across both interfaces. (There are exceptions, since packed sub-word data
objects should be swapped if the endianness does not match. OCP does not
carry the required signaling to determine sub-word sizes, so full-word
transfers must be assumed.)

Endianness problems arise as soon as one looks to connect a master and
slave with different data widths. The narrow side has extra (non-zero) address
bits, since its word-aligned addresses do not force as many bits to be zero. The
wide side has extra byte lanes to carry its wider words. The association of the
extra address bits (narrow side) with the extra byte lanes (wide side) specifies
an endianness.

To bridge interfaces that suffer from mismatched data widths, packing and
unpacking is required. Data width conversion must make some assumptions
about the correspondence between the MAddr least-significant bits and the
MByteEn field.

If the association maps the low-order byte lanes to lower addresses, the data
width conversion is performed in a little-endian manner. If the association
maps the high-order byte lanes to lower addresses, the data width conversion
is performed in a big-endian manner. This operation is absolutely not an
endianness conversion, but rather an endianness-aware packing or
unpacking operation, so that the transaction endianness is preserved across
the data width converter.

There is no attempt to perform any endian conversion in hardware. Rather,
the goal is to enable interconnects that are essentially endian-neutral, but
become endian-adaptive to match the endianness of the attached entities.
This implies that the native endianness of an OCP core must be specified.
OCP captures that property using the endian parameter, which can take four
values:

LITTLE
Qualifies little-endian only cores

BIG
Qualifies big-endian only cores

Developers Guidelines 245

OCP-IP Confidential

BOTH
Qualifies cores that can change endianness:

− Based upon an external input such as a CPU that statically selects its
endianness at boot time

− Based upon an internal configuration register such as a DMA engine,
that generates OCP read and write requests in accordance with the
endianness of the target, as stated by the DMA programmer

− Cores that support dynamic endianness

NEUTRAL
Qualifies cores that have no inherent endianness. Examples are simple
memory devices that only work with full OCP-word quantities, or
peripheral devices, the endianness of which can be controlled by the
software device driver.

While not supported by the standard set of OCP features, it is possible to
define a dynamic, endian-aware interconnect using in-band information. By
specifying the parameters reqinfo (for request packing / unpacking control),
mdatainfo (for data packing / unpacking control when datahandshake is
enabled), and respinfo (for response packing / unpacking control), the
definition of all these qualifiers becomes platform-specific.

12.6.4 Security
To protect against software and some selective hardware attacks use the OCP
interface to create a secure domain across the SOC. The domain might
include CPU, memory, I/O etc. that need to be secured using a collection of
hardware and software features such as secured interrupts, and memory, or
special instructions to access the secure mode of the processor.

The master drives the security level of the request using MReqInfo as a
subnet. The master provides initiator identification using MConnID. Table 47
summarizes the relevant parameters.

Table 47 Security Parameters

The security request is defined as a named subnet MSecure within MReqInfo,
for example:

subnet MReqInfo M:N MSecure, where M is >= N.

Parameter Value Notes

reqinfo 1 MReqInfo is required

reqinfo_wdth Varies Minimum width is 1

connid 1 To differentiate initiators

connid_wdth Varies Minimum width is 1

246 Open Core Protocol Specification

OCP-IP Confidential

MSecure Bit Codes
With the exception of bit 0, bits are optional and the encoding is user-defined.
Bit 0 of the MSecure field is required. The suggested encoding for the MSecure
bits is:

A special error response is not specified. A security error can be signaled with
response code ERR.

12.7 Sideband Signals
The sideband signals provide a means of transmitting control-oriented
information. Since the signals are rarely performance sensitive, drive all
sideband signals stable early in the OCP clock cycle by making the sideband
outputs come directly out of core flip-flops. To allow sideband inputs to arrive
late in the OCP clock cycle register the inputs immediately on the receiving
core.

Cores that fail to implement this conservative timing may require modification
to achieve timing convergence.

12.7.1 Reset Handling
Some anomalous events can result from OCP resets. Among the situations to
be aware of are the following:

Power-on reset
At power-on or assertion of any hardware reset, an OCP reset may be
asynchronously asserted. Accepting the use of asynchronous resets helps
describe the interface behavior.

Asynchronous assertion of a synchronous reset
Asynchronous assertion of resets in OCP may result in an asynchronous
reset being fed to a module expecting a synchronous reset. From a design
point of view this discrepancy could lead to a setup or hold violation. The
required 16 clock cycles of reset guarantees enough time for recovery on
the interface receiver side, allowing it to fall back to a safe functional state.

Bit Value 0 Value 1

0 non-secure secure

1 user mode privileged mode

2 data request instruction request

3 user mode supervisor mode

4 non-host host

5 functional debug

Developers Guidelines 247

OCP-IP Confidential

For simulation and verification, such timing violations represent a major
hurdle since they may lead to inconsistent states in the master, slave and
monitor interfaces. To address this problem, whenever possible, generate
resets in a synchronous manner even if the protocol allows for their
asynchronous assertion.

Use of OCP resets as asynchronous
OCP reset requires that a reset signal observe the setup and hold times as
defined in the core’s timing guidelines for at least 16 rising OCP clock
edges after reset assertion, making the signal effectively synchronous
except at assertion time. To satisfy this requirement do not connect an
input OCP reset signal to the asynchronous clear/set pin of a D-flip-flop
involved in an OCP signal logic cone. Failure to comply with this rule may
violate the OCP protocol. For instance, a glitch on an OCP reset signal that
would be sampled as deasserted could be interpreted as asserted,
inadvertently causing the receiver to cancel pending transactions and
hang the interface.

12.7.1.1 Dual Reset Signals
Many systems are fully satisfied with a single reset signal applied to both the
master and the slave on an OCP interface. Either the master or the slave can
drive the reset, or a third entity, such as a chip level reset manager, can
provide it to both master and slave.

In some situations, it is more convenient for the master and slave to employ
their own reset domains and communicate these internal resets to one
another. The OCP interface is unable to communicate until both sides are out
of reset since the side still in reset may be driving undetermined values (X) on
their OCP outputs and cause problems for the side that is already out of reset.
Examples of cases where this might arise are:

• A core with multiple OCP interfaces that are connected to different
interconnects, which are each in different reset domains, plus the core
has its own internal reset domain.

• Two connected interconnects that both act as initiators of transfers and
each with their own reset domain.

Adding a second reset signal to the interface allows each master and slave to
have both a reset output and input. The composite reset state for the OCP
interface is established as the combination of the two resets, so that either
side (or both) asserting reset causes the interface to be in reset. While in reset,
the existing rules about the interface state and signal values apply.

Either MReset_n or SReset_n must be present on any OCP interface. Compat-
ibility between different reset configurations of master and slave interfaces is
shown in Table 48.

248 Open Core Protocol Specification

OCP-IP Confidential

Table 48 Reset Configurations

The rules describing this table can be stated as follows.

• Either mreset or sreset or both must be set to 1 for each core.

• The default (and only) tie-off value for MReset_n and SReset_n is 1.

• If mreset is set to 1 for the master and mreset is set to 0 for the slave, the
reset configurations are incompatible.

• If sreset is set to 1 for the slave and sreset is set to 0 for the master, the
reset configurations are incompatible.

Cores with a reset input are always interoperable with any other core. Add a
reset output if it is needed by the core or subsystem to assure proper
operation. Typically this is because both sides need to know about the reset
state of the other side, or because the overall system does not function
properly if the core or subsystem is in reset, while the OCP interface is not in
reset.

12.7.1.2 Compatibility with OCP 1.0
OCP 1.0 cores that have a reset input or output can be converted to OCP 2
cores by renaming the Reset_n pin in the core’s RTL configuration file without
touching the actual HDL source of the core. The new name depends on
whether the reset is an input or output and whether the core is a master or
slave.

In the very unlikely situation of an OCP 1.0 core lacking a reset input or
output, the conversion to OCP 2 is achieved by the addition of a dummy reset
input pin that is not used inside the core.

12.7.2 Connection Protocol
The increasing importance of minimizing power and energy dissipation in
integrated circuits drives designers to use a variety of power management
techniques such as slowing or stopping clocks and lowering or switching off
supply voltages on sections of the chip. It is therefore frequently desirable to
change the power state of the OCP masters and slaves in some sections of a
chip without adversely impacting the operation of the rest of the chip. The

Master

Slave

sreset=1,
mreset=0

sreset=0,
mreset=1

sreset=1,
mreset=1

sreset=0,
mreset=1

Dual resets driven by the

same 3rd party

Single reset driven by
master

Single reset driven by
master (SReset_n
input tied off to 1)

sreset=1,
mreset=0

Single reset driven by
slave

Incompatible Incompatible

sreset=1,
mreset=1

Single reset driven by
slave (MReset_n input
tied off to 1)

Incompatible Dual resets

Developers Guidelines 249

OCP-IP Confidential

connection protocol defines a mechanism for OCP masters and slaves to
indicate to each other that a power state transition is desired and then to
prepare for that transition. The connection signals allow the master and slave
to cooperate to cleanly achieve quiescence before putting the interface into a
disconnected state where none of the other in-band nor sideband signals are
active, except for the OCP clock. Once the interface has been disconnected,
the system can safely transition the power state without losing any
transactions or sideband events.

While the primary motivation behind the definition and inclusion of the
connection protocol is to facilitate power management, there are likely other
situations in which OCP masters and slaves may wish to disconnect, so the
connection protocol has been defined as a general mechanism.

12.7.2.1 Goals
1. The OCP is connected only if both the master and the slave agree on this

connected state. Either the master or the slave can independently request
disconnection.

2. No restrictions on when either side can change its vote on the connection
state.

3. The protocol should assure a clean disconnect. That is, no OCP
transactions or sideband signal transitions can be corrupted during the
disconnection process, including posted writes.

4. Connection state transitions will be performed by the master, no matter
which side requested the transition.

5. The protocol should allow the side that is not requesting the connection
state change to delay the state change until it is prepared to safely
transition.

6. The protocol should permit the connection state to be determined from
interface signals. That is, the protocol should be stateless at the interface.

7. The protocol should permit the system to distinguish between
disconnected states initiated by only the slave request vs. those initiated
by the master.

8. The protocol should allow an OCP-to-OCP bridge to easily manage its
connection protocol responsibilities on both its upstream and
downstream interfaces, without requiring that any system logic be needed
to separately control the two interfaces.

9. The protocol should support the case of either side being powered down
while disconnected by ensuring that a powered down side can safely
ignore inputs and provide static protocol-defined default outputs,
typically from isolation transceivers.

10. The protocol should ensure inter-operability with cores that do not
implement the connection protocol.

11. The protocol should add a minimum of new configurability/complexity to
OCP.

12. The protocol should add a minimum of new signals to the interface.

The protocol adds one new parameter to OCP, connection. When
connection is one, four signals are added to the interface: MConnect,
SConnect, SWait, and ConnectCap. One of these signals, ConnectCap, is
intended to be tied-off at implementation time to support interoperability with
cores that do not implement the connection protocol. Tie ConnectCap to logic
0 on cores that implement the protocol to force the connection state and all
other signals to remain connected at all times.

The state machine in Figure 65 describes the OCP connection states and the
legal transitions between the states. As described in Section 4.3.3.2, the
connection state is signaled by the master on the MConnect[1:0] signal. The
master and slave are free to request changes to the connection state at any
time, but the master is responsible to change the state safely to ensure that
no transactions or sideband events are corrupted. Safe transitions are the
result of some actions solely under the control of the master, and others
which involve interactions with the slave. The system conditions that cause a
master or slave to request a state change, and the complete list of actions
taken to ensure a safe transition are system specific and outside the scope of
the protocol; Figure 65 describes the transition conditions based on both the
signals defined by the protocol and internal information from the master
(which controls the state machine via its MConnect output).

Developers Guidelines 251

OCP-IP Confidential

Figure 65 State Diagram of Connection Protocol

In addition to the connection protocol signals MConnect and SWait, Figure 65
introduces several internal master conditions, which are described in
Table 49 below. Note that only one of conditions cCON, cDISC and cOFF can
be simultaneously true.

Table 49 Master Condition Description for Figure 65

cCON Master is prepared to change state to M_CON; SConnect is S_CON

cDISC Master is prepared to change state to M_DISC; SConnect is S_DISC

cOFF Master is prepared to change state to M_OFF; SConnect is a “don’t care”

mwait Master has chosen to transition through M_WAIT, independently from SWait

M_CON
MConnect=3

M_WAIT
MConnect=1

M_DISC
MConnect=2

M_OFF
MConnect=0

(cOFF | cDISC) &
(SWait | mwait)

cCON
& ~SWait
& ~mwait

cOFF
& ~SWait
& ~mwait

cCON
& ~SWait
& ~mwait

cOFF
& ~SWait
& ~mwait

(cCON | cDISC) &
(SWait | mwait)

cDISC
& ~SWait
& ~mwait

(cCON | cOFF) &
(SWait | mwait)

cDISC
& ~SWait
& ~mwait

cCON
& ~SWait
& ~mwait

cDISC &
~SWait & ~mwait

cOFF &
~SWait & ~mwait

252 Open Core Protocol Specification

OCP-IP Confidential

The conditions cCON, cDISC and cOFF should not be true unless the master
has determined that the connection state should change to the associated
stable state value and the master has completed its role in assuring a safe
transition. In particular, the master must assure that all transactions that it
has issued have completed and that it will not issue any new transactions
before setting either cDISC or cOFF while in M_CON. Note that it is up to the
master to determine which additional transactions to present to the slave
before responding to SConnect of S_DISC. The master should also attempt to
reach quiescence on its sideband signal outputs before leaving M_CON.
Furthermore, the cCON, cDISC and cOFF conditions must also ensure that
the master remains in each stable state for at least two OCP clock cycles
before transitioning, as described in Section 4.3.3.2.

If the slave does not assert SWait, the master is generally free to transition
directly between the stable states without entering M_WAIT. However, the
master is free to enter M_WAIT independently from SWait, and this situation
is modeled in the state machine using the mwait condition. Use of mwait is
particularly helpful in linking the connection state machines of two OCP
interfaces, such as in a bridging situation. For example, if the operation of the
bridge requires the use of SWait on the upstream (bridge slave) interface, then
the bridge can use mwait on the downstream interface (where it is master) so
that the downstream interface can always copy the upstream interface's
transitions to M_WAIT. This avoids the situation where the upstream
interface has gone to M_WAIT and the downstream interface must then stay
in its current stable state because the bridge cannot know what the next
upstream stable state will be.

While all dataflow communication must be complete before the master may
leave M_CON, the master cannot generally cause slave sideband communi-
cation to become quiescent. Slaves that have sideband outputs other than
SReset_n should assert SWait to S_WAIT whenever those outputs may be
active. S_WAIT forces the master to transition through M_WAIT, thereby
giving the slave the opportunity to end its sideband activity before the master
disconnects. Note that some sideband communication protocols may require
that the master respond (via its sideband outputs) to slave sideband signals
while in M_WAIT. This is why the connection protocol cannot require
quiescence on master sideband outputs before leaving M_CON and why
M_WAIT entered from M_CON is still considered connected. On the way back
to M_CON, sideband communication is not allowed until M_CON is reached.

New transactions may not be issued in the same cycle that the interface
transitions to M_CON. This is intended to allow the slave to sample the
MConnect signal with the OCP clock, rather than reacting to it in the same
cycle it is presented, which could adversely affect the operating frequency of
the slave with little apparent benefit.

A slave initiated disconnect (MConnect of M_DISC) may frequently occur
when a slave core is powered off, but the master side - which is likely a system
interconnect - is still powered. In such situations, the master side may need
to manage the situation where a system initiator attempts to communicate
with the disconnected slave. For instance, the master could automatically
respond to initiator transactions with errors when the connection state is
M_DISC. Future versions of this Specification may include specific features to
control the upstream behavior for situations involving disconnected slaves.

Developers Guidelines 253

OCP-IP Confidential

12.8 Debug and Test Interface
There are three debug and test interface extensions predefined for the OCP:
scan, clock control, and IEEE 1149. The scan extension enables internal scan
techniques, either in a pre-designed hard-core or end user inserted into a
soft-core. Clock control extensions assist in scan testing and debug when the
IP core has at least one other clock domain that is not derived from the OCP
clock. The IEEE 1149 extension is for interfacing to cores that have an IEEE
1149.1 test access port built-in and accessible. This is primarily the case with
cores, such as microprocessors, that were derived from standalone products.

These three extensions along with sideband signals (flags) can yield a highly
debuggable and testable IP core and device.

12.8.1 Scan Control
The width and meaning of the Scanctrl field is user-defined. At a minimum
this field carries a signal to specify when the device is in scan chain shifting
mode. The signal can be used for the scan clock if scan-clock style flip-flops
are being used. When this is a multi-bit field, another common signal to carry
would be one specifying the scan mode. This signal can be used to put the IP
core into any special test mode that is necessary before scanning and
application of ATPG vectors can begin.

12.8.2 Clock Control
The clock control test extensions are included to ease the integration of IP
cores into full or partial scan test environments and support of debug scan
operations in designs that use clock sources other than the OCP clock.

When an external clock source exists (for example, non-Clk derived clock), the
ClkByp signal specifies a bypass of the external clock. In that case the TestClk
signal usually becomes the clock source. The TestClk toggles in the correct
sequence for applying ATPG vectors, stopping the internal clocks, and doing
scan dumps as required by the user.

254 Open Core Protocol Specification

OCP-IP Confidential

OCP-IP Confidential

13 Developer’s Guidelines: OCP
Coherent System Architecture
Examples

In this chapter we show several examples of coherent systems, and discuss
the implementation of system-level cache coherence using the Coherence
Extensions described in Chapters 5 and 6. Please note that multiple
implementation choices are permitted using the coherence extensions. For
the purpose of illustration, we detail one choice and point out alternatives in
a few situations.

13.1 Snoop-Based Coherent Architecture
Figure 66 shows the block diagram of a snoop-based architecture with three
coherent masters: Proc0, Proc1, and Proc2. Each master has a main master
port, and a intervention slave port.

Proc0 generates a read miss. This in turn generates a CC_RDSH transaction
which will eventually place the cache line in Proc0’s local cache in the shared
(S) state. The actions resulting from this transaction are shown below:

The requesting coherent master, Proc0, initiates the CC_RDSH request
transaction on the main OCP port to gain a sharing ownership on a
memory address.

This request is delivered as a read to the memory slave, Memory (the
home of the read address), on its main OCP port.

Concurrently, the coherence request is turned into a corresponding
coherence intervention request (I_RDSH), which is delivered to other
coherence masters on their intervention ports. Figure 66 shows three
intervention requests sent to Proc0, Proc1, and Proc2, respectively. Note
the self-intervention request (Self I_RDSH) sent back to Proc0.

a

b

c

256 Open Core Protocol Specification

OCP-IP Confidential

Figure 66 Snoop-Bus-Based OCP Coherence System: Coherent Master and Slave
Ports, Communication Flow of a CC_RDSH Transaction

Proc2, which has the cache line in M state, relinquishes its ownership
on receipt of “Sys I_RDSH” request. Locally, it transitions to the S state.

An intervention response with data is returned on master Proc2’s
intervention port back to the coherent slave.

The coherent slave sends a response to the Proc0 response main port.
The coherent slave also updates the memory by sending a write
transaction to it.

The initiating master receives, on the main port, the coherence response
with the latest data and can update its coherence state to S for its
cached copy of data from the memory address accordingly.

Proc1

$s

Memory

Proc2

$s

OCP wrapper

OCP wrapper M-hit

OCP Coherence
Interconnect

Proc0

$s

OCP wrapper

Mp:
Req

Mp: Req -- the request channel on the main OCP port
Mp: Resp -- the response channel on the main OCP port
Ip: Req -- the request channel on the intervention port
Ip: Resp -- the response channel on the main OCP port

Mp:
Req

Mp:
Resp

Mp:
Resp

Ip:
Resp

Ip:
Req

Ip:
Resp

Ip:
Req

Ip:
Resp

Ip:
Req

C
C

_R
D

S
H

R
D

a

c

b

Sys I_RDSH

S
elf

I_R
D

S
H

Sys I_RDSH

Cache line Data and
SCohState to S

d

e

g

MpMp

f

h

Coherent Slave (Snoop
Controller)

d

e

f

g

Developer’s Guidelines: OCP Coherent System Architecture Examples 257

OCP-IP Confidential

The memory is updated with the modified value and has the latest copy.
This flow assumes that the memory has not returned the response to
the action in step (b). It is assumed that the memory controller will
squash the internal read from memory on receipt of the updated
contents at this step.

Note that we have shown one implementation choice. Other implementations
are permitted using the set of OCP coherence extensions.

13.2 Directory-Based Coherent System
In a directory-based coherence environment, the same “read memory address
and obtain a sharing ownership” transaction (CC_RDSH) can trigger a
different kind of communication such as being captured in Figure 67 below:

The initiating master, Proc0, initiates the transaction and sends a
coherence CC_RDSH request, on the main OCP port, to gain a sharing
ownership on a memory address. This coherence request is delivered to
the Directory/Memory slave (the home of the read address) on its main
OCP port.

h

a

258 Open Core Protocol Specification

OCP-IP Confidential

Figure 67 Directory-Based OCP Coherence System: Communication Flow of a
CC_RDSH Transaction

On the Directory/Memory slave, the directory-based coherence logic
lookup indicates that master Proc2 has the latest dirty data.

A self intervention request (Self I_RDSH) is returned to the initiating
master, Proc0, using its intervention port.

At the same time, a system coherence intervention request (Sys I_RDSH)
is sent from the intervention port of the Directory/Memory slave to the
intervention port of master Proc2 in order to retrieve the latest dirty
data.

In response master Proc2 relinquishes its exclusive ownership of the
memory address, e.g., by changing its cached line’s state from M (dirty)
to S (shared); and returns an intervention response with data from its
intervention port to the Directory/Memory slave.

Proc1

$s

Directory/Memory Slave

Proc2

$s

OCP wrapper

OCP wrapper M-hit

Proc0

$s

OCP wrapper

Mp:
Req

Mp: Req -- the request channel on the main OCP port
Mp: Resp -- the response channel on the main OCP port
Ip: Req -- the request channel on the intervention port
Ip: Resp -- the response channel on the main OCP port

Mp:
Req

Mp:
Resp

Mp:
Resp

Ip:
Resp

Ip:
Req

Ip:
Resp

Ip:
Req

Ip:
Resp

Ip:
Req

Ip:
Resp

Ip:
Req

CC_RDSH

a

Sys
 I_

RDSH

e

Cache line Data and
SCohState to S

Cache line Data and
SCohState to S

g

b

f

d

Self I_RDSH

c

MpMp

OCP
Interconnect

b

c

d

e

Developer’s Guidelines: OCP Coherent System Architecture Examples 259

OCP-IP Confidential

Upon receiving the latest dirty data, both the directory and the memory
are updated; in addition, the Directory/Memory slave returns the
response with data and with coherence state information (of S) back to
the initiating master Proc0 on its main port.

The initiating master Proc0 receives the latest data response and
updates its coherence state for the memory address accordingly.

13.2.1 Legal Coherence Dependency
Figure 68-(A) shows legal coherence communication (shown by dependency
arrows) between two coherence masters and a coherence slave (home of
memory addresses), and between ports on each master or slave.

13.2.1.1 Self-Intervention
Self-intervention is important for the design of the OCP Coherence
Extensions. If the self-intervention request is not sent back to the initiating
master, the master must enforce the order between the initiating master’s
main port response to a previously sent main port request and a new
conflicting intervention request. To prevent a race between the two coherence
masters trying to access the same cache line, the initiating master must block
the conflicting intervention request from changing the master’s coherence
state until after the response to its prior coherent request has been received
on its main port. This additional blocking creates a new dependency as shown
on top in Figure 68-(B). As shown in the diagram with the top dashed arrow
going from MP:resp to Ip:request, this forms a circular dependency and
violates the dependence ordering for deadlock avoidance.

Figure 68-(C) is a simplified legal dependency diagram that can be applied to
the main and intervention ports of a single coherence master or slave where
the self-intervention request sets the ordering of the initiator’s request with
respect to other coherent intervention requests at the initiating master’s
intervention port. With self-intervention, there is no circular dependency
between ports for a coherence master or slave; therefore, self-intervention is
critical to correct OCP coherence operation and to deadlock avoidance.

f

g

260 Open Core Protocol Specification

OCP-IP Confidential

Figure 68 Ports/Channels Dependencies in an OCP coherence system

13.3 OCP Coherence Models for Directory-
Based Designs
Abstract examples of coherent master, slave, and interconnect are shown in
the following sections and are used to express rules on how each coherent
master or slave reacts to incoming requests/responses, interacts with
coherence states, and produces outgoing requests/responses. Examples for
directory-based scheme and snoop-bus-based scheme are demonstrated—
assuming both use an invalidating-based coherence protocol. Proper serial-
ization points in each abstract model are also identified in our examples to
illustrate how memory coherency can be maintained.

OCP Coherence
Interconnect

Mp:
Req

Mp: Req -- the request channel on the main OCP port
Mp: Resp -- the response channel on the main OCP port
Ip: Req -- the request channel on the intervention port
Ip: Resp -- the response channel on the main OCP port

Mp:
Req

Mp:
Resp

Mp:
Resp

Ip:
Resp

Ip:
Req

Ip:
Resp

Ip:
Req

Legal port/channel dependencies

Self interventions

Un-desirable port/channel
dependencies

Ip:
Resp

Ip:
Req

Dependencies between main and
intervention ports of each
coherence master or slave

Mp:
Req

Mp:
Resp

Ip:
Resp

Ip:
Req

(A) With self-intervention

(C) With self-intervention

Coherence
Master 0

Coherence
Master 1

Coherence
Slave 0

Mp:
Req

Mp:
Resp

Ip:
Resp

Ip:
Req

(B) Without self-intervention

Mp:
Req

Mp:
Resp

Needed in order to decide
the order between Mp
responses and Sys
intervention requests

Developer’s Guidelines: OCP Coherent System Architecture Examples 261

OCP-IP Confidential

13.3.1 A Directory-Based OCP Coherent System
Figure 69 shows a directory-based OCP coherent system containing two dual-
CPU masters with L1/L2 caches, a with-cache coherent DMA master, a DSP
master with a non-coherent data cache, a legacy DMA master, a coherent I/
O slave, a Memory slave, a Directory module acting as a coherent slave and a
legacy master, and a legacy non-coherent I/O slave. This example design is
used through out this section to demonstrate how a directory-based coherent
system can be implemented using the OCP coherence extensions.

13.3.1.1 OCP Masters
As depicted in Figure 69, CPU1, 2, 3, 4, and Coherent DMA are coherent
masters with caches and each uses an outgoing coherent main port and an
incoming intervention port to communicate with cores in the system and to
maintain system-level (hardware) cache coherence. The DSP master has only
an outgoing coherent main port, which allows it to issue both legacy and
coherent OCP transactions. However, the internal, non-coherent data cache
inside the DSP module needs to be updated explicitly (for instance, by using
software) without relying on any hardware intervention requests. The legacy
DMA master uses only a legacy OCP port to read data from and write data to
the system area using only legacy OCP commands.

As mentioned, the Directory module is also an OCP master, which acts as a
proxy and uses a legacy OCP port to communicate with (coherent) slaves,
such as I/O “A” and Memory.

13.3.1.2 OCP Slaves
Two I/O slaves exist in the design. The legacy slave, I/O “B,” has an incoming
legacy OCP port. The coherent slave, I/O “A,” which also has an incoming
legacy OCP port but can only receive requests from the Directory module. The
Directory slave uses an incoming coherent OCP main port and an outgoing
intervention port to communicate with the rest of the system in order to
maintain system-level (hardware) cache coherence. The Directory slave is
responsible for serializing conflicting requests going to the Directory’s
corresponding home memory (e.g., the Memory module) and I/O module, and
keeping the directory state up to date for all requests. The Directory module
acts as a proxy master and reads from/writes to the Memory slave and the
coherent I/O “A” through the legacy OCP port.

262 Open Core Protocol Specification

OCP-IP Confidential

Figure 69 Directory-Based OCP Coherent Design Example

13.3.1.3 System Coherence
In this example design, MSI-based write-back cache coherent protocols are
used among coherent masters and the Directory module. Cache-to-cache
forwarding is not applied in the example. The cache line size used in the
system is assumed to be the same for all hardware coherent sub modules.
OCP port profiles and information regarding the system-level coherence for
the example design are described in the following sub sections.

Multiple serialization points in the example design are also illustrated in
Figure 69 where hardware logic is used to enforce serialization among these
places.

The high-level memory consistent views applied by the example implemen-
tation include:

• Every coherence master/slave participating in the coherence scheme has
the same notion of the request sequence.

CPU1
L1i, L1d

L2 (MSI)

CPU3,4

Coh $

Memory
Controller/DRAM
For Coherent and

Non-Coherent Address
Regions

DSP DMA2
(Legacy
Core)

OCP wrapper OCP
wrapper

OCP wrapper OCP wrapper

I/O B
Only for Non-
Coherent I/O

Address Regions

MP0 MP1 MP3 OCP4

MP6 OCP7

IP0 IP1

IP6

Coh DMA1

OCP
wrapper

MP2
IP2

OCP6

Coh $

Memory Sub System

CPU2
L1i, L1d

Non-
Coh $

I/O A
Only for Coherent

I/O Address
Regions

OCP8 OCP5

Serialization Points

Primary

Secondary

OCP Connections

Main Port (bi-directional, with coherence extensions)

Intervention Port (bi-directional)

Legacy Port (bi-directional)

OCP Coherent Interconnect

Directory
For Coherent Memory
Control/DRAM
and I/O A

Developer’s Guidelines: OCP Coherent System Architecture Examples 263

OCP-IP Confidential

• Every request reaching the serialization point will be served and
completed before any other subsequent conflicting requests.

• In the Directory module, which is the home of cache lines provided by the
memory module, conflicting requests are serialized (i.e., served and
completed one by one) in the order they arrive to the directory module.
This serialization is to prevent possible deadlock causing by two initiators
concurrently accessing to the same cache line. Note that a request that
hasn’t reached the serialization point has no effect on the requestor’s or
any other coherent master’s cache line state.

• Requests are also serialized in the order they arrive to the Directory
module for the coherent I/O A module.

13.3.1.4 System-Level Address Map, Coherent Core Identifications,
Connectivity

System Address Map
A system address map is applied by the example design where the global
address space is divided into address regions and holes as displayed in Figure
70. There are 9 address regions for the design—six of them (Address Region
0, 2, 3, 4, 6, and 8) are coherent address regions and three of them (Address
Region 1, 5, and 7) are non-coherent address regions, which under the
assumption that only legacy commands can be issued to non-coherent
address regions. Also illustrated in the address map Figure 70 is the address-
region-to-slave (of proxy slave) assignments:

• Address regions 0, 2, 3, 4, 6, and 8 are coherent address regions
associated with the Directory (proxy) slave with home data located at the
Memory and I/O A modules.

• Requests received by the Directory proxy and targeting at address
region 2 or 3 can be re-dispatched from the Directory module to the I/
O A module.

• Requests received by the Directory proxy and targeting at address
region 0, 4, 6, or 8 can be re-dispatched from the Directory module to
the Memory module.

• Address regions 1 and 7 are non coherent address regions associated with
the Memory module directly.

• Address region 5 is for the I/O B slave only.

Note that in the example design the OCP main port requests are routed by the
interconnect module based on the OCP MAddr field and the address-region-
to-slave (or proxy-slave) assignments mentioned above. In addition, care must
be taken to ensure that the request re-dispatching, which also uses the
MAddr field, between the Directory, I/O A, and Memory modules is handled
properly without interfering with the main routing domain between masters
and slaves.

264 Open Core Protocol Specification

OCP-IP Confidential

As for intervention port requests, since the MAddr field value is used to
indicate which data line is of interest for an intervention transaction, the
Coherent Core Identification is used to indicate the destination of each
intervention request.

System Connectivity
For simplicity, in this example design, we have the following address region
and command issuing limitations (note that these are not requirements
imposed by the OCP coherence extensions):

• Legacy slaves can only have non-coherent address regions (such as I/O B)

• Coherent slaves can have both coherent and non-coherent address
regions (such as the Memory slave), or have only coherent address regions
(such as I/O A).

• OCP coherent and coherence-aware commands can only target coherent
address regions.

• OCP legacy commands can be sent to only non-coherent address regions.

Figure 70 System Address Map

Address Region 1:
- Memory, non-coherent

Address Region 2:
- to Directory => I/O A, coherent

Address Region 8:
- to Directory => Memory, coherent

Address Region 5:
- to I/O B, non-coherent

Address Region 7:
- to /Memory, non-choerent

Address Region 4:
- to Directory => Memory, coherent

Address Region 3:
- to Directory => I/O A, coherent

Address Region 6:
- to Directory => Memory, coherent

Address Region 0:
- to Directory => Memory, coherent

Address
Base: 0x0

Coherent Address
Regions

Address
Max

Address
Space
Holes

Non-Coherent
Address Regions

Developer’s Guidelines: OCP Coherent System Architecture Examples 265

OCP-IP Confidential

The following main port connectivity maps (for domains 1 and 2) between OCP
masters and slaves are used for the example design in order to determine how
to deliver OCP main port or legacy port requests:

Domain 1:

• CPU1/2 Address Region 0, 1, 2, 3, 4, 5, 6, 7, and 8
We need: a connection to the Directory module for regions 0, 2, 3, 4, 6,
and 8; a connection to the Memory module directly for regions 1 and 7;
and a connection to the non-coherent I/O B module for region 5.

• CPU3/4 Address Region 0, 4, 6, and 8
We need a connection to the Directory module.

• Coherent DMA1 Address Region 2, 3, and 4
We need a connection to the Directory module.

• DSP Address Region 0, 1, 4, 6, 7, and 8
We need a connection to the Directory module for regions 0, 4, 6, and 8,
and a connection to the Memory module for regions 1 and 7.

• Legacy DMA2 Address Region 1, 5, and 7
We need a connection to the Memory module for regions 1 and 7, and a
connection to the non-coherent I/O B for region 5.

Domain 2:

• Directory Address Region 0, 4, 6, 8 located at the Memory module.
We need a connection between the Directory proxy and the Memory
module

• Directory Address Region 2 and 3 located at I/O A.
We need a connection between the Directory proxy and the I/O A module.

Based on the above main port and legacy port connectivity, plus, how caches
and intervention ports are used structurally in the example design, the
following intervention port connectivity needs to be established in order to
deliver system-level cache interventions:

• Directory CPU1/2, CPU3/4, and Coherent DMA1
We need: an intervention connection between the Directory proxy and
CPU1/2; an intervention connection between the Directory proxy and
CPU3/4; and an intervention connection between the Directory proxy and
Coherent DMA1.

Since no cache-to-cache transfers are allowed, no direct connectivity between
coherent OCP masters is needed.

In the example design, the underlying OCP coherent interconnect only needs
to provide connections as mentioned in this subsection; therefore, a fully
connected network is not needed. Also, in contrast to a snoop-bus-based OCP
coherent design and a design with cache-to-cache transfer, there is no need
to:

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

266 Open Core Protocol Specification

OCP-IP Confidential

• Copy a main port coherent request and turn it into multiple intervention
port requests.

• Convert an intervention port response into a main port coherent response
delivering back to the originating coherent master.

Coherent Core Identifications (CohID)
In this example design, we use the MReqInfo signal (3 bits) on the main port
and on the intervention port to carry the Coherent Core Identification
information for coherent requests and for intervention requests, respectively.
The interconnect module utilizes these info fields to route intervention port
requests and to return intervention port responses properly. The MReqSelf
signal on the intervention port is used to indicate whether an intervention
port request is a self-intervention request or a system-intervention one.
Table 50 summarizes the coherent core identification numbers, cache
protocols, cache line sizes, and OCP data word sizes used by masters and
slaves capable of sending and receiving coherent requests and responses in
the example.

Table 50 Coherent Core Identifications and Caching Scheme

Return route for responses corresponding to each main port request can be
determined by the interconnect module internally; therefore, no addition
main port response signal is needed. Similarly, return route for responses
corresponding to each intervention port request can also be determined by the
interconnect module internally; thus, the coherent core identifications for the
Directory slave may not be needed—this is an implementation choice.

Master Core
Name

CohID # Cache OCP Word
Size

Notes

Scheme Line Size

Interconnect
or default

0 n/a n/a n/a Reserved

CPU1/2 1 Invalidate
MSI

64 bytes 8 bytes

CPU3/4 2 Invalidate
MSI

64 bytes 8 bytes

Coherent
DMA1

3 Invalidate
MSI

64 bytes 8 bytes

DSP 4 Invalidate
MSI

64 bytes 8 bytes DSP has a non system coherent
internal cache. And, we need a
CohID for it so the coherent slave
module can distinguish DSP
coherent requests from others.

Directory 5 MSI 64 bytes 8 bytes May not be needed

Developer’s Guidelines: OCP Coherent System Architecture Examples 267

OCP-IP Confidential

13.3.2 Port Profiles
Profiles for all coherent main port and intervention ports are described to
illustrate how the OCP coherence extensions are applied in the example
design.

13.3.2.1 Coherent Master Mp0/1/2 and Ip0/1/2 Ports
As mentioned in the previous sections, for main ports Mp0 and 2, we want to
be able to send coherent requests, coherence-aware requests, and legacy
requests. For main ports Mp1 and Mp3, only coherent and coherence-aware
requests can be issued, respectively. For intervention ports Ip0, 1, and 2, all
intervention requests can be issued. Also, coherent write data words are
delivered on the main port. Plus, on each main or intervention port, only one
thread is configured; and, the non-blocking flow control protocol is used.

In the following examples, writeresp_enable = 1. Coherent write
transactions such as CC_WB have their cache state finalized only on the
receipt of SResp on the main port. Alternative implementations where the
cache state is finalized earlier, at the time the intervention port response is
generated, are also feasible.

OCP Main Port
Table 51 lists important (coherent) parameters and signals used by the main
ports Mp0, 1, and 2, for the example design. Parameters not shown here are
using their default settings.

Table 51 Parameters/Signals Used by Mp0, Mp1, and Mp2

Parameter Value Notes Corresponding Signals

coh_enable
cohcmd_enable
cohnc_enable
cohwrinv_enable

1
1
1
1

Coherent and legacy
commands are issued
on Mp0 and 2. Only
coherent commands
are issued on Mp1.

MCohCmd, extended
MCmd

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable
burstseq_strm_enable

1
1
1
5
1
1
1
1
1
1

Support SRMD bursts
and cache line burst
sequences (INCR,
WRAP, XOR, and more)

MBurstSingleReq,
MDataValid,
MBurstLength,
MBurstPrecise,
MBurstSeq

byteen
mdatabyteen

1
1

Allow partial cache line
transfer for reads and
writes

MByteEn, MDataByteEn

writeresp_enable 1 Writes have responses

intport_writedata 0 Coherent write data
words are delivered
using the main port

268 Open Core Protocol Specification

OCP-IP Confidential

OCP Intervention Port
Table 52 lists important coherent parameters used by the intervention port 0,
1, and 2, for the example design. Parameters not shown here are using their
default settings.

Table 52 Parameters Used by Ip0, Ip1, and Ip2

cohstate_enable 1 SCohState

reqinfo 1 Use to carry coherent
ID on bit 0, 1, and 2

MReqInfo

threads
sthreadbusy
sthreadbusy_exact
sdatathreadbusy
sdatathreadbusy_exact
mthreadbusy
mthreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded
non-blocking protocol

SThreadBusy,
SDataThreadBusy,
MThreadBusy

Parameter Value Notes Corresponding Signals

None Required signals MReqSelf, MCmd,
SCohState

mdata
datahandshake

0
0

No write data

reqinfo 1 Use to carry coherent
ID on bit 0, 1, and 2

MReqInfo

intport_split_tranx 1 Allow response
datahandshake
protocol

SDataValid

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable

1
1
1
5
1
1
1
1
1

Support SRMD bursts
and cache line burst
sequences (INCR,
WRAP, and XOR)

MBurstSingleReq,
MDataValid,
MBurstLength,
MBurstPrecise,
MBurstSeq

Parameter Value Notes Corresponding Signals

Developer’s Guidelines: OCP Coherent System Architecture Examples 269

OCP-IP Confidential

13.3.2.2 Coherence-Aware Master Mp3 Port
The Mp3 port is used to send coherence-aware requests and legacy requests.
Also, coherent write data words must be delivered on the main port. Plus, only
one thread is configured; and, the non-blocking flow control protocol is used.
Parameters not shown here use default settings.

Table 53 Parameters/Signals Used by Mp3

byteen
mdatabyteen

0
0

Read for ownership
always return the full
cache line

writeresp_enable 1 Writes have responses

threads
sthreadbusy
sthreadbusy_exact
mthreadbusy
mthreadbusy_exact
mdatathreadbusy
mdatathreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded
non-blocking protocol

SThreadBusy,
MThreadBusy,
MDataThreadBusy
(intport_split_tranx == 1)

Parameter Value Notes Corresponding Signals

coh_enable
cohcmd_enable
cohnc_enable
cohwrinv_enable

1
1
1
0

coherence-aware and
legacy commands are
issued on Mp3

MCohCmd, extended
MCmd

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable
burstseq_strm_enable

1
1
1
5
1
1
1
1
1
1

Support SRMD bursts
and burst sequences
INCR, WRAP, XOR, and
more.

MBurstSingleReq,
MDataValid,
MBurstLength,
MBurstPrecise,
MBurstSeq

byteen
mdatabyteen

1
1

Allow partial transfer for
reads and writes

MByteEn, MDataByteEn

writeresp_enable 1 Writes have responses

intport_writedata 0 Must be 0 since there is
no intervention port for
this master

Parameter Value Notes Corresponding Signals

270 Open Core Protocol Specification

OCP-IP Confidential

13.3.2.3 Legacy Master OCP4 and OCP5 Ports
A regular single-threaded, non-blocking OCP connection is configured for
OCP4 and for OCP5 here (e.g., coh_enable = 0); and it allows SRMD bursts,
precise bursts of INCR, STRM, and UNKN sequences, byte enable signals, and
writes with responses.

13.3.2.4 Coherent Slave Mp6 and Ip6 Ports
As mentioned in the previous sub sections, for main ports Mp6, we want to
be able to carry coherent requests, coherence-aware requests, and legacy
requests. For intervention ports Ip6, all intervention requests can be issued.
Since these ports are used by slaves, the coherent write data words must be
delivered on the main port. Moreover, on each main or intervention port, only
one thread is configured; and, the non-blocking flow control protocol is used.

OCP Main Port
Table 54 lists the most important (coherent) parameters and signals used by
main ports 5 and 6 in the example design. Parameters not shown here are
assumed to use their default settings.

cohstate_enable 0 Only issuing coherence-
aware commands

NO SCohState

reqinfo 1 Use to carry coherent ID
on bit 0, 1, and 2

MReqInfo

threads
sthreadbusy
sthreadbusy_exact
sdatathreadbusy
sdatathreadbusy_exac
t
mthreadbusy
mthreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded
non-blocking protocol

SThreadBusy,
SDataThreadBusy,
MThreadBusy

Parameter Value Notes Corresponding Signals

Developer’s Guidelines: OCP Coherent System Architecture Examples 271

OCP-IP Confidential

Table 54 Parameters Used by Mp5 and Mp6

OCP Intervention Port Ip6
Intervention port Ip6 uses the same settings listed in Table 52.

13.3.2.5 Legacy Slave Ports: OCP6, 7, and 8
A regular single-threaded, non-blocking OCP connection is configured for
OCP6, 7, and 8 here (e.g., coh_enable = 0); and it allows SRMD bursts, byte
enable signals, and writes without responses. OCP6 can support precise
bursts of INCR, WRAP, and XOR sequences. OCP7 and 8 can support precise
bursts of INCR, STRM, and UNKN sequences.

Parameter Value Notes Corresponding Signals

coh_enable
cohcmd_enable
cohnc_enable
cohwrinv_enable

1
1
1
1

Coherent, coherence-
aware, and legacy
commands can be
issued on Mp6.

MCohCmd, extended
MCmd

burstsinglereq
datahandshake
burstlength
burstlength_wdth
burstprecise
burstseq
burstseq_incr_enable
burstseq_wrap_enable
burstseq_xor_enable
burstseq_strm_enable
burstseq_unkn_enable

1
1
1
5
1
1
1
1
1
1
1

Support SRMD bursts
and cache line burst
sequences (INCR,
WRAP, XOR, and more)

MBurstSingleReq,
MDataValid,
MBurstLength,
MBurstPrecise,
MBurstSeq.

byteen
mdatabyteen

1
1

Allow partial cache line
transfer for reads and
writes

MByteEn, MDataByteEn

writeresp_enable 1 Writes have responses

intport_writedata 0 Must be 0 for slaves

cohstate_enable 1* The master interconnect
side has no coherent
caches but it can
deliver coh and coh-
non-cached requests.

SCohState

reqinfo 1 Use to carry coherent ID
on bit 0, 1, and 2

MReqInfo

threads
sthreadbusy
sthreadbusy_exact
sdatathreadbusy
sdatathreadbusy_exac
t
mthreadbusy
mthreadbusy_exact

1
1
1
1
1
1
1

Use single-threaded
non-blocking protocol

SThreadBusy,
SDataThreadBusy,
MThreadBusy

272 Open Core Protocol Specification

OCP-IP Confidential

13.3.3 Master Implementation Models
The master implementation model is functionally similar to the abstract
master model discussed in Section 5.10.

13.3.3.1 Coherent Master Model
The cache controller of a caching master (e.g., an initiator with caches) is
responsible for (1) determining if a memory request is coherent or not (e.g.,
targeting at a cacheable/coherent address space or a non-cacheable/non-
coherent address space); and (2) issuing the corresponding request to the
network. Table 55 below shows such a decision process and is used by
coherent masters, CPU1/2, CPU3/4, and Coherent DMA1 in the example
design.

Note that not all masters need to be able to issue all types of requests in the
example design.

Table 55 Sending Coherent Master (with Caches) Main Port Requests

Master Core Type Targeting
System Address
Region Type

Intended
Transactio
n

MSI Cache Mp OCP Port Request

Status State

Coherent Coherent
Address Space

Read or LL Hit M None

Hit S None

Miss M*

* A cache miss is encountered and a dirty line is the victimized line. Thus, a CC_WB request
is issued for the victimized line first before sending a CC request for the cache miss.

CC_WB, CC_RDSH

Miss S†

† A cache miss is encountered and a shared line is the victimized line, i.e., no writebacks are
needed.

CC_RDSH

Miss I CC_RDSH

Write or
SC

Hit M None

Hit S CC_UPG

Miss M* CC_WB, CC_RDOW

Miss S† CC_RDOW

Miss I CC_RDOW

Flush or
Purge

Any Any CC_I

Non-Coherent
Address Space

Read n/a n/a RD

LL n/a n/a RDL

Write n/a n/a WR or WRNP

SC n/a n/a WRC

Developer’s Guidelines: OCP Coherent System Architecture Examples 273

OCP-IP Confidential

Mp Port Request Transactions
When a coherent master wants to inject a main port request, Table 55 is used
to decide what main port request should be sent given the targeting address
region (can be determined by the targeting cache-line address and the system
address map), the intention (e.g., read or write), internal cache state of the
cache line (e.g., M, S, or I), and the cache scheme used by the master. For
instance, when the CPU1/2 master wants to write to a cache line, which is in
the shared state, to a coherent address space, the CPU master will send a
CC_UPG coherent request on the main port to be delivered to the home
directory slave.

Processing Ip Port Requests and Returning Ip Port Responses
When intervention requests can be processed, the coherent master’s internal
cache states need to be updated accordingly; then, intervention responses
need to be returned. Table 56 is used by coherent masters in the example
design to decide how to update their internal caches and what intervention
port responses to be returned based on: the master type, the intervention
request type (e.g., self or system), the intervention command (e.g., read for
ownership or read for sharing), and the current cache line state. For instance,
when the CPU3/4 master receives a system I_UPG intervention request and
the targeting cache line is in the S state, the CPU master will invalidate its
internal copies of the cached line (i.e., change state from S to I) and return an
intervention response of SResp = OK and SCohState = I on its intervention
port—the corresponding row in Table 56 is shown in bold face and highlighted
blue.

Please note that after receiving some self intervention requests, the cache may
get into a transient state (e.g., I_to_S, SI_to_M, or MSI_to_I) as shown in
Table 56. The cache line will get out of the transient state after receiving its
corresponding Mp port responses. Also, the post fix letter in these transient
states indicates the final cache line installing state.

274 Open Core Protocol Specification

OCP-IP Confidential

Table 56 Processing Intervention Requests

Upon Receiving Mp Port Responses
A main port coherent transaction is completed only after the request’s main
port responses are received. At that point, the master needs to decide whether
to take the ownership of the cache line returned among responses or just to
keep a local share copy of the line. It is also possible to do nothing. Moreover,
requests blocked previously may also need to be unblocked. Table 57 lists
how to decide what actions to be taken by a coherent master in the example
design.

Master Core
Type

Ip Port
Intervention
Type

Received
Transaction

MSI Cache
(Transient) State

Generating Outgoing Ip
Response and Installing
Cache State (MSI)

From To

Coherent Self
Intervention

I_RDOW M n/a n/a

I, S SI_to_M SResp = OK; SCohState = I*

* For self intervention responses, the SCohState does not get used by the directory module;
therefore, the signal value is a “don’t care”. For these system intervention responses, the
SCohState is also a “don’t care”.

I_RDSH M, S n/a n/a

I I_to_S SResp = OK; SCohState = I*

I_UPG M n/a n/a

S, I SI_to_M SResp = OK; SCohState = I*

I_I,I_WB M, S, I MSI_to_I SResp = OK; SCohState = I*

System
Intervention

I_RDOW M I SResp = DVA, SData;

SCohState = M†

† The SCohState indicates the prior cache state of the targeting cache line.

S, I I SResp = OK; SCohState = I*

I_RDSH M S SResp = DVA, SData;

SCohState = S‡

‡ The SCohState indicates the installing (e.g., next) cache state of the targeting cache line.

S, I Same state SResp = OK; SCohState = I*

I_UPG M I SResp = DVA, SData;

SCohState = M†

S, I I SResp = OK; SCohState = I*

I_I M, S, I I SResp = OK; SCohState = I*

I_WR M, S, I Same state SResp = OK; SCohState = I*

Developer’s Guidelines: OCP Coherent System Architecture Examples 275

OCP-IP Confidential

Table 57 Upon Receiving Main Port Responses

13.3.3.2 Coherence-Aware DSP Model
For the DSP master, in addition to legacy requests and responses (targeting
non-coherent address spaces) that can be injected and received on the OCP
main port, coherence-aware requests and responses (targeting coherent
address spaces) are also issued and received on the OCP main port. Table 58
shows the requests generated on the main port for the intended transactions.

Table 58 Sending Coherence Aware Main Port Requests

No hardware cache updates are considered in the example design. However,
the DSP master can still have software caches where, for instance, system
software is used to move a large amount of data from memory to an internal
data buffer (inside the DSP) and from the data buffer to the memory before
and after data processing, respectively.

Master Core Type Corresponding Mp
Port Request Type

Received Mp Port
Response

Actions (for each
transient state, the final
cache line state is
determined by the
transient state alone)

Coherent CC_ read-type
commands

SResp DVA, SData,
SCohState

Send SData to Cache
and Update Cache

State to SCohState*.
Unblock blocked
fences.

* The SCohState indicates the installing (e.g., next) cache state of the targeting cache line.

CC_ write-type
commands

SResp DVA, ScohState Update Cache State to

SCohState*. Unblock
blocked fences.

CC_UPG command SResp OK, SCohState; or
SResp DVA, SCohState

Update Cache State to

SCohState*. If DVA, also
send SData to Cache.
Unblock blocked
fences.

Other CC_ commands SResp OK, SCohState Update Cache State to

SCohState*. Unblock
blocked fences.

Master Core Type Targeting System
Address Region
Type

Intended
Transaction

Mp OCP Port
Request

Coherence Aware Non-Coherent
Region,
Coherent Region

Read RD

LL RDL

Write WR or WRNP

SC WRC

276 Open Core Protocol Specification

OCP-IP Confidential

When main port responses are received, the DSP master’s OCP wrapper only
needs to return data words for reads as indicated in Table 59.

Table 59 Upon Receiving Main Port Responses From Coherent Address Space

13.3.3.3 Legacy DMA Models
Only legacy requests and responses can be injected and received on the legacy
OCP port. In the example design, only requests targeting at non-coherent
address spaces are issued—such as shown in Table 60. When legacy
responses are received, the master only needs to return data words for reads
as indicated in Table 59.

Table 60 Sending Legacy Main Port Requests

13.3.4 Slave Implementation Models
In the example design, slaves receive either main port or legacy port requests
from the OCP coherent interconnect and return the corresponding responses
using the main port. Coherent responses are tagged with proper installing
cache-line states. On the other hand, coherent slaves inject system or self
intervention requests targeting at coherent masters and then wait for
intervention response returned on the intervention port. The installing cache-
line state tagged with a coherent response can be used, by the coherent slave,
to maintain system-level coherence for the cache line targeted by the
response.

13.3.4.1 Coherent Directory Model
In the example design, the coherent Directory slave keeps the outstanding
cache locations (using a CohID-indexed vector) and cache states for all cache
lines belonging to the Memory module and/or the coherent I/O A. Figure 71
illustrates this concept and shows only the coherent directory slave

Master Core Type Corresponding Mp Port
Request Type

Received Mp Port
Response

Actions

Coherence-aware Legacy read-type
commands

SResp DVA,
SData

Return SData to
DSP or CPU

Legacy write-type
commands

SResp DVA None

Other legacy
commands

SResp OK None

Master Core Type Targeting System
Address Region Type

Intended
Transaction

Mp Ocp Port
Request

Legacy Non-Coherent Region Read RD

Write WR or WRNP

Developer’s Guidelines: OCP Coherent System Architecture Examples 277

OCP-IP Confidential

connecting not only to the interconnect on the top with Mp6/Ip6 but also a
legacy port OCP5 in order to send regular OCP requests to the Memory
module and the I/O A.

Checking Directory Status and Dispatching Interventions or
Memory/I/O Accesses
Upon receiving a main port coherent request, the Directory slave checks its
cache directory states first to figure out whether there are outstanding shared
cache lines or cache owner in order to decide what actions to take. For
instance, the Directory module realizes that the targeting memory data line
requested for ownership by CPU1/2 is outstanding and owned by the CPU3/
4 (considering dirty). A self I_RDOW intervention request and a system
I_RDOW intervention request will be dispatched by the Directory slave to the
CPU1/2 master and the CPU3/4 master, respectively. Table 61 is used to
capture the Directory module’s actions upon receiving a main port request
and to decide whether home memory accesses, coherence I/O accesses, or
intervention port requests (self and/or system) need to be initiated. Please
note that not all commands’ actions are currently listed in Table 61.

Figure 71 Directory-Based OCP Coherent Memory Slave

Memory
Controller/

DRAM

OCP Main Port Connection
(with signals going both
directions and the
coherence extension)

OCP Intervention Port
Connection (with signals
going both directions)

Directory-Based OCP wrapper

Mp6 Ip6

Legacy OCP Port
Connection (with signals
going both directions)

Directory

I/O A

Interconnect

OCP5
OCP6OCP8

278 Open Core Protocol Specification

OCP-IP Confidential

Table 61 Directory Module’s Request Action Table

Received Mp
Request

Action Comment

Sending Self
Intervention on
Ip*

Sending System
Intervention on
Ip†

Send Legacy
Requests to the
Memory Module
or I/O A†

CC_RDOW ActionX(I_RDOW):
• Send self

I_RDOW request
with proper Coh
Core ID in MRe-
qInfo

ActionY1(I_RDOW):
• Send system

I_RDOW with
Coh Core ID in
MReqInfo for
each outstand-
ing Coh Core ID

• Wait for N Ip
responses

If N == 0:
ActionZ1: Send RD
to memory or I/O

There can be no
outstanding
Coherent Core IDs
for the targeting
cache line; thus, N
is 0

CC_RDSH Take
ActionX(I_RDSH)

ActionY2(I_RDSH):
• Send system

I_RDSH with Coh
Core ID in MRe-
qInfo for the out-
standing Coh
Core ID with
state == M

• Will wait for N
responses (N can
be either 1 or 0)

If N == 0:
Take ActionZ1

CC_RDDS Take
ActionX(I_RDDS)

Take
ActionY2(I_RDDS)

If N == 0: Take
ActionZ1

CC_UPG Take
ActionX(I_UPG)

Take
ActionY1(I_UPG)

If N == 0: Take
ActionZ1

CC_WRI +
data words

Take
ActionX(I_WRI)

Take
ActionY1(I_WRI) +
Mp data words

If N == 0:
ActionZ2:
• Send WR + data

words to mem-
ory or I/O

May not need to
wait for the
previous self
intervention
request to be
completed before
launching

CC_I Take ActionX(I_I) Take ActionY1(I_I) n/a May not need to
wait for the
previous self
intervention
request to be
completed before
launching

CC_WB/
CC_CBI +
data words

Take
ActionX(I_WB/
I_CBI)

n/a Take ActionZ2

CC_CB +
data words

Take ActinX(I_CB) n/a Take ActionZ2

Developer’s Guidelines: OCP Coherent System Architecture Examples 279

OCP-IP Confidential

After Receiving All Intervention Responses or the Memory/I/O
Responses
The Directory module updates the directory state for an outstanding coherent
transaction according to responses received on the intervention port.
Responses received on the intervention port include the transaction’s self
intervention response and one or more system intervention responses. After
examining the directory state and all responses including possible home
memory or I/O read responses on the legacy OCP5 port, the directory model
generates and sends out main port responses (sometime with SData words)
to complete the open coherent transaction. Note that other implementation
choices are possible—in certain cases, the directory does not need all
responses to send out the main port response.

Table 62 is used to capture the Directory module’s actions upon receiving all
needed information before returning main port responses.

WR + data
words to
coherent
address
space

n/a Take
ActionY1(I_RDOW)

If N == 0: Take
ActionZ2

RD to
coherent
address
space

n/a Take
ActionY2(I_RDSH)

If N == 0: Take
ActionZ1

WR + data
words to
non-
coherent
address
space

n/a n/a Send WR + data
words to memory
or I/O

RD to non-
coherent
address
space

n/a n/a Send RD to
memory or I/O

* When there are no outstanding self intervention requests.
† When the corresponding self intervention requests can be sent.

Received Mp
Request

Action Comment

Sending Self
Intervention on
Ip*

Sending System
Intervention on
Ip†

Send Legacy
Requests to the
Memory Module
or I/O A†

280 Open Core Protocol Specification

OCP-IP Confidential

Table 62 Directory Module’s Response Action Table

Original Mp
Request

After Receiving Ip
Responses or Memory/
I/O Responses: Send
Mp Responses

Action

Any Data Words Going
to Memory or I/O

Directory State Changes

CC_RDOW IF Ip SResp == DVA:
Send Mp SResp of DVA,
Ip response data

words, SCohState of M*

ELSE: Send Mp SResp of
DVA, SData = memory
or I/O data words,

SCohState of M*

n/a Reset Directory cache
line state and set the
originating Coh Core ID
slot to M

CC_RDSH IF Ip SResp == DVA:
Send Mp SResp of DVA,
Ip response data

words, SCohState of S*

ELSE: Send Mp SResp of
DVA, SData = memory
or I/O data words,

SCohState of S*

Ip response SData
words

IF (Ip SResp == DVA): Set
Directory cache line
state for the originating
Coh Core ID slot to S
and replace the old
dirty slot’s state from M
to S (for the dirty Coh
Core ID)

CC_RDDS IF Ip SResp == DVA:
Send Mp SResp of DVA,
Ip response data

words, SCohState of I*

ELSE: Send Mp SResp of
DVA, SData = memory
or I/O data words,

SCohState of I*

n/a n/a

CC_UPG IF Ip SResp == DVA:
Send Mp SResp of OK,

SCohState of M* ELSE:
Send Mp SResp of OK,

SCohState of M*

n/a Reset Directory cache
line state and set the
originating Coh Core ID
slot to M

CC_WRI + data
words

Send Mp SResp of OK,

SCohState I*
Mp request MData &&
Ip response SData
words

Reset Directory cache
line state

CC_I Send Mp SResp of OK,

SCohState I*
n/a Reset Directory cache

line state

CC_WB/ CC_CBI +
data words

Send Mp SResp of OK,

SCohState I*
IF directory slot was M:
Mp request MData

IF directory slot was M:
Reset Directory cache
line state

CC_CB + data
words

Send Mp SResp of OK,

SCohState S*
n/a IF directory slot was M:

set the originating Coh
Core ID slot to S

Developer’s Guidelines: OCP Coherent System Architecture Examples 281

OCP-IP Confidential

13.3.4.2 Legacy I/O Model
Only legacy requests and responses can be received and returned on the
legacy OCP port.

13.3.5 Directory-Based Interconnect System-Level Model
Delivery rules and capabilities employed by the directory-based interconnect
include:

• Interconnect delivers all Mp requests originating by initiating masters to
the Mp interface of either the Directory/Memory slave, the I/O A slave, or
the I/O B slave based on the MAddr field value and the address-region-to-
slave assigned described before.

• Interconnect is capable of doing reverse routing in order to return Mp
responses back to their initiating masters.

• Interconnect delivers all Ip requests, based on the coherent ID #
embedded in the MReqInfo signal, from coherent slaves to coherent
masters.

• Interconnect is capable of doing reverse routing in order to return Ip
responses from coherent masters back to coherent slaves.

WR + data words
targeting coherent
address space

Send Mp SResp of OK,

SCohState I†
Mp request MData &&
Ip response SData
words

Reset Directory cache

line state†

RD targeting
coherent address
space

IF Ip SResp == DVA:
Send Mp SResp of DVA,
Ip response data

words, SCohState of I†
ELSE: Send Mp SResp of
DVA, SData = memory
or I/O data words,

SCohState of I†

Ip response SData
words

IF (Ip SResp == DVA):
Replace the old dirty
slot’s state from M to S
(for the dirty Coh Core
ID)

WR + data words
targeting non-
coherent address
space

Legacy SResp DVA Mp request MData n/a

RD targeting non-
coherent address
space

Legacy SResp DVA,
SData = memory or I/O
data words

n/a n/a

* The SCohState indicates the installing (i.e., next) cache state of the targeting cache line.
† For self intervention responses, the SCohState does not get used by the directory module;

therefore, the signal value is a “don’t care.” For these system intervention responses, the
SCohState is also a “don’t care.”

Original Mp
Request

After Receiving Ip
Responses or Memory/
I/O Responses: Send
Mp Responses

Action

Any Data Words Going
to Memory or I/O

Directory State Changes

282 Open Core Protocol Specification

OCP-IP Confidential

• When connectivity is defined, a (virtual) data stream is maintained
between a master Mp to a slave Mp, or a slave Ip to a master Ip.

• No burst interleaving when multiple initiator threads are turned into one
target thread at the thread merging points in the interconnect module (we
use only single-threaded, non-blocking protocol for all OCP ports in the
example design).

In this example design, we do not support cache-to-cache forwarding (i.e., the
3-way communication). However, if it is supported, additional capability
needs to be provided by the interconnect. For instance, a virtual data stream
between a coherent master’s Ip response channel and another coherent
master’s Mp response channel needs to be established. This also implies that
each coherent transaction originated on a main port may get a Data response
and a completion response where: (1) both responses may come back in the
same time; (2) the Data response may come back first; or (3) the completion
response may come back first inside the interconnect. Hence, special
attention needs to be taken care of by the interconnect or the coherent
master.

13.3.5.1 3-Way Communication Challenges
A typical optimization that a directory-based coherent system can apply is the
3-way communication (or 3-party transaction or cache-to-cache transfer). 3-
way communication enables a coherence master, who is forced to write back
a dirty copy due to a system intervention, to forward the intervention response
and data directly to the requestor. In other words, the intervention port
response is routed from the cache line owner’s intervention port to the
response channel of the requestor’s main port directly for improving
performance.

Details regarding three-way forwarding will be described in Section 13.3.7.1
on page 287.

13.3.6 Coherent and Coherent-Non-Cached Transaction
Flows
A few transaction flows are listed in this sub section and the objective is to
capture the relationships between masters and slaves by using transition
tables defined in the previous sub sections.

13.3.6.1 Cache Write Back Transaction Flow
Table 72 displays the high-level data flow for a coherent CC_WB transaction
originating from CPU 1/2. Transition tables used at each stage is also labelled
along with Mp and Ip request and response transfers.

A space-time diagram corresponding to activities shown in Figure 72 is also
displayed on the next page. Note that Figure 73 is intended to be used to
capture the causality among requests and responses happened for the
example design on the main ports, the intervention ports, and/or the legacy
ports. The absolute timing differences between messages bear no meaning

Developer’s Guidelines: OCP Coherent System Architecture Examples 283

OCP-IP Confidential

here. The diagram is not intended to accurately depict the duration of any
individual transaction or series of transactions. Conventions used in all
space-time diagrams include:

• Time flows from top to bottom.

Figure 72 CC_WB Transaction High-Level Data Flow

• All ports of each OCP entity are shown.

• Transactions are represented by arrows between ports.

• Labels indicate the major action(s), including state change(s), that are
performed by the transaction.

Directory

CPU 3/4

L2

OCP wrapper

OCP Coherence
Interconnect

CPU 1/2

L2

OCP wrapper

Req

Req

Resp

Resp Resp Req

Resp Req Resp Req

T
ab

le 6: C
C

_W
B

 (w
ith

 d
ata)

a

T
ab

le 12: S
E

L
F

-IN
T

V

I_W
B

 (n
o

 d
ata)

M

c

T
ab

le 13: S
R

esp
 O

K
, S

C
o

h
S

tate I

f

Directory:
MAddr Where State
0x0 @CPU1/2 M

b

Directory:
MAddr Where State

None

I

d

T
ab

le 7: S
resp

 O
K

, S
C

o
h

S
tate I

g

Mp0 Ip0

Mp6 Ip6

Ip1

DMA 1

$$

Resp Req

Ip2

Req Resp

OCP5

Memory
Controller/DRAM

Req Resp

OCP6

e

284 Open Core Protocol Specification

OCP-IP Confidential

Figure 73 CC_WB Transaction Flow

For instance, Table 73 is used to illustrate the following:

• For CPU 1/2, after it issues a CC_WB main port request and two
datahandshake phases (MData0 and MData1), it will receive a self I_WB
intervention request on its intervention port Ip0 and after the CPU
responding with an intervention port response (SResp OK and SCohState
of I), it will eventually receive a main port SResp to indicate the completion
of it CC_WB transaction (and the cache line state goes to I).

• On the other hand, the Directory module not only sends a self intervention
request back to CPU 1/2 (indicated by CID1), it also writes back the cache
line (MData0 and MData1) to its home Memory module using its legacy
OCP5 port.

13.3.6.2 Read for Share and Dirty at a Master Cache
Figure 74 displays the space-time data flow for a coherent CC_RDSH
transaction originating from CPU 1/2 where the dirty data is located at the
CPU 3/4 master’s cache. Note that the Directory module knows that the latest
dirty cache line is stored at the cache of the CPU 3/4 module (CID2).
Therefore, in addition to return a self intervention request back to the
originating CPU 1/2 module, it also sends a system intervention request from
the Ip6 port to the CPU 3/4 module’s intervention Ip1 port (the request’s
MReqInfo signal carries “system” and CID2). After receiving the intervention
I_RDSH request, the CPU 3/4 module not only changes its cache line state
from M to S but also returns the latest cache line data words (SData0 and
SData1) to the directory before being copied and sent to both the CPU 1/2
module and the Memory sub system using Mp6 and Mp0 ports, and OCP5
and OCP6 ports, respectively.

CPU 1/2, CohID 1

Ip0Mp0 Ip6Mp6

Directory, CohID 4

OCP5 OCP6

Memory

CC_WB; Maddr; MReqInfo=CID1; MData0
Dir State (M at CID1)

WR, Maddr,
MData0

MData1

MData1I_WB; Maddr; MReqInfo=Self,CID1

SResp OK; SCohState I

SResp OK; SCohState I

Dir State (I)

SResp

tim
e

MSI_I I

Developer’s Guidelines: OCP Coherent System Architecture Examples 285

OCP-IP Confidential

Figure 74 CC_RDSH and Dirty at Cache

13.3.6.3 Read for Ownership and Dirty at a Master Cache
Figure 75 displays the space-time data flow for a coherent CC_RDOW
transaction originating from CPU 1/2 where the dirty data is located at the
CPU 3/4 master’s cache. The communication pattern is similar to Figure 74
except that the cache installing states are different and there is no need to
copy the cache line to memory. (Note: some implementations may choose to
update the memory concurrently.)

Figure 75 CC_RDOW and Dirty at Cache

CPU 1/2, CohID 1

Ip0Mp0 Ip6Mp6

Directory, CohID 4

OCP5 OCP6

Memory

CC_RDSH; Maddr; MReqInfo=CID1
Dir State (M at CID2)

I_RDSH, MAddr,
MReqInfo=Sys,

CID2

I_RDSH; Maddr; MReqInfo=Self,CID1

SResp OK; SCohState I

SResp DVA; SData0; SCohStateS

SResp DVA; SCohState S; SData0tim
e

Ip1

CPU 3/4
CohID 2

DMA 1
CohID 2

Ip2

SResp DVA

WR; MAddr; MData0
MData1

SData1

SResp DVA; SData1; SCohStateS

Dir State (S at CID1,

CID2)

I_to_S S

I I_to_S M S

CPU 1/2, CohID 1

Ip0Mp0 Ip6Mp6

Directory, CohID 4

OCP5 OCP6

Memory

CC_RDOW; MAddr; MReqInfo=CID1
Dir State (M at CID2)

I_RDOW, MAddr, MReqInfo=Sys, CID2
I_RDOW; MAddr; MReqInfo=Self,CID1

SResp OK; SCohState I

SResp DVA; SData0; SCohState M

SResp DVA; SCohState M; SData0tim
e

Ip1

CPU 3/4
CohID 2

DMA 1
CohID 2

Ip2

SData1

SData1

Dir State (S at C
ID1,

CID2)

SI_to_M M

I SI_to_M M I

286 Open Core Protocol Specification

OCP-IP Confidential

13.3.6.4 Cache Upgrade When the Cache Line is Shared by Multiple
Masters
Figure 76 displays the space-time data flow for a coherent CC_UPG
transaction originating from CPU 1/2 where the cache line is also shared at
the CPU 1/2 master’s cache, the CPU 3/4 master’s cache, and the DMA1
master’s cache. Therefore, after the Directory receives the CC_UPG request, it
sends three intervention requests, a self intervention request to the CPU 1/2
master, two I_UPG system intervention requests to the CPU 3/4 master and
the CPU 5/6 master each.

Figure 76 CC_UPG and Shared at All Caches

13.3.6.5 Cache Flush or Purge and Shared at Master Caches
Figure 77 displays the space-time data flow for a coherent CC_I transaction
originating from CPU 1/2 where the cache line is shared at the CPU 3/4 and
DMA1 master’s cache.

CPU 1/2, CohID 1

Ip0Mp0 Ip6Mp6

Directory, CohID 4

OCP5 OCP6

Memory

CC_UPG; MAddr; MReqInfo=CID1 Dir State (S at CID1, CID2, CID3)
I_UPG, MAddr, MReqInfo=Sys, CID2I_UPG; MAddr; MReqInfo=Self,CID1

SResp OK; SCohState I

SResp DVA; SCohState M

SResp OK; SCohState Itim
e

Ip1

CPU 3/4
CohID 2

DMA 1
CohID 2

Ip2

Dir State (S at CID1,

CID2)

I_UPG, MAddr, MReqInfo=Sys, CID3

SResp OK; SCohState I

S I
S I

SI_to_M M

S SI_to_M

Developer’s Guidelines: OCP Coherent System Architecture Examples 287

OCP-IP Confidential

Figure 77 CC_I and Shared at Others

13.3.7 Three-Way Communication
A typical optimization that a directory-based coherent system can apply is the
three-way communication (or three-party transaction or cache-to-cache
transfer). Three-way communication enables a coherence master, who is
forced to write back a dirty copy due to a system intervention, to forward the
intervention response and data directly to the requestor. In other words, the
intervention port response is routed from the cache line owner’s intervention
port to the response channel of the requestor’s main port. This transaction
requires the MReqInfo signal in the intervention port request channel to
indicate both “who to route to” and “to whom to forward to.” In addition, there
should be a SRespInfo signal on the intervention port response side to
indicate “who is the recipient.” The SRespInfo signal should also be included
in a main port response as well, to indicate “to whom to respond,” if three-way
communication is used. This main port SRespInfo signal needs to be used by
the delivering fabric to determine how to return the main port responses and
data words.

Three-hop protocols introduce additional complexity to the design of the main
response port: the design needs to accommodate the receipt of two responses
for the same transaction (see below).

13.3.7.1 Cache Answers Request
Figure 781 shows a CC_RDSH transaction is issued from a master and gets a
dirty cache-line data from another coherence master directly. In the same
time, the home memory slave’s directory state is updated accordingly. Steps
to complete the coherence transaction are labeled alphabetically starting from
a, b, c, to g, h, and i.

1 Please note that in this figure we have intentionally made the memory module an internal
module inside the Directory slave.

CPU 1/2, CohID 1

Ip0Mp0 Ip6Mp6

Directory, CohID 4

OCP5 OCP6

Memory

CC_I; MAddr; MReqInfo=CID1
Dir State (S at CID1,

CID2)
I_I, MAddr, MReqInfo=Sys, CID2

I_I; MAddr; MReqInfo=Self,CID1

SResp OK; SCohState I

SResp OK; SCohState I

SResp OK; SCohState I

tim
e

Ip1

CPU 3/4
CohID 2

DMA 1
CohID 2

Ip2

Dir State (I)

I_I, MAddr, MReqInfo=Sys, CID3

SResp OK; SCohState I

MSI_to_I I

I MSI_to_I S I S I

288 Open Core Protocol Specification

OCP-IP Confidential

The corresponding space-time diagram to the above “CC_RDSH and cache
answers request” transaction is displayed in Figure 79—the labels indicated
on dashed communication activities match those from Figure 78.

Figure 78 CC_RDSH and Cache Answers Request High-Level Data Flow

 Directory/Memory

Proc1

L2

OCP wrapper

M-hit

OCP Coherence
Interconnect

Proc0

L2

OCP wrapper

Req

Req

Resp

Resp Resp Req

Resp Req Resp Req

C
C

_R
D

S
H

a

S
elf I_R

D
S

H

f

d
g

M

e

Cache Line Data
SCohState "S"

I

c

S
ys

 I_
R

D
S

H

i

Dropped

Directory:
MAddr Where State
0x0 @Proc1 M

Three-Way
Forwarding

b

h

Directory:
MAddr Where State
0x0 @Proc0,1 S

SS

Developer’s Guidelines: OCP Coherent System Architecture Examples 289

OCP-IP Confidential

Figure 79 CC_RDSH and Cache Answers Request Space-Time Diagram

13.3.8 Handling Race Conditions
A few of the transitions described in Table 55 on page 272 seem unnecessary
but those transactions are indeed needed for the coherence master model in
order to operate correctly. They are there to handle possible race conditions
between coherence masters, for instance, for a directory-based coherence
system. The following scenario illustrates one possible race condition between
coherence master A and B that both want to update the coherence state of
cache-line address X:

• At time t, coherence master A issues a coherence upgrade request
(CC_UPG) on the main port for cache-line address MAddr X because
master A’s processor finds the cache-line’s state in S and wants to
upgrade to M. This implies that the coherence state module inside master
A must also record cache-line X in State S.

• At time t+1, coherence master B issues a coherence CC_RDOW request on
its main port also for cache-line of address MAddr X because master B’s
processor finds the cache-line’s state in I and wants to change it to M. This
implies that the coherence state module inside master B must have no
record for cache-line X.

• At time t+3, master B accepts a self-intervention CC_RDOW request on
MAddr X and blocks its intervention port waiting for a main port response
of the main port CC_RDOW request master B sent at time t+1.

• At time t+4, master A accepts an intervention port CC_RDOW request on
MAddr X (coming from master B). Master A finds the coherence state of
cache-line address X is in State S. Therefore, by following the master
model’s transition block diagram, master A (a) returns a intervention port

Proc0

IpMp Ip IpMp

Directory/Memory Proc1

CC_RDSH, MAddr, Proc0

I_RDSH-self, Proc0,

MAddr

Dir State: M at Proc1 I_RDSH-sys, Proc1,MAddr, Fw Proc0

SResp DVA, SData,

SCohState S

L2

W
R

M
Add

r,
SDat

a

Mem

Fw
SResp DVA, SData,

SCohState S

Drop

SResp DVA,

SData,

SCohState S

SResp OK, SCohState I

I I_S

M S

SResp DVA, SData, SCohState S, Fw Proc0

I_S S

290 Open Core Protocol Specification

OCP-IP Confidential

response of “SResp OK and SCohState I”; and (b) changes the coherence
state of cache-line address X to State to I. This may ripple through caches
on the processor side.

• More activities happen during time t+4, t+5, t+6, and t+7. That is, the
directory returns cache line data to B and the CC_UPG coherence request
coming from master A has been accepted by the directory.

• At time t+8, say, master A receives and accepts a self-intervention
CC_UPG request on MAddr X for the CC_UPG request master A sent at
time t. Master A first blocks its intervention port; then, checks its
coherence state module and finds cache-line address X is in State I—
which is different from the State when master A was issuing the CC_UPG
request. However, we do have a transition from State I to M for handling
the receiving of a self-intervention CC_UPG request as shown in Table 55
so master A can complete its remaining operations.

This example illustrates the race condition and explains the need for the
transition row (including “Self Intervention: I_UPG” and from state I to state
M).

Other transitions listed in Table 55 that are used to handle race conditions
are the “S” to “SI_to_M” transition labelled with “Self Intervention: I_RDOW”
and the “I” to “I” transition labelled with “Self Intervention: I_I” or “Self
Intervention: I_WB”.

13.4 Implementation Models for Snoop-Bus-
Based Designs
In this chapter examples of snoop-bus based OCP coherence designs are
given.

13.4.1 Snoop-Bus-Based OCP Coherent Master Model
In this example, the OCP coherent master models described in the previous
chapter (for directory-based designs) are reused.

13.4.2 Snoop-Bus-Based OCP Coherence Interconnect Model
The interconnect has a broadcast facility. It is convenient to think of each
coherence transaction as being composed of three in-order pipeline bus
stages: the Request/Write Data phase, the Snoop phase, and the Response/
Read Data phase. At most one instance of each stage can exist at each cycle;
therefore, there can be at most three in-flight transactions. Stalling one stage
stalls all pending transactions happening before the stalling stage.
Transactions passed the stalling stage can proceed without problems.

Developer’s Guidelines: OCP Coherent System Architecture Examples 291

OCP-IP Confidential

13.4.2.1 Request/Write Data Phase
The arbitration logic in the interconnect grants at most one main port
coherence request each cycle in this phase. During this phase, this coherence
request is: (a) delivered to the memory slave on its main port based on the
MAddr value; (b) turned into a self-intervention request (data-less) and
delivered to the intervention port of the initiator; (c) turned into many
intervention requests and delivered to each of the other coherence masters
connected to the snoop-bus-based interconnect. When all requests are
accepted by their targeting masters and slave, this phase is considered
complete. Request type (MCmd), address (MAddr), and write data (MData), if
any, need to be delivered in this phase.

13.4.2.2 Snoop Phase
After all intervention requests are delivered, we enter the snoop phase waiting
for intervention port responses. In addition, one intervention request is
expected from the slave, i.e., the “home” of the MAddr address. This
intervention request is dropped by the interconnect.

After receiving all intervention responses, two possible scenarios can happen:

• If none of the intervention responses has dirty write-back data (i.e.,
SCohState is set to M), an aggregated intervention response is generated
in this phase and delivered to the “home” slave on its intervention port.
The snoop phase terminates when the aggregated intervention response
is accepted.

• Otherwise, exactly one of the intervention responses must return the
write-back data and the data is passed onto the next phase before the
snoop phase terminates.

SResp, SCohState, and possible SData need to be delivered in this phase.
Please notice that in the mean time the home slave of the MAddr address can
be launching a memory read or write command

13.4.2.3 Response/Read Data Phase
If this is a response-only phase, the interconnect is waiting for a main port
response coming from the home slave of the transaction’s MAddr address and
will relay the response to the transaction’s initiating coherence master. This
phase terminates when the main port response is accepted. For a response-
and-read-data phase, the dirty write-back data of the previous phase is
packaged into an intervention response and sent to the home slave; in
addition, it is also packaged into a main port response with the dirty write-
back data and sent to the transaction’s initiating coherence master. The
phase terminates after accepting/dropping a main port response coming back
from the home slave. Note that, in parallel, a memory write-back operation
should also take place at the home slave.

13.4.3 Snoop-Bus-Based OCP Coherence Slave Model
We will use the abstract model presented in Figure 12 on page 89.

292 Open Core Protocol Specification

OCP-IP Confidential

13.4.4 Coherence Transactions
Figure 80 shows a CC_RDOW transaction is issued from a master and gets a
dirty cache-line data from another coherence master directly. Figure 81 is the
space-time diagram corresponding to the transaction shown in Figure 80.
Figure 82 shows either a CC_RDOW or CC_RDSH transaction is issued and
the memory slave provides the cache-line data. Figure 83 is the space-time
diagram corresponding to the CC_RDSH transaction shown in Figure 82. A
CC_WB transaction writes back cache-line data is illustrated in Figure 84 and
the corresponding space-time diagram is shown in Figure 85.

In Figures 80, 82, and 84, the following abbreviations are used:

• Mp: Main port

• Ip: Intervention port

• Self Ip Req or Resp: Self intervention request or response

• Req: Requests

• Resp: Response

Figure 80 Snoop-Bus-Based Interconnect Example: Cache Answers Request

Request/Write
Data Phase

From / To Coherence Masters

Mp: Req
CC_RDOW

Self Ip:
Resp

Ip: Resps -- one has dirty data

Snoop Phase
Response/Read

Data Phase

To / From "Home" Coherence Slave

Mp: Req

Self Ip:
Req

Ip: Reqs

Ip: Req

Ignored

Ip: Resp Mp: Resp

DRAM Read

Mp: Resp

Data

Ignored

Ignored

DRAM Write

Data

Developer’s Guidelines: OCP Coherent System Architecture Examples 293

OCP-IP Confidential

Figure 81 Space-time diagram of Figure 80

Figure 82 Snoop-Bus-Based Interconnect Example: Memory Answers Request

Proc0

IPMP IPMP

Memory Subsystem

I_RDOW-sys; MAddr

tim
e

IP

Proc1

I_RDOW-sys;

MAddr

Abort RD MAddr

Mem

L2

Req/Write
Data Phase

Snoop
Phase

Resp/Read
Data Phase

CC_RDOW; MAddr

CC_RDOW; MAddr

Ignored/
Dropped

I_RDOW-self; MAddr

L2 SResp DVA; SCohState M

SData1

SData2

SResp OK; SCohState M

SResp DVA; SData1; SCohState M

SResp DVA; SData2; SCohState M

L2

SResp DVA; SCohState M

Ignored/
Dropped

SResp OK;

SCohState I

SData1

SData2

WR MAddr:
SData1, SData2

R
D

 M
A

ddr

Snoop-Bus-Based OCP Interconnect

I SI_to_M

M I

SI_to_MM

Request/Write
Data Phase

From / To Coherence Masters

Mp: Req
CC_RDSH or
CC_RDOW

Self Ip:
Resp

Ip: Resps -- none has dirty data

Snoop Phase
Response/Read

Data Phase

To / From "Home" Coherence Slave

Mp: Req

Self Ip:
Req

Ip: Reqs

Ip: Req

Ignored

Ip: Resp Mp: Resp

DRAM Read

Mp: Resp

Data

294 Open Core Protocol Specification

OCP-IP Confidential

Figure 83 Space-time diagram of Figure 82’s CC_RDSH Transaction

Figure 84 Snoop-Bus-Based Interconnect Example: Writeback

Proc0

IPMP IPMP

Memory Subsystem

tim
e

IP

Proc1

Mem

L2

Req/Write
Data Phase

Snoop
Phase

Resp/Read
Data Phase

Ignored/
Dropped

L2

L2

Snoop-Bus-Based OCP Interconnect

I_RDOW-sys; MAddr

CC_RDSH; MAddr

CC_RDOW; MAddr

I_RDSH-self; MAddr

SResp OK; SCohState S

SData1,

SData2

R
D

 M
A

ddr

I_RDSH-sys; MAddr

SResp DVA; SData1; SCohState S

SResp DVA; SData2; SCohState S

SResp OK; SCohState S

SResp OK; SCohState S

SResp DVA; SData1;

SCohState S

SResp DVA; SData2;

SCohState S

I I_to_S

I_to_S
S

S

Request/Write
Data Phase

From / To Coherence Masters

Mp: Req
CC_WB

Self Ip:
Resp

Ip: Resps

Snoop Phase
Response/Read

Data Phase

To / From "Home" Coherence Slave

Mp: Req

Self Ip:
Req

Ip: Reqs

Ip: Req

Ignored

Ip: Resp Mp: Resp

DRAM Write

Mp: Resp

The Self Resp will NOT return write-back data

Data

Data

No
Data

No
Data

Developer’s Guidelines: OCP Coherent System Architecture Examples 295

OCP-IP Confidential

Figure 85 Space-time diagram of Figure 84

13.4.5 Snoop-Bus-Based CC_WB Race Conditions
In this subsection, several examples showing CC_WB race conditions in a
snoop-bus-based system are discussed, and an implementation choice to
solve each of the race conditions is also described. In the models shown in this
section, the primary serialization point referred to in Section 5.11.2 and the
associated serialization logic is implemented as two units: the coherent
request serialization/select logic unit and the SResp merge logic unit.

13.4.5.1 Intport_writedata=0 Case (1), Proc0 Wins
The behaviors of the coherent masters (processors), interconnect, and
memory subsystem are based on Tables 55–57 and Figures 80–85.

There are two choices to properly maintain cache coherency:

1. Write to coherent memory is initiated after the intervention responses are
received. If this approach is chosen, the intervention response from the
coherent master described in Table 55 is changed: the coherent master
sends the current cache state instead of the next state for both self
intervention and system intervention cases.

2. Cancel on-the-fly coherent write requests when the cache state is
changed. If this approach is chosen, all write buffers in the coherent
domain are required to compare the address of the coherent requests with
the address of the selected command which are issued from the coherent
request serialization/select logic unit.

Proc0

IPMP IPMP

Memory Subsystem

tim
e

IP

Proc1

Mem

L2

Req/Write
Data Phase

Snoop
Phase

Resp/Read
Data Phase

Ignored/
Dropped

L2

L2

Snoop-Bus-Based OCP Interconnect

I_WB-sys; MAddr

CC_WB; MAddr; MData1

CC_WB; MAddr; MData1

I_WB-self; MAddr

SResp OK; SCohState I

W
R

 M
A

ddr: M
D

ata1, M
D

ata2

I_WB-sys; MAddr

SResp DVA; SCohState I

SResp OK; SCohState I

SResp OK; SCohState I

SResp OK;

SCohState I

MData2

MData2

Ignored/
Dropped

I MSI_to_I

I

MSI_to_II

296 Open Core Protocol Specification

OCP-IP Confidential

Implementations that follow the second approach require more complex
mechanisms and careful design than implementations that follow the first
approach; hence, in this document, for reasons of brevity, only examples that
follow the first approach are shown.

An example of the race condition of CC_WB from Proc0 and CC_RDOW from
Proc1 at the same memory address are shown in Figures 86(a) and 86(b).
Figure 86(a) shows the case in which Proc0 wins arbitration at the coherent
request serialize/select logic unit in the OCP coherent interconnect: event
(A2) appears prior to event (B2), and event (A3) appears prior to event (B3). In
this case, only the order of event (A14) completes before event (B7) starts,
event (A10) completes before event (B4), and no other ordering between Proc0
and Proc1 is maintained.

The behaviors related to the CC_WB request from Proc0 are shown in
Figure 86(a).

(A1) Proc0 sends a Cache Coherent Write Back (CC_WB) command with data
from its main request port.

(A2) The coherent request serialize/select logic unit in the interconnection
network selects the CC_WB command from Proc0 and sends this
command with its associated MData to the target, Memory 0.

(A3) The coherent request serialize/select logic unit sends I_WB as a self
intervention request to the intervention request port of the initiator,
Proc0. Since CC_WB does not require a check of the cache states of
other coherent masters, the OCP coherence interconnect does not send
I_WB as a system intervention request to the other coherent masters.

(A4) OCP wrapper of Memory0 receives the CC_WB command with MData
from its main request port, translates the CC_WB request into an I_WB
request, and sends the I_WB request to its intervention request port.
(Note: Memory0 will execute the write after it receives the intervention
response at (A10).)

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request
port. The OCP coherence interconnect ignores and drops this request.

(A6) Proc0 receives I_WB as a self intervention request from its intervention
request port and checks its cache state for the requested address
location. Proc0 changes the cache state from M to MS_to_I.

(A7) Proc0 sends its cache state, Modified, to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response Modified into
“SResp OK, SCohState Modified,” and sends it from its intervention
response port.

(A9) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port response (A9), generates the intervention response
“SResp OK, SCohState Modified” for the coherent memory system, and
sends it to the intervention port of Memory0.

(A10) OCP wrapper of Memory0 receives the intervention response “SResp
OK, SCohState Modified” and executes “memory write” to Memory0.

Developer’s Guidelines: OCP Coherent System Architecture Examples 297

OCP-IP Confidential

(A11) OCP wrapper of Memory0 generates the main port response “SResp
DVA, SCohState Invalid,” and sends it to its main response port.

(A12) OCP wrapper of Memory0 sends “SResp DVA, SCohState Invalid” from
its main response port.

(A13) SResp merge logic unit in the OCP coherence interconnect receives the
main port response from Memory0. It sends “SResp DVA, SCohState
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp DVA, SCohState Invalid” as the main port
response, and changes its cache state from MS_to_I to I. The CC_WB
command transaction ends.

Figure 86(a) CC_WB Race Condition, Proc0

Proc0

Cache

OCP Wrapper

Proc1

Cache

OCP Wrapper

Memory0

OCP Wrapper

OCP Coherence
 Interconnect

Modified

Broadcast Logic
(Snoop Controller)

 Coherent Request

Serialize/Select Logic
SResp DVA

SCohState Invalid

SResp OK

SCohState M
odified

MCmd CC_WB

with MData

MCmd I_
W

B (s
elf)

MCmd C
C_RDOW

Serialize

Broadcast Logic
(Snoop Controller)

SResp Merge Logic

SRes
p

OK

SCoh
Sta

te
 M

od
ifie

d

B1

M
C

m
d C

C
_W

B
 w

ith

M
D

ata

M -> MS_to_I

MS_to_I -> I

A1

A2
A3

A6

A7

A8

Merge

A12

A4

A1
1

A9

A5

I_WB (sys)
(Ignored/Dropped)

A10

Coherent Memory
Subsystem

M
em

or
y

W
rit

e

A1
0

A1
2

SResp
 D

VA

SCohState In
va

lid

MP:
Req

MP:
Resp

IP:
Req

IP:
Resp

MP:
Req

MP:
Resp

IP:
Req

IP:
Resp

MP:
Req

MP:
Resp

IP:
Req

IP:
Resp

298 Open Core Protocol Specification

OCP-IP Confidential

The behaviors related to the “CC_RDOW” request from Proc1 are shown in
Figure 86(b).

(B1) Proc0 sends the Cache Read Own (CC_RDOW) command from its main
request port.

(B2) The coherent request serialize/select logic unit in the OCP coherence
interconnect network selects the CC_RDOW command from Proc1 and
sends this command to the target, Memory 0. Note that at this point,
the CC_WB command issued by Proc0 has already been sent to
Memory0.

(B3) The coherent request serialize/select logic unit sends I_RDOW as a self
intervention request to the intervention request port of the initiator,
Proc1. It also sends I_RDOW as system intervention requests to all
other coherent masters, including Proc0. Note that at this point, I_WB
from Proc0 has already sent to Proc0.

(B4) OCP wrapper of Memory0 receives the CC_RDOW from its main request
port, and sends “Memory Read” speculatively to Memory0. Memory0
executes the read.

(B5) OCP wrapper of Memory0 translates the CC_RDOW request into an
I_RDOW request and sends it to its intervention request port.

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request
port. OCP coherence interconnect ignores and drops this request.

(B7) Proc0 receives I_RDOW as a system intervention request from its
intervention request port and checks its cache state at the requested
address location. Since the cache state is I, Proc0 does not change the
cache state.

(B8) Proc0 sends the cache state “Invalid” to its OCP wrapper.

(B9) OCP wrapper of Proc0 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid,” and sends it from its intervention
response port.

(B10) Proc1 receives I_RDOW as a self intervention request from its
intervention request port and checks its cache state at the requested
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends the cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid,” and sends it from its intervention
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port responses (B9) and (B12), generates the intervention
response “SResp OK, SCohState Invalid” for the coherent memory
system, and sends it to the intervention port of Memory0.

(B14) OCP wrapper of Memory0 receives the intervention response “SResp
OK, SCohState Invalid” and sends it to its main response port.

Developer’s Guidelines: OCP Coherent System Architecture Examples 299

OCP-IP Confidential

(B15) Main response port of the OCP wrapper of Memory0 waits for the read
data.

(B16) Memory0 sends the read data to its main response port.

(B17) The OCP wrapper of Memory0 sends “SResp DVA with SData,
SCohState Modified” as the main port response.

(B18) SResp merge logic unit in OCP coherence interconnect receives the
main port response from Memory0. It sends “SResp DVA with SData,
SCohState Modified” as the main port response to the Proc1.

(B19) Proc1 receives “SResp DVA with SData, SCohState Modified” as the
main port response. It updates the cache line and changes its cache
state from SI_to_M to M. The CC_RDOW transaction ends.

Figure 86(b) CC_RDOW Race Condition, Proc1

Proc0

Cache

OCP Wrapper

Proc1

Cache

OCP Wrapper

Memory0

OCP Coherence
Interconnect

I -> SI_to_M

Memory Read

Serialize

Broadcast Logic
(Snoop Controller)

 Coherent Request

Serialize/Select Logic

B3

M
Cm

d CC_RDOW

MCmd CC_RDOW

MCmd I_RDOW(self)

S
R

es
p

O
K

S
C

oh
S

ta
te

 In
va

lid

SResp OK

SCohState Invalid

S
R

esp O
K

S
C

ohS
tate Invalid

B9

SResp DVA with SData

SCohState Modifie
d

Broadcast Logic
(Snoop Controller)

SResp Merge Logic

Merge
M

Cm
d

I_
RDOW

(s
ys

)

B1

B2

OCP Wrapper
(Coherent Memory
Subsystem)

B4

B6

I_RDOW (sys)
 (Ignored/Dropped)

Invalid

I (no state chenge)B7

B8

Invalid

B11

B12

B13

SI_to_M -> MB19

B16

B14

B17

B18

S
R

es
p

D
V

A
 w

ith
 S

D
at

a
S

C
oh

S
ta

te
 M

od
ifi

ed

B5

B10

B15

MP:
Req

MP:
Resp

IP:
Req

IP:
Resp

MP:
Req

MP:
Resp

IP:
Req

IP:
Resp

MP:
Req

MP:
Resp

IP:
Req

IP:
Resp

300 Open Core Protocol Specification

OCP-IP Confidential

13.4.5.2 Intport_writedata=0 Case (2), Proc1 Wins
When assuming intport_writedata=0, no response is needed and no
blocking is needed.

An example of the race condition of CC_WB from Proc0 and CC_RDOW from
Proc1 at the same memory address is shown in Figures 87(a) and 87(b).
Figure 87(a) shows the case where Proc1 wins the arbitration at the coherent
request serialize/select logic unit in the OCP coherent interconnect, event
(B2) appears prior to event (A2), and event (B3) appears prior to event (A3). In
this case, only the order of the event (B7) completes before the event (A6)
starts, and no other ordering between Proc0 and Proc1 is maintained.

The behaviors related to the CC_WB request from Proc0 are shown in
Figure 87(a).

(A1) Proc0 sends a Cache Coherent Write Back (CC_WB) command with data
from its main request port.

(A2) The coherent request serialize/select logic unit in the OCP interconnect
network selects the CC_WB command from Proc0 and sends this
command with its MData to the target, Memory 0. Note that at this
point, the CC_RDOW issued by Proc1 has already been sent to
Memory0.

(A3) The coherent request serialize/select logic unit in the OCP interconnect
network sends I_WB to the intervention request port of Proc0 as a self-
intervention. Since I_WB is not required to be sent to other coherent
masters as system intervention, the OCP interconnect network does not
send I_WB as system intervention requests. Note that at this point,
I_RDOW from Proc1 has already been sent to coherent masters.

(A4) OCP wrapper of the Memory0 translates the CC_WB request into an
I_WB request and sends it to its intervention request port.

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request
port. The OCP coherence interconnect ignores and drops it.

(A6) Proc0 receives I_WB as a self intervention request from its intervention
request port and checks its cache state at the requested address
location. Since Proc0 already received I_RDOW as a system intervention
from its intervention request port and updated its cache state, the
cache state is I. Proc0 changes the cache state from I to MSI_to_I. (Note:
the cache state can be I instead of MSI_to_I—this is an implementation-
dependent choice.)

(A7) Proc0 sends its cache state “Invalid” to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid”, and sends it from its intervention
response port.

(A9) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port response (A7), generates the intervention response
“SResp OK, SCohState Invalid” for Memory0, and sends it to the
intervention port of Memory0.

Developer’s Guidelines: OCP Coherent System Architecture Examples 301

OCP-IP Confidential

(A10) OCP wrapper of the Memory0 receives the response “SResp OK,
SCohState Invalid” from its intervention response port, and it cancels
“Memory Write” to Memory0.

(A11) OCP wrapper of Memory0 generates the intervention response “SResp
OK, SCohState Invalid” and sends it to its main response port. (Note a
different implementation may generate “SResp DVA, SCohState
Invalid”—the value of SResp is implementation dependent.)

(A12) OCP wrapper of Memory0 sends “SResp OK, SCohState Invalid” from its
main response port. Since this is a write transaction, no data is sent
from its main response port.

(A13) SResp merge logic unit in the OCP coherence interconnect receives the
main port response from Memory0. It sends “SResp OK, SCohState
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp OK, SCohState Invalid” as the main port
response. Proc0 changes the cache state from MSI_to_I to I. The CC_WB
transaction ends.

302 Open Core Protocol Specification

OCP-IP Confidential

Figure 87(a) CC_WB Request from Proc0

The behaviors related to the CC_RDOW request from Proc1 are shown in
Figure 87(b).

(B1) Proc1 sends a Cache Read Own (CC_RDOW) command from its main
request port.

(B2) The coherent request serialize/select logic unit in the OCP coherence
interconnect network selects the CC_RDOW command from Proc1 and
sends this command to the target, Memory 0.

(B3) The coherent request serialize/select logic unit sends I_RDOW as a self
intervention request to the intervention request port of the initiator,
Proc1. It also sends I_RDOW as system intervention requests to all
other coherent masters, including Proc0.

Cache

OCP Wrapper

Proc0

Cache

OCP Wrapper

Proc1

Memory0

OCP Coherence
Interconnect

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

Serialize

Coherent Slave (Snoop
Controller)

 Coherent Request

Serialize/Select Logic

Merge

Coherent Slave
(Snoop Controller)

SResp Merge Logic

M
C

m
d

 C
C

_W
B

 w
ith

 M
D

a
ta

A1

A2 A3

MCmd CC_WB with MData

MCmd I_
WB (S

elf)

SResp OK

SCohState Invalid

S
R

es
p

O
K

S
C

oh
S

ta
te

 In
va

lid

Invalid

I -> MSI_to_I

MSI_to_I -> I

A6

A7

A14

A8

A9

A4
A11

A10

OCP Wrapper
(Coherent Memory
Subsystem)

A12

SResp OK

SCohState Invalid

A5

MCmd I_WB (S
ys)

(Ig
nored/Dropped)

Cancel “Memory Write”

A13

SResp OK

SCohState In
valid

Developer’s Guidelines: OCP Coherent System Architecture Examples 303

OCP-IP Confidential

(B4) OCP wrapper of Memory0 receives the CC_RDOW command from its
main request port, and sends “Memory Read” speculatively to Memory0.
Memory0 executes the read.

(B5) OCP wrapper of the Memory0 translates the CC_RDOW request into an
I_RDOW request and sends it to its intervention request port.

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request
port. The OCP coherence interconnect ignores and drops it.

(B7) Proc0 receives I_RDOW as a system intervention request from its
intervention request port and checks its cache state at the requested
address location. Proc0 changes the cache state from M to I.

(B8) Proc0 send its cache state “Modified” to its OCP wrapper with the data
of the requested cache line.

(B9) OCP wrapper of Proc0 translates the snoop response “Modified” into
“SResp DVA with SData, SCohState Modified”, and sends it from its
intervention response port.

(B10) Proc1 receives I_RDOW as a self intervention request from its
intervention request port and checks its cache state at the requested
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends its cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid”, and send it from its intervention
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port responses (B9) and (B12), generates the intervention
response “SResp DVA with SData, SCohState Modified” for the coherent
memory system, and sends it to the intervention port of Memory0.
(Note: If the main port response of Memory0 is ignored, Memory0 does
not need the data of CC_RDOW, because CC_RDOW is issued by “store
miss” case and the data will be updated in the initiator.)

(B14) SResp merge logic unit in the OCP coherence interconnect generates
the intervention response “SResp DVA with SData, SCohState Modified”
for the initiator, Proc1, and sends it to the main port of Proc1. (Note that
the OCP interconnect may skip (B14) and instead send the modified
data at (B17). This is an implementation-dependent choice.)

(B15) Proc1 updates its cache and changes the cache state from SI_to_M to M.

(B16) OCP wrapper of Memory0 receives the intervention response “SResp
DVA with SData, SCohState Modified” and sends it to its main response
port.

(B17) Main response port of the OCP wrapper of Memory0 waits for the read
data.

(B18) Memory0 sends the read data to its main response port.

304 Open Core Protocol Specification

OCP-IP Confidential

(B19) The OCP wrapper of Memory0 sends “SResp OK, SCohState Modified”
as the main port response. (Note that this response is implementation-
dependent: the OCP wrapper of Memory0 may also send “SRespDVA
with SData, SCohState Modified” from its main response port for the
OCP coherence interconnect to send to Proc1, instead of (B14).)

(B20) SResp merge logic unit in the OCP coherence interconnect receives the
main port response from Memory0. It ignores/drops the response. The
CC_RDOW transaction ends.

Figure 87(b) CC_RDOW Request from Proc1

13.4.5.3 Intport_writedata=1 Case (1), Proc0 Wins
There are two approaches for the implementer to handle this race condition:

Broadcast Logic
(Snoop Controller)

SResp Merge Logic

Serialize

Broadcast Logic
(Snoop Controller)

 Coherent Request

Serialize/Select Logic

Proc0

OCP Wrapper

Proc1

Memory0

OCP Coherence
Interconnect

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

 B2 B3

M
C

m
d C

C
_

W
B

 w
ith

 M
D

ata

A1

MCmd CC_RDOW

Merge

M
C

m
d

I_
R

D
O

W

MCmd I_RDOW

S
R

esp D
V

A
 w

ith S
D

ata

S
C

ohS
tate M

odified S
R

es
p

O
K

S
C

oh
S

ta
te

 In
va

lid

SRes
p

D
VA

 w
ith

 S
Dat

a

SCoh
Sta

te
 M

od
ifie

d

S
R

es
p

D
V

A
 w

ith
 S

D
at

a

S
C

o
hS

ta
te

 M
od

ifi
ed

MCmd C
C_R

DOW

B1

B5

B6

I_RDOW (sys)
 (Ignored/Dropped)

M -> IB7

B8

Modified with data

Cache

OCP Wrapper

B9

B13
B14

I -> I_to_M

Invalid

B11

B15 I_to_M -> M

B12

B16

SResp = OK, SCohState = I
(Ignored/Dropped)

B19

B4

Memory Read
(Speculative)

B10

B17

B18

B20

Developer’s Guidelines: OCP Coherent System Architecture Examples 305

OCP-IP Confidential

1. The requestor waits for self intervention and for response. The home agent
is simple: a CC_WB command has no effect on the state of the cache line
until the reception of a self intervention. When this happens, the
intervention port is blocked until the reception of a response which
invalidates the status of the cache line.

2. When the requestor sends a CC_WB command, it commits at once (cache
line state transitions to I when generating CC_WB) and does not wait for
a self intervention or response.In this case, the coherence master
implementation must be more complex than in the first approach.

The coherent slave (snoop controller), which will be able to detect the race,
drops the memory’s response (i.e., it ignores stale data) and re-reads the
data from memory (by issuing a second request) once the processor with
the up-to-date copy writes back.

Since the implementation of the second approach requires complex
mechanisms and careful design, this document only shows examples of the
first approach.

The behaviors of the coherent masters (processors), interconnect, and
memory subsystem are based on Tables 55–57 and Figures 80–85.

The behaviors related to Proc0 CC_WB are shown in Figure 88(a).

(A1) Proc0 sends a Cache Coherent Write Back (CC_WB) command. Since
intport_writedata=1, Proc1 does not send modified data.

(A2) The coherent request serialize/select logic unit in the interconnection
network selects the CC_WB command from Proc0 and sends this
command to the target, Memory 0.

(A3) The coherent request serialize/select logic unit in the interconnection
network sends I_WB to the intervention request port of Proc0 as a self-
intervention. Since I_WB is not required to be sent to other coherent
masters as a system intervention, the OCP coherence interconnect
network does not send I_WB as system intervention requests.

(A4) OCP wrapper of Memory0 translates the CC_WB request into an I_WB
request and sends it to its intervention request port.

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request
port. The OCP coherence interconnect ignores and drops it.

(A6) Proc0 receives I_WB as a self intervention request from its intervention
request port and checks its cache state at the requested address
location. Proc0 changes the cache state from M to MS_to_I.

(A7) Proc0 sends its cache state “Modified”, and also sends the modified data
of the requested cache line to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response “Modified” into
“SResp DVA with SData, SCohState Invalid,” and sends it from its
intervention response port. (Note: this response is implementation-
dependent: SCohState can also be “Modified” as shown in Figure 86(a).)

306 Open Core Protocol Specification

OCP-IP Confidential

(A9) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port response (A8), generates the intervention response
“SResp DVA with SData, SCohState Invalid” for Memory0, and sends it
to the intervention port of Memory0.

(A10) OCP wrapper of the Memory0 receives the response “SResp DVA with
SData, SCohState Invalid” from its intervention response port, and
sends “Memory Write” to Memory0. Memory0 executes the write.

(A11) OCP wrapper of Memory0 generates the intervention response “SResp
DVA, SCohState Invalid” and sends it to its main response port.

(A12) OCP wrapper of Memory0 sends “SResp DVA, SCohState Invalid” from
its main response port. Since this is a write transaction, no data is sent
from its main response port.

(A13) SResp merge logic unit in the OCP coherence interconnect receives the
main port response from Memory0. It sends “SResp DVA, SCohState
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp DVA, SCohState Invalid” as the main port
response, and changes its cache state from MS_to_I to I. The CC_WB
transaction ends.

Developer’s Guidelines: OCP Coherent System Architecture Examples 307

OCP-IP Confidential

Figure 88(a) CC_WB Request, Proc0

The behaviors related to the “CC_RDOW” request from Proc1 are shown in the
Figure 88(b).

(B1) Proc1 sends a Cache Read Own (CC_RDOW) command from its main
request port.

(B2) The coherent request serialize/select logic unit in the OCP coherence
interconnection network selects the CC_RDOW command from Proc1
and sends this command to the target, Memory 0. Note that at this
point, the CC_WB command issued by Proc0 has already been sent to
Memory0.

Coherent Slave
(Snoop Controller)

SResp Merge Logic

Cache

OCP Wrapper

Proc0

Cache

OCP Wrapper

Proc1

Memory0

OCP Coherence
Interconnect

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

M
em

or
y

W
rit

e

Coherent Slave
(Snoop Controller)

 Coherent Request

Serialize/Select Logic

Serialize

A1

A2
A3

MCmd I_
W

B

MCmd CC_WB

with MData

SResp DVASCohState Invalid

SResp DVA with SData

SCohState Invalid

Merge

M
C

m
d C

C
_W

B

SRes
p

DVA w
ith

 S
Dat

a

SCoh
Sta

te
 In

va
lid

MCmd C
C_RDOW

B1

A4

A5

I_WB (sys)
(Ignored/Dropped)

Modified

M -> MS_to_I

MS_to_I -> I

A6

A7

A14

A8

A9

A10

A11

A12

OCP Wrapper
(Coherent Memory
Subsystem)

A13

308 Open Core Protocol Specification

OCP-IP Confidential

(B3) The coherent request serialize/select logic unit sends I_RDOW as a self
intervention request to the intervention request port of the initiator,
Proc1. It also sends I_RDOW as system intervention requests to all
other coherent masters, including Proc0. Note that at this point, I_WB
from Proc0 has already been sent to Proc0.

(B4) OCP wrapper of the Memory0 receives the CC_RDOW command from its
main request port, and sends “Memory Read” speculatively to Memory0.
Memory0 executes the read.

(B5) OCP wrapper of the Memory0 translates the CC_RDOW request into an
I_RDOW request and sends it to its intervention request port.

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request
port. The OCP coherence interconnect ignores and drops this request.

(B7) Proc0 receives I_RDOW as a system intervention request from its
intervention request port and checks its cache state at the requested
address location. Since the cache state is I, Proc0 does not change the
cache state.

(B8) Proc0 send its cache state “Invalid” to its OCP wrapper.

(B9) OCP wrapper of Proc0 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid”, and sends it from its intervention
response port.

(B10) Proc1 receives “I_RDOW” as a self intervention request from its
intervention request port and checks its cache state at the requested
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends its cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid”, and sends it from its intervention
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port responses (B9) and (B12), generates the intervention
response “SResp OK, SCohState Invalid” for the coherent memory
system, and sends it to the intervention port of Memory0.

(B14) OCP wrapper of Memory0 receives the intervention response “SResp
OK, SCohState Invalid” and sends it to its main response port.

(B15) Main response port of the OCP wrapper of Memory0 waits for the read
data.

(B16) Memory0 sends the read data to its main response port.

(B17) The OCP wrapper of Memory0 sends “SResp DVA with SData,
SCohState Modified” as the main port response.

(B18) SResp merge logic unit in OCP coherence interconnect receives the
main port response from Memory0. It sends “SResp DVA with SData,
SCohState Modified” as the main port response to Proc1.

Developer’s Guidelines: OCP Coherent System Architecture Examples 309

OCP-IP Confidential

(B19) Proc1 receives “SResp DVA with SData, SCohState Modified” as the
main port response. It updates the cache line and changes its cache
state from SI_to_M to M. The CC_RDOW transaction ends.

Figure 88(b) CC_RDOW Request, Proc1

13.4.5.4 Intport_writedata=1 Case (2), Proc1 Wins
The behaviors related to Proc0 CC_WB are shown in Figure 89(a).

(A1) Proc0 sends a Cache Coherent Write Back (CC_WB) command. Since
intport_writedata=1, Proc1 does not send modified data.

(A2) The coherent request serialize/select logic unit in the OCP coherence
interconnect network selects the CC_WB command from Proc0 and
sends this command to the target, Memory 0. Note that at this point,
the CC_RDOW command from Proc1 has already been sent to
Memory0.

Cache

OCP Wrapper

Proc0

Cache

OCP Wrapper

Proc1

Memory0

OCP Coherence
Interconnect

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

I -> SI_to_M

Memory Read

Serialize

Broadcast Logic
(Snoop Controller)

 Coherent Request

Serialize/Select Logic

B3

M
Cm

d CC_RDOW

MCmd CC_RDOW

MCmd I_RDOW(self)

S
R

es
p

O
K

S
C

oh
S

ta
te

 In
va

lid

SResp OK

SCohState Invalid

S
R

esp O
K

S
C

ohS
tate Invalid

B9

SResp DVA with SData

SCohState M
odifie

d

Broadcast Logic
(Snoop Controller)

SResp Merge Logic

Merge
M

Cm
d

I_
RDOW

(s
ys

)

B1

B2

OCP Wrapper
(Coherent Memory
Subsystem)

B4

B6

I_RDOW (sys)
 (Ignored/Dropped)

Invalid

I (no state chenge)B7

B8

Invalid

B11

B12

B13

SI_to_M -> MB19

B16

B14

B17

B18
S

R
es

p
D

V
A

 w
ith

 S
D

a
ta

S
C

oh
S

ta
te

 M
od

ifi
ed

B5

B10

B15

310 Open Core Protocol Specification

OCP-IP Confidential

(A3) The coherent request serialize/select logic unit in the OCP coherence
interconnect network sends I_WB to the intervention request port of
Proc0 as a self-intervention. Since I_WB is not required to be sent to
other coherent masters as a system intervention, the OCP coherence
interconnect network does not send I_WB as system intervention
requests. Note that at this point, I_RDOW from Proc1 has already been
sent to coherent masters.

(A4) OCP wrapper of Memory0 translates the CC_WB request into an I_WB
request and sends it to its intervention request port.

(A5) OCP wrapper of Memory0 sends I_WB from its intervention request
port. The OCP coherence interconnect ignores and drops this request.

(A6) Proc0 receives I_WB as a self intervention request from its intervention
request port and checks its cache state at the requested address
location. Since Proc0 already received I_RDOW as a system intervention
from its intervention request port and updated its cache state, the
cache state is I. Proc0 changes the cache state from I to MSI_to_I.

(A7) Proc0 sends its cache state, “Invalid,” to its OCP wrapper.

(A8) OCP wrapper of Proc0 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid”, and sends it from its intervention
response port.

(A9) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port response (A7), generates the intervention response
“SResp OK, SCohState Invalid” for Memory0, and sends it to the
intervention port of Memory0.

(A10) OCP wrapper of the Memory0 receives the response “SResp OK,
SCohState Invalid” from its intervention response port, and cancels
“Memory Write” to Memory0.

(A11) OCP wrapper of Memory0 generates the intervention response
“SRespOK, SCohState Invalid” and sends it to its main response port.
(Note that the value of SResp is implementation dependent: a different
implementation may generate the response “SResp DVA, SCohState
Invalid”.)

(A12) OCP wrapper of Memory0 sends “SResp OK, SCohState Invalid” from its
main response port. Since this is a write transaction, no data is sent
from its main response port.

(A13) SResp merge logic unit in OCP coherence interconnect receives the
main port response from Memory0. It sends “SResp OK, SCohState
Invalid” as the main port response to Proc0.

(A14) Proc0 receives “SResp OK, SCohState Invalid” as the main port
response. Proc0 changes the cache state from MSI_to_I to I. The
“CC_WB” transaction ends.

Developer’s Guidelines: OCP Coherent System Architecture Examples 311

OCP-IP Confidential

Figure 89(a) CC_WB Request, Proc0

The behaviors related to the CC_RDOW request from Proc1 are shown in
Figure 89(b).

(B1) Proc1 sends the Cache Read Own (CC_RDOW) command from its main
request port.

(B2) The coherent request serialize/select logic unit in the OCP coherence
interconnect network selects the CC_RDOW command from Proc1 and
sends this command to the target, Memory 0.

(B3) The coherent request serialize/select logic unit sends I_RDOW as a self
intervention request to the intervention request port of the initiator,
Proc1. It also sends I_RDOW as system intervention requests to all
other coherent masters, including Proc0.

(B4) OCP wrapper of Memory0 receives the CC_RDOW request from its main
request port, and sends “Memory Read” speculatively to Memory0.
Memory0 executes the read.

Cache

OCP Wrapper

Proc0

Cache

OCP Wrapper

Proc1

Memory0

OCP Coherence
Interconnect

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

Serialize

Coherent Slave
(Snoop Controller)

 Coherent Request

Serialize/Select Logic

Merge

Coherent Slave
(Snoop Controller)

SResp Merge Logic

M
C

m
d

 C
C

_W
B

A1

A2 A3

MCmd CC_WB

MCmd I_WB (S
elf)

SResp OK

SCohState Invalid

S
R

es
p

O
K

S
C

oh
S

ta
te

 In
va

lid

Invalid

I -> MSI_to_I

MSI_to_I -> I

A6

A7

A14

A8

A9

A4
A11

A10

OCP Wrapper
(Coherent Memory
Subsystem)

A12

SResp OK

SCohState Invalid

A5

MCmd I_WB (S
ys)

(Ig
nored/Dropped)

Cancel “Memory Write”

A13

SResp OK

SCohState Invalid

312 Open Core Protocol Specification

OCP-IP Confidential

(B5) OCP wrapper of the Memory0 translates the CC_RDOW request into an
I_RDOW request and sends it to its intervention request port.

(B6) OCP wrapper of Memory0 sends I_RDOW from its intervention request
port. The OCP coherence interconnect ignores and drops it.

(B7) Proc0 receives I_RDOW as a system intervention request from its
intervention request port and checks its cache state at the requested
address location. Proc0 changes the cache state from M to I.

(B8) Proc0 send its cache state “Modified” to its OCP wrapper with the data
of the requested cache line.

(B9) OCP wrapper of Proc0 translates the snoop response “Modified” into
“SResp DVA with SData, SCohState Modified,” and sends it from its
intervention response port.

(B10) Proc1 receives I_RDOW as a self intervention request from its
intervention request port and checks its cache state of the requested
address location. Proc1 changes the cache state from I to SI_to_M.

(B11) Proc1 sends its cache state “Invalid” to its OCP wrapper.

(B12) OCP wrapper of Proc1 translates the snoop response “Invalid” into
“SResp OK, SCohState Invalid,” and sends it from its intervention
response port.

(B13) SResp merge logic unit in the OCP coherence interconnect receives the
intervention port responses (B9) and (B12), generates the intervention
response “SResp DVA with SData, SCohState Modified” for the coherent
memory system, and sends it to the intervention port of Memory0.

(B14) SResp merge logic unit in the OCP coherence interconnect generates
the intervention response “SResp DVA with SData, SCohState Modified”
for the initiator, Proc1, and sends it to the main port of Proc1. (Note that
the OCP coherence interconnect can skip (B14), and the modified data
can be sent at (B17). This is implementation dependent.)

(B15) Proc1 updates its cache and changes the cache state from SI_to_M to M.

(B16) OCP wrapper of Memory0 receives the intervention response “SResp
DVA with SData, SCohState Modified” and sends it to its main response
port.

(B17) Main response port of the OCP wrapper of Memory0 waits for the read
data.

(B18) Memory0 sends the read data to its main response port.

(B19) The OCP wrapper of Memory0 sends “SResp OK, SCohState Modified”
as the main port response. (Note that this is implementation dependent:
the OCP wrapper of Memory0 may also send “SRespDVA with SData,
SCohState Modified” from its main response port and have the OCP
coherence interconnect send it to Proc1 at this time, instead of at (B14).)

Developer’s Guidelines: OCP Coherent System Architecture Examples 313

OCP-IP Confidential

(B20) SResp merge logic unit in OCP coherence interconnect receives the
main port response from Memory0. It ignores/drops the response. The
CC_RDOW transaction ends.

Figure 89(b) CC_RDOW Request, Proc1

Broadcast Logic
(Snoop Controller)

SResp Merge Logic

Serialize

Broadcast Logic
(Snoop Controller)

 Coherent Request

Serialize/Select Logic

Proc0

OCP Wrapper

Proc1

Memory0

OCP Coherence
Interconnect

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

MP:
Resp

MP:
Req

IP:
Req

IP:
Resp

 B2 B3

M
C

m
d C

C
_W

B

A1

MCmd CC_RDOW

Merge

M
C

m
d

I_
R

D
O

W
MCmd I_RDOW

S
R

esp D
VA

 w
ith S

D
ata

S
C

ohState M
odified S

R
es

p
O

K

S
C

oh
S

ta
te

 In
va

lid

SRes
p

DVA w
ith

 S
Dat

a

SCoh
Sta

te
 M

od
ifie

d

S
R

es
p

D
V

A
 w

ith
 S

D
at

a

S
C

oh
S

ta
te

 M
od

ifi
ed

MCmd C
C_RDOW

B1

B5

B6

I_RDOW (sys)
 (Ignored/Dropped)

M -> IB7

B8

Modified with data

Cache

OCP Wrapper

B9

B13
B14

I -> I_to_M

Invalid

B11

B15 I_to_M -> M

B12

B16

SResp = OK, SCohState = I
(Ignored/Dropped)

B19

B4

Memory Read
(Speculative)

B10

B17

B18

B20

314 Open Core Protocol Specification

OCP-IP Confidential

OCP-IP Confidential

14 Timing Guidelines

To provide core timing information to system designers, characterize each
core into one of the following timing categories:

• Level0 identifies the core interface as having been designed without
adhering to any specific timing guidelines.

• Level1 timing represents conservative interface timing.

• Level2 represents high performance interface timing.

One category is not necessarily better than another. The timing categories are
an indication of the timing characteristics of the core that allow core designers
to communicate at a very high level about the interface timing of the core.
Table 63 represents the inter-operability of two OCP interfaces.

Table 63 Core Interface Compatibility

X no guarantee

V guaranteed inter-operability with possible performance loss (extra
latency)

V* high performance inter-operability but some minor changes may be
required

The timing guidelines apply to dataflow and sideband signals only. There is
no timing guideline for the scan and test related signals.

 Level0 Level1 Level2

Level0 X X X

Level1 X V V

Level2 X V V*

316 Open Core Protocol Specification

OCP-IP Confidential

Timing numbers are specified as a percentage of the minimum supported
clock-cycle (at maximum operating frequency). If a core is specified at
100MHz and the c2qtime is given as 30%, the actual c2qtime is 3ns.

14.1 Level0 Timing
Level0 timing indicates that the core developer has not followed any specific
guideline in designing the core interface. There is no guarantee that the
interface can operate with any other core interface. Inter-operability for the
core will need to be determined by comparing timing specifications for two
interfaces on a per-signal basis.

14.2 Level1 Timing
Level1 timing indicates that a core has been developed for minimum timing
work during system integration. The core uses no more than 25% of the clock
period for any of its signals, either at the input (setuptime) or at the output
(outputtime). A core interface in this category must not use any of the
combinational paths allowed in the OCP interface.

Since inputs and outputs each only use 25%, 50% of the cycle remains
available. This means that a Level1 core can always connect to other Level1
and Level2 cores without requiring any additional modification.

14.3 Level2 Timing
Level2 timing indicates that a core interface has been developed for high
performance timing. A Level2 compliant core provides or uses signals
according to the timing values shown in Table 64. There are separate values
for single-threaded and multi-threaded OCP interfaces. The number for each
signal indicates the percentage of the minimum cycle time at which the signal
is available, that is the outputtime at the output. setuptime at the input is
calculated by subtracting the number given from the minimum cycle time. For
example, a time of 30% indicates that the outputtime is 30% and the
setuptime is 70% of the minimum clock period.

In addition to meeting the timing indicated in Table 64, a Level2 compliant
core must not use any combinational paths other than the preferred paths
listed in Table 65.

There is no margin between outputtime and setuptime. When using Level2
cores, extra work may be required during the physical design phase of the
chip to meet timing requirements for a given technology/library.

Timing Guidelines 317

OCP-IP Confidential

Table 64 Level2 Signal Timing

Table 65 Allowed Combinational Paths for Level2 Timing (No Pipelining)

Signal
Single-threaded
Interface %

Multi-threaded
Interface %

Multi-threaded
Pipelined

Control, Status 25 25 25

ControlBusy, StatusBusy 10 10 10

ControlWr, StatusRd 25 25 25

Datahandshake Group
(excluding MDataThreadID)

30 60 30

EnableClk 20 20 20

MDataThreadID n/a 50 30

MRespAccept 50 75 50

MThreadBusy 10 10 50

MThreadID n/a 50 30

Request Group
(excluding MThreadID)

30 60 30

MReset_n, SReset_n 10 10 10

Response Group (excluding
SThreadID)

30 60 30

SCmdAccept 50 75 50

SDataAccept 50 75 50

SDataThreadBusy 10 10 50

SError, SFlag, SInterrupt, MFlag,
MError

40 40 40

SThreadBusy 10 10 50

SThreadID n/a 50 30

Core From To

Master SThreadBusy Request Group

SThreadBusy
SDataThreadBusy

Datahandshake Group

Response Group MRespAccept

Slave MThreadBusy Response Group

Request Group SCmdAccept and
SDataAccept

Datahandshake Group SCmdAccept and
SDataAccept

318 Open Core Protocol Specification

OCP-IP Confidential

Table 66 Allowed Combinational Paths for Level2 Timing (Pipelined)

Core From To

Master Request Group
Datahandshake Group

SThreadBusy
SDataThreadBusy

Response Group MRespAccept

Slave Response Group MThreadBusy

Request Group SCmdAccept and
SDataAccept

Datahandshake Group SCmdAccept and
SDataAccept

OCP-IP Confidential

15 OCP Profiles

A strength of OCP is the ability to configure an interface to match a core’s
communication requirements. While the large number of configuration
options makes it possible to fit OCP into many different applications, it also
results in multiple implementation possibilities. This chapter provides
profiles that capture the OCP features associated with standard communi-
cation functions. The pre-defined profiles help map the requirements of a new
core to OCP configuration guidelines. The expected benefits include:

• Reduced risk of incompatibility when integrating OCP based cores
originating from different providers

• Reduced learning curve in applying OCP for standard purposes

• Simplified circuitry needed to bridge an OCP based core to another
communication interface standard

• Improved core maintenance

• Simplified creation of reusable core test benches

Profiles address only the OCP interface, with each profile consisting of OCP
interface signals, specific protocol features, and application guidelines. For
cores natively equipped with OCP interfaces, profiles minimize the number of
interface and protocol options that need to be considered.

320 Open Core Protocol Specification

OCP-IP Confidential

Two sets of OCP profiles are provided: profiles for new IP cores implementing
native OCP interfaces and profiles that are targeted at designers of bridges
between OCP and other bus protocols. Since the other bus protocols may have
several implementation flavors that require custom OCP parameter sets, the
bridging profiles are incomplete. The bridging profiles can be used with OCP
serving as either a master or a slave.

The native OCP profiles are designed for new IP cores implementing native
OCP interfaces.

Consensus profiles have been jointly defined by users of OCP and are
intended to supersede several of the existing profiles. The consensus profiles
define a unified set of OCP interfaces for system houses, IP providers and EDA
vendors.

Figure 90 depicts a system built out of diverse IP blocks. Many of the blocks
can be characterized as peripherals and are often connected with a simple
peripheral interconnect employing relaxed requirements for latency and
throughput.

Connecting the peripheral interconnect to the high-speed interconnect
through the use of a bridge component will likely increase system latency. The
high-speed interconnect services the processor subsystem including
processors, co-processors, DMAs, and memories. For these components high
throughput is a requirement, so they frequently use more advanced
communication schemes.

Figure 90 Native Profiles

Processor
Graphics

accelerator
DMA engine

High-speed interconnect

Peripheral interconnect

DRAM

DRAM
controller

Timer I/O deviceInterrupt controller

Bridge

OCP Profiles 321

OCP-IP Confidential

15.1 Consensus Profiles
The profiles in this section define a unified set of OCP interfaces. The first is
a simple slave profile that is targeted at peripheral modules and
interconnects. The second and third profiles address components that require
higher throughput, such as processor subsystem components.

15.1.1 Simple Slave
This profile is intended for peripheral slaves that favor simple implementation
over high throughput. Interrupt controllers, timers, and I/O devices shown in
Figure 90 are typical examples of this kind of slave. The signals and the
parameters that control them are listed in Table 67. All signals with an M
prefix are driven by the master while all signals with an S prefix are driven by
the slave, with the possible exception of MReset_n and SReset_n depending
on the system.

Table 67 Simple Slave Profile Signals and Parameters

Signal* Enabling Parameter
Width
Parameter

Usage

Clk Required Fixed Clock input (page 14)

EnableClk enableclk Fixed Enable interface clock input
(page 14)

MReset mreset
0/1

Fixed Slave reset input =1
Master reset output is optional
(page 27)

SReset sreset
0/1

Fixed Master reset input =1
Slave reset output is optional
(page 28)

Request phase signals

MAddr addr addr_wdth
32 max

Address of the transfer (byte address,
aligned to the OCP word size)

MCmd Required Fixed Command of the transfer

read_enable Can be 0 for a master that issues only
write operations

write_enable Can be 0 for a master that only issues
read operations or non-posted writes

writenonpost_enable Can be 0 for a master that only issues
read operations or posted writes

MData mdata data_wdth
16/32/64

Write data

MByteEn byteen data_wdth Byte enable

SCmdAccept cmdaccept Fixed Slave accepts the transfer and ends
the request phase

322 Open Core Protocol Specification

OCP-IP Confidential

* See Section 15.1.4 on page 332 for additional signals

Feature Set
The simple slave profile supports only single accesses, so no burst-related
signals are used. The accepted commands are IDLE, RD, WR, and WRNP.
Posted writes only return a response if writeresp_enable is enabled; non-
posted writes always return a response. For non-posted writes the response
must issue from the receiving slave. When responses are required for posted
writes (writeresp_enable is enabled), any component between the master
and the slave (e.g., an interconnect) can provide the response. This process
represents a trade-off between the potential speed improvements of posted
writes and the more reliable write completion and error tracking of the non-
posted writes. The allowed responses for SResp are NULL, DVA, and ERR.

If present, the read and write data signals SData and MData must have the
same width. To simplify the interface, the force_aligned parameter is set to
1, limiting byte enable patterns on the MByteEn signal to power-of-two in size
and aligned to that size. A byte enable pattern of all 0s is legal. This means
that the byte enable patterns generated by simple slave profile masters are
force-aligned. In addition, slaves using this profile can assume that the
incoming byte enable patterns are force-aligned. The size of the MByteEn is 2
bits when data_wdth is 16, 4 bits for a data_wdth of 32, and 8 bits for a
data_wdth of 64. The allowed MByteEn values for a data_wdth of 32 are
indicated by the shaded rows in Table 68.

Table 68 MByteEn Patterns for data_wdth = 32 in Simple Slave Profile

Response phase signals

SData sdata data_wdth
16/32/64

Read data

SResp resp Fixed Slave response to transfer

Additional parameters

endian
little, big, both,
neutral

All endianness options are allowed but
the modules are required to state their
endianness. Little endian is
recommended (page 51)

force_aligned = 1 Byte enables are power-of-two in size
and aligned to that size (page 60)

writeresp_enable = 0
or 1

Controls response to posted write
(non-posted writes always provide a
response).

MByteEn[3] MByteEn[2] MByteEn1] MByteEn[0]

0 0 0 0

0 0 0 1

0 0 1 0

Signal* Enabling Parameter
Width
Parameter

Usage

OCP Profiles 323

OCP-IP Confidential

Since resets are usually handled outside of OCP signaling, no module is
required to have a reset output, but every module interface needs to have a
reset input. In the OCP signal naming scheme, this requirement means that
all masters must have SReset enabled and all slaves an MReset input. It is
optional for slaves to have an SReset signal and for masters to have an MReset
signal. If the cores do not drive the reset signals, they need to be driven by a
system-component that generates the reset. The Clk and EnableClk signals
are required inputs in both masters and slaves and they are driven by a third
entity (neither the masters nor the slaves).

Slaves must be able to support the entire feature set defined in this profile.
Masters do not need to be able to issue all the commands since only one WR,
RD or WRNP is required. If masters only issue read commands
(write_enable and writenonpost_enable parameters set to 0), they can
omit the MData signal and responses to writes (writeresp_enable has to be
0 in the master parameter list). If a master issues only write commands, the
SData signal can be omitted. Using these options does not compromise
interoperability with Simple Slave Profile slaves.

Interoperability Issues
A slave that can accept commands on every cycle can permanently tie
SCmdAccept high. When configured in this fashion unsupported or otherwise
problematic commands are accepted, so all slaves would need to accept all
commands. In case of errors, the master can be notified with the SResp signal
(ERR).

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

MByteEn[3] MByteEn[2] MByteEn1] MByteEn[0]

324 Open Core Protocol Specification

OCP-IP Confidential

15.1.2 High Speed Profile
The high-speed profile is intended for subsystem components that require
high throughput, for example, processors, co-processors, DMA engines, and
memory controllers. The signals for this interface are listed in Table 69. This
profile adds the burst-related signals MBurstSeq, MBurstLength, MReqLast,
and SRespLast to improve throughput and the MRespAccept signal to enable
response-phase flow control. All signals with an M prefix are driven by the
master while all signals with an S prefix are driven by the slave, with the
possible exception of MReset_n and SReset_n depending on the system.

Table 69 High Speed Profile Signals and Parameters

Signal* Enabling Parameter Width Parameter Usage

Clk Required Fixed Clock input (page 14)

EnableClk enableclk Fixed Enable interface clock input
(page 14)

MReset mreset
0/1

Fixed Slave reset input =1
Master reset output is optional
(page 27)

SReset sreset
0/1

Fixed Master reset input =1
Slave reset output is optional
(page 28)

Request phase signals

MAddr addr addr_wdth
64 max

Address of the transfer (byte
address, aligned to the OCP word
size) driven by the master (page 14)

MCmd Required

read_enable

write_enable

writenonpost_enable

Fixed Command of the transfer driven by
the master (page 15)
Can be 0 for a master that issues
only write operations
Can be 0 for a master that only
issues read operations or non-
posted writes
Can be 0 for a master that only
issues read operations or posted
writes

MData mdata data_wdth
32/64/128

Write data driven by the master
(page 15)

MByteEn byteen data_wdth Byte enable driven by the master
(page 17)

MBurstSeq burstseq
burstseq_incr_enable
burstseq_strm_enable
burstseq_wrap_enable

Fixed The address sequence of the burst,
driven by the master (page 21)

MBurstLength burstlength burstlength_wdth
6 max

Length of the burst, driven by the
master (page 20)

MReqLast reqlast Fixed Last request in the burst, driven by
the master (page 22)

OCP Profiles 325

OCP-IP Confidential

* See Section 15.1.4 on page 332 for additional signals

For this profile the burstprecise parameter is zero, so the MBurstPrecise
signal is not used in the interface and all bursts are precise.

Feature Set
While the High-Speed Profile shares many features with the Simple Slave
Profile, the force aligned requirement is eliminated since the attached
modules can afford more complex interface logic. Two additional features are
multiple-request multiple-data (MRMD) type bursts and the response accept
signal (MRespAccept). MRespAccept grants capability to the master to block
the response flow from the slave if it cannot process new responses anymore.

Bursts offer higher transfer efficiencies when compared to single transfers by
introducing atomicity for multiple associated requests. This atomicity
ensures that requests in the same transaction, i.e. with spatial locality, are
issued back-to-back. This behavior is crucial when accessing an SDRAM
memory to attain high throughputs. Since the length of the burst is
transmitted in the beginning (with MBurstLength) and all bursts are precise
(MBurstLength value remains constant over the whole burst), further optimi-
zations are possible in the scheduling and arbitration processes. The address
sequence of the burst is provided by MBurstSeq. Allowed sequences are:

SCmdAccept cmdaccept Fixed Slave accepts the transfer and
ends the request phase, driven by
the slave (page 15)

Response phase signals

MRespAccept respaccept Fixed Master accepts the transfer and
ends the response phase, driven by
the master

SData sdata data_wdth
32/64/128

Read data driven by the slave
(page 16)

SResp resp Fixed Slave response to transfer driven by
the slave (page 16)

SRespLast resplast Fixed Indicates the last response in the
burst, driven by the slave (page 22)

Additional parameters

endian
little, big, both, neutral

Modules are required to state their
endianness. Little endian is
recommended (page 51)

force_aligned Byte enables are power-of-two in
size and aligned to that size
(page 60)

writeresp_enable Posted writes expect a response.
Can be 0 for a master that
only issues read operations or non-
posted write.

Signal* Enabling Parameter Width Parameter Usage

326 Open Core Protocol Specification

OCP-IP Confidential

Incrementing (INCR)
The address is incremented with the OCP word size for each transfer

Wrapping (WRAP)
Like incrementing burst but it does not have to start from the first address
and the address wraps at the address boundary defined by
MBurstLength*OCP word size

Streaming (STRM)
The address remains constant over the whole burst

MBurstSeq and MBurstLength provide the information needed to generate
and receive MRMD bursts. Additional information can help simplify
interconnect and slave design. OCP offers framing signals that can be used by
the master to identify the last request (MReqLast) and by the slave to identify
the last response (SRespLast) in the burst. These additional framing signals
are also part of this profile.

Slaves must support the entire feature set defined in this profile. Masters
need not be able to issue all the commands since only one WR, RD or WRNP
is required. If masters only issue read commands (write_enable and
writenonpost_enable parameters set to 0), they can omit the MData signal
and responses to writes (writeresp_enable has to be 0 in the master
parameter list). If a master issues only write commands, SData can be
omitted. Masters must support at least one of the burst addressing modes.

Interoperability Issues
The force aligned requirement of the simple slave profile and the MRespAccept
signal and burst features of the high-speed profile present some interopera-
bility problems between the interfaces. A bridge or some other component
linking simple slave and high-speed profile interfaces needs to break
transactions with misaligned byte enables (coming from the high-speed
profile to the simple slave profile) into transactions with legal byte enable
patterns. A similar process needs to be followed for burst accesses coming
from a high-speed profile master to a simple slave profile slave. The MRMD
nature of high-speed profile bursts means that the bridge can ignore the burst
related signals on the request side, but needs to generate an SRespLast. In
addition, if Master is High-Speed Profile, the bridge may need to limit the
number of outstanding requests on the interface or to buffer Simple Slave
Profile slave responses in case the master de-asserts MRespAccept. If Master
is Simple Slave Profile, and the slave is High-Speed Profile, the bridge may tie
MRespAccept asserted.

15.1.3 Advanced High-Speed Profile
The Advanced High-Speed profile, like the High-Speed Profile, is also aimed at
processor subsystem modules that require high throughput, with added
capabilities compared to the High-Speed Profile. The Advanced High-Speed
Profile is targeted at systems which process large amounts of real-time, block-
based data, such as high definition digital TV sets. Signals in the Advanced
High-Speed Profile interface are listed in Table 70. The Advanced High-Speed
Profile adds the following signals relative to the High-Speed Profile:
MDataValid, MBlockHeight, MBlockStride, MBurstSingleReq, SDataAccept,

OCP Profiles 327

OCP-IP Confidential

MDataLast, MDataRowLast, MDataByteEn, and SRespRowLast. MReqLast is
not used in the Advanced High-Speed Profile. In general, all signals with an
M prefix are driven by the master while all signals with an S prefix are driven
by the slave. Exceptions to this rule are made for the MReset_n and SReset_n
signals, which can be driven by other entities, depending on the system.

Table 70 Advanced High-Speed Profile Signals

Name Width Usage

Clk 1 Clock input to masters and slaves

EnableClk 1 Enable interface clock input to masters and
slaves

MReset (Slaves only) 1 Reset input to slaves

SReset (Masters only) 1 Reset input to masters

Request phase signals

MAddr 64 (max.) Address of the transfer (byte address, aligned
to the OCP word size)

MCmd 3 Command of the transfer

MData 32, 64, 128 Write data

MDataValid 1 Write data valid

MByteEn 1 Byte enable

MDataByteEn 1 Datahandshake phase write byte enables

MBlockHeight 6 (max) Height of 2D block burst

MBlockStride 32 (max) Address offset between 2D block rows

MBurstSeq 3 The address sequence of the burst

MBurstLength 6 (max) Burst length

MBurstSingleReq 1 Burst uses single request, multiple data (SRMD)
protocol

MDataLast 1 Last write data in burst

MDataRowLast 1 Last write data in row

SCmdAccept 1 Slave accepts the transfer and ends the
request phase

Response phase signals

SData 32, 64, 128 Read data

SDataAccept 1 Slave accepts write data

SResp 2 Slave response to transfer

SRespLast 1 Indicates the last response in the burst

SRespRowLast 1 Last response in row

MRespAccept 1 Master accepts the transfer and ends the
response phase

328 Open Core Protocol Specification

OCP-IP Confidential

Feature Set
With the exception of MReqLast, which is not present in this profile, the
Advanced High-Speed Profile includes all features already available in the
High-Speed Profile and includes a number of additional features, discussed
below.

• Two-dimensional block bursts can be used. This burst sequence allows
for efficient transfers of block-based data, such as macro-blocks in a
picture or a video stream. The signals used for this feature are:
MBlockHeight, MBlockStride, and SRespRowLast. MBurstSeq can also
use the BLCK value on top of the already allowed INCR, WRAP, and STRM
encodings.

• The exclusive-OR (XOR) burst sequence is supported. This address
sequence is required for optimized accesses to some high-performance
memories such as XDR. There are no additional signals for this feature;
only the added allowed encoding for MBurstSeq.

• Exclusive reads (MCmd set to RDEX) are supported. Exclusive reads
provide strong synchronization to access shared resources. There are no
additional signals for this feature; only the added allowed encoding for
MCmd.

• A data handshake phase is included to optimize flow control on the write
transactions. Using this third phase allows the master to decouple the
generation of the command from the actual emission of data. The signals
used for this feature are MDataValid, SDataAccept, MDataByteEn, and
MDataLast.

Single request, multiple data (SRMD) transactions are recommended for high
bandwidth data transfers. Each transaction is associated to a single
command independent of the number of data phases in the burst so the use
rate of the command and address lines can be reduced. It is strongly
recommended for a master that supports the Advanced High-Speed Profile to
only issue SRMD commands and to tie its MBurstSingleReq signal to 1. For
compatibility with the High-Speed Profile, slaves that support the Advanced
High-Speed Profile are required to support both SRMD and MRMD
transactions. Slave devices can detect the type of transaction in progress
based on the MBurstSingleReq signal. MReqLast is not present in the
Advanced High-Speed Profile since the usage of SRMD transactions makes it
irrelevant—MReqLast would always be asserted.

Using RDEX
RDEX is used as a synchronization primitive required for hardware support
of semaphores or read/modify/write sequences. These sequences are
required when a processor needs to read from a shared resource (registers or
memories) and then write to the same location in an atomic manner.

Example: Semaphore is used to control a shared memory resource. When a
processor needs access to this memory, it first reads from a semaphore
register and writes 1 to the same location using a RDEX/WRNP transaction.
If the value read was 1, the semaphore was already taken and the processor
cannot access the resource. In this case the value in the register is still 1. If
the value read was 0, the semaphore was clear, and the processor can now

OCP Profiles 329

OCP-IP Confidential

access the memory. After the RDEX/WRNP, the register value is 1 and other
processors cannot access the memory. The atomicity of the transaction
guarantees that no other processor may access the semaphore between the
read and the write in the transaction, and that only one master can have
control of the semaphore at any given time.

For transaction atomicity to be guaranteed in the system, RDEX must be
supported at each arbitration point, starting from the processor and
continuing down to the last arbitration point before any system target which
can be used as a protected shared resource. For a regular target, e.g., a simple
peripheral, RDEX support is not strictly required since the last arbitration
point takes care of the atomicity requirement, and RDEX can be translated
into a regular RD in this case. For some more complex targets, e.g., an
interconnect or a multi-threaded target, RDEX support is mandatory because
at least one arbitration point exists after this OCP interface.

To correctly support software synchronization primitives, the hardware is
required to keep the RDEX/WRNP transaction atomic, i.e., ensure that no
other command to the semaphore can be interleaved between the RDEX
command and the corresponding write, as specified in the OCP protocol. No
further action is required on the hardware side—the rest of the sharing
protocol is handled through software. A master can, in theory, clear the lock
set by another master, or write to a shared resource it does not have access
rights to. This would be a violation of the overall system software protocol, and
would result in incorrect operation, but would not be a violation of the OCP
protocol.

Potential Interoperability Issues
The force_aligned requirement of the Simple Slave Profile can be worked
around in the interconnect logic by splitting a non-compliant request, as
discussed in the High-Speed Profile definition. This problem does not apply to
transactions between devices that support the High Speed and Advanced
High Speed Profiles. MRespAccept compatibility between the Simple Slave
Profile and the Advanced High Speed Profile is solved the same way as for the
High Speed Profile.

When connecting a master that supports the Advanced High-Speed Profile to
a slave that supports either the Simple Slave Profile or the High Speed Profile,
some glue logic is required to translate the transaction into multiple requests.
The request phase signals are extended to issue the correct number of
requests, with the exception of addresses which are computed at each phase
based on the original transaction base address and on the burst sequence.
When interfacing with Simple Slave Profile devices, all the generated requests
are stand-alone. In the case of the High-Speed Profile, a multiple request,
multiple data (MRMD) transaction is issued, including correct generation of
MReqLast, unless the initial transaction is of an unsupported type, i.e., an
XOR or BLCK. In the case of an XOR burst, the transaction is split into
multiple single requests. For a BLCK burst, the glue logic can either issue
multiple single requests or multiple INCR bursts, one for each line in the 2D
block.

330 Open Core Protocol Specification

OCP-IP Confidential

When connecting a Simple Slave Profile master to a slave that supports the
Advanced High-Speed Profile, no glue logic is required for the request group
signals. MBurstLength shall be tied to 1 and MBurstSeq to INCR on the slave
interface to make sure all transactions are correctly treated as single
requests.

A write response to a non-posted write burst shall be issued to the master
when all responses in the transaction have been received. If at least one
response in the burst had an SResp value of ERR, it is expected that an error
response is forwarded to the master. For a response to a posted write
command, it is acceptable to immediately send a response to the initiator after
acceptance of the request or after receiving the first response from the slave
and to drop the next responses, with the drawback that an ERR value for
SResp in the rest of the transaction would not be detected. This is true for
both Simple Slave Profile and High-Speed Profile masters connected to an
Advanced High-Speed Profile slave.

When connected a High-Speed Profile master to an Advanced High-Speed
Profile slave, the MBurstSingleReq slave input shall be tied to 0 so that all
transactions are treated as MRMD. All High-Speed Profile burst sequences are
also supported by the Advanced High-Speed Profile, so no further logic is
required for the request and response phases.

The write data phase only exists within the Advanced High-Speed Profile.
When translating a burst from an Advanced High-Speed Profile master, the
glue logic must make sure it correctly realigns the data from the data
handshake phase with the commands passed to the slave. This means that
the logic must wait for the current data to be available from the master, i.e.,
for MDataValid to be asserted, before passing the associated command to the
slave so that write data are always part of the request phase.

The RDEX transaction from Advanced High-Speed Profile to Simple Slave
Profile or High-Speed Profile cannot be treated as an exclusive operation—it
can only be translated into a regular RD transaction. If an Advanced High-
Speed Profile master connected to a Simple Slave Profile or High-Speed Profile
slave wishes to perform an exclusive access to a resource, it shall do so using
other means. For instance, specific dedicated resources can be added to the
system for inter-processor synchronization purposes. Another possible
solution is to design the system logic, in interconnect and/or bridges, to
emulate exclusive access behavior.

Parameter List
Table 71 lists the set of parameters used in the Advanced High-Speed Profile
that have non-zero values.

OCP Profiles 331

OCP-IP Confidential

Table 71 List of non-zero parameters in the Advanced High-Speed Profile

Parameter Values Description

burstseq_blck_enable 1 Block burst address sequence (BLCK) enabled

burstseq_incr_enable 1 Incrementing burst address sequence (INCR)
enabled

burstseq_strm_enable 1 Streaming burst address sequence (STRM)
enabled

burstseq_wrap_enable 1 Wrapping burst address sequence (WRAP)
enabled

burstseq_xor_enable 1 Xor burst address sequence (XOR) enabled

endian little, big,
both, neutral

Used endianness needs to be stated

read_enable 1 Read operations (MCmd=RD) are enabled

readex_enable 1

write_enable 1 Write operations (MCmd=WR) are enabled

writenonpost_enable 1 Non-posted write operations (MCmd=WRNP)
are enabled

datahandshake 1 All writes (posted and non-posted) expect a
response

addr 1 Address signal (MAddr) is enabled

addr_wdth 64 (max.) Address signal (MAddr) maximum size is 64 bits

blockheight 1

blockheight_wdth 6 (max)

blockstride 1

blockstride_wdth 32 (max)

burstlength 1 Burst length signal (MBurstLength) is enabled

burstlength_wdth 6 (max) Burst length signal (MBurstLength) maximum
size is 6 bits

burstseq 1 Burst address sequence signal (MBurstSeq)
signal enabled

burstsinglereq 1

byteen 1 Byte enable signal (MByteEn) is enabled

cmdaccept 1 Command accept signal (SCmdAccept) is
enabled

dataaccept 1

datalast 1

datarowlast 1

data_wdth 32, 64, 128 Allowed sizes for data (MData/SData) are 32,
64, and 128 bits

332 Open Core Protocol Specification

OCP-IP Confidential

15.1.4 Optional Features
Some OCP features are so generic that their specific use is difficult to define
and so they are listed as optional features. This means that the features are
not required by the profiles but can still be used in a system dependent way.

The MAddrSpace signal separates the address regions of a module. This
signal is an extension of the regular address signal and can be used in the
simple slave, high-speed, and advanced high-speed profiles.

It is sometimes necessary to communicate information about requests and
responses between the master and the slave, for instance about routing or
security. For this kind of supplemental information OCP uses the MReqInfo
signal for the request, and SRespInfo for the response. These signals can be
used in all three profiles.

You can transfer information using some of the OCP sideband signals that
can travel asynchronously from the request or response flow. The signals are
MError to indicate a master internal error, SError to indicate a slave internal
error, MFlag for additional information provided by the master, and SFlag for
additional information provided by the slave. The use of these signals is
optional in all of the profiles.

Tags and threads are identified using ID-signals. MTagID (request tag) and
STagID (response tag) are present in the interface if the tags parameter is
greater than 1. In addition, the advanced high-speed profile needs
MDataTagID if tags are enabled because of datahandshaking. Similar signals
exist for threads (MThreadID, SThreadID, and MDataThreadID). They are
enabled if threads parameter is greater than 1 and the last one if
datahandshake is used (datahandshake = 1).

enableclk 1 Enable clock signal (EnableClk) is enabled

mdata 1 Write data signal (MData) is enabled

mdatabyteen 1

resp 1 Response signal (SResp) is enabled

respaccept 1 Response accept signal (MRespAccept) is
enabled

resplast 1 Last response indicator signal (SRespLast)
enabled

resprowlast 1

sdata 1 Read data signal (SData) is enabled

mreset 0/1 Controls MReset signal: Slaves should have a
reset input (1), reset output for masters is
optional (0)

sreset 1/0 Controls SReset signal: Masters should have a
reset input (1), reset output for slaves is
optional (0)

Parameter Values Description

OCP Profiles 333

OCP-IP Confidential

MTagInOrder, STagInOrder, MConnID, MThreadBusy, SDataThreadBusy,
and SThreadBusy are also optional signals in the high-speed and advanced
high-speed profiles. For systems that use OCP threads and allow interleaving
within request phases and data handshake phases, the use of threadbusy
signals is recommended.

15.1.5 Security
Layered profiles extend the OCP interface as an add-on to any other profile,
when additional features are required. The Security profile serves as an
example of this concept.

To protect against software and some selective hardware attacks use the OCP
interface to create a secure domain across the SOC. The domain might
include CPU, memory, I/O etc. that need to be secured using a collection of
hardware and software features such as secured interrupts, and memory, or
special instructions to access the secure mode of the processor.

The master drives the security level of the request using MReqInfo as a
subnet. The master provides initiator identification using MConnID.

Figure 91 Security Signal Processing

Interface Configuration
Table 72 lists the OCP configuration parameters that need to be set along with
the recommended values. For default values refer to Table 29, “Configuration
Parameter Defaults,” on page 68.

Master Slave

MReqInfo, MConnID, existing request phase signals

SResp, existing response phase signals

Master Slave

MReqInfo, MConnID, existing request phase signals

SResp, existing response phase signals

334 Open Core Protocol Specification

OCP-IP Confidential

Table 72 Security Parameters

Implementation Notes
When implementing this profile, consider the following suggestions:

• Define the security request as a named subnet MSecure within MReqInfo,
for example: subnet MReqInfo M:N MSecure, where M is >= N.

With the exception of bit 0, other bits are optional and the encoding is
user-defined. Bit 0 of the MSecure field is required and must use the
specified value. The suggested encoding for the MSecure bits is:

• A special error response is not specified. A security error can be signaled
with response code ERR.

15.1.6 Additional Profiles
In addition to the consensus profiles, a few additional profiles corresponding
to typical application needs are defined. Each of the following OCP profiles
defines one or more applications. The available profiles are:

• Sequential undefined length data flow

• Register access

• Block data flow (deprecated)

Each profile addresses distinct OCP interfaces, though most systems
constructed using OCP will have a mix of functional elements. As different
cores and subsystems have diverse communication characteristics and
constraints, various profiles will prove useful at different interfaces within the
system.

Parameter Value Notes

reqinfo 1 MReqInfo is required

reqinfo_wdth Varies Minimum width is 1

connid 1 To differentiate initiators, if
required

connid_wdth Varies Minimum width is 1

Bit Value 0 Value 1

0 non-secure secure

1 user mode privileged mode

2 data request instruction request

3 user mode supervisor mode

4 non-host host

5 functional debug

OCP Profiles 335

OCP-IP Confidential

15.1.7 Sequential Undefined Length Data Flow Profile
This profile is a master type (read/write or read-only, or write-only) interface
for cores that communicate data streams with memory.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Communication of an undefined amount of data elements to consecutive
addresses

• Imprecise burst model

• Aligned command/write data flows, decoupled read data flow

• 32 bit address

• Natural data width

• Optional use of byte enables

• Single thread

• Support for producer/consumer synchronization

Figure 92 Sequential Undefined Length Data Flow Signals Processing

Interface Configuration
Table 73 lists the OCP configuration parameters that need to be set along with
the recommended values. For default values refer to Table 29, “Configuration
Parameter Defaults,” on page 68.

Master Slave

MCmd, MAddr, MBurstLength, (MByteEn)

MData, (MDataByteEn)

SData, SResp

SCmdAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost | Read}

Master Slave

MCmd, MAddr, MBurstLength, (MByteEn)

MData, (MDataByteEn)

SData, SResp

SCmdAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost | Read}

336 Open Core Protocol Specification

OCP-IP Confidential

Table 73 Sequential Undefined Length Data Flow Parameter Settings

Implementation Notes
When implementing this profile, consider the following suggestions:

• The core streams data to and from a memory-based buffer at sequential
addresses. When hitting the boundaries of that buffer a non-sequential
address is occasionally given.

MBurstLength equals 2 while the data stream proceeds to sequential
addresses; MBurstLength equals 1 to indicate that a non-sequential
address follows, or that the stream terminates.

• Start read transactions as early as possible to hide read latency behind
ongoing transactions.

• To implement a producer/consumer synchronization scheme (typically
the case when data written by the IP core to shared memory is read by
another core in the system), the IP core should issue a synchronization
request (for instance through an OCP flag interface) only after receiving a
response that the last write transaction has committed. To accomplish
this step, perform all write transactions up to the last one as posted
writes. Make the final write transaction a non-posted write. This will lead
to reception of a response once the non-posted write transaction has
committed, i.e., completed at the final destination.

• Error response should lead to an interrupt.

Parameter Value Notes

addr_width 32

burstlength 1

burstlength_width 2

burstseq 1

byteen 1 (optional) For interfaces that are capable of partial
access

data_width core specific Choose a data width that is natural to
the operation of the core

read_enable 1 (optional) For read capable interface only

respaccept 1

write_enable 1 (optional) For write capable interface only

writenonpost_enable 1

writeresp_enable 1

OCP Profiles 337

OCP-IP Confidential

15.1.8 Register Access Profile
The register access profile offers a control processor the ability to program the
operation of an attached core. This profile supports programmable register
interfaces across a wide range of IP cores, such as simple peripherals, DMA
engines, or register-controlled processing engines. The IP core would be an
OCP slave on this interface, connected to a master that is a target addressed
by a control processor.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Address mapped communication, but target decoding is handled
upstream

• Natural data width (unconstrained, but 32 bits is most common)

• Natural address width (based on the number of internal registers X data
width)

• No bursting

• Precise write responses indicate completion of write side-effects

• Single threaded

• Optional aligned byte enables for sub-word CPU access

• Optional response flow control

• Optional use of side-band signals for interrupt, error, and DMA ready
signaling

Figure 93 Register Access Signals Processing

M
aster (B

u
s T

arge
t)

S
lave (IP

 C
ore)

MCmd, MAddr, MData, (MByteEn)

SData, SResp

SCmdAccept

(MRespAccept)

MCmd = { Idle | Write | Read}

burstlength = 0, force_aligned = 1

SInterrupt

SError

SReset

MReset

M
aster (B

u
s T

arge
t)

S
lave (IP

 C
ore)

MCmd, MAddr, MData, (MByteEn)

SData, SResp

SCmdAccept

(MRespAccept)

MCmd = { Idle | Write | Read}

burstlength = 0, force_aligned = 1

SInterrupt

SError

SReset

MReset

338 Open Core Protocol Specification

OCP-IP Confidential

Interface Configuration
Table 74 lists the OCP configuration parameters that need to be set along with
the recommended values. For default values refer to Table 29, “Configuration
Parameter Defaults,” on page 68.

Table 74 Register Access Parameter Settings

Implementation Notes
When implementing this profile, consider the following suggestions:

• Choose a data width based on the internal register width of the core.

• Choose an address width based on the data width and number of
registers.

• Design new cores so that all read/write side-effects can be managed
without using byte enables.

• Design new cores so that registers are at least 32 bit aligned.

• Use force aligned byte enables for cores with side effects in multiple-use
registers.

• Implement response flow control if convenient.

• Implement sideband signaling towards CPU (interrupts, sideband errors,
etc.) on this interface, since it is largely controlled by the CPU.

Parameter Value Notes

addr 1

addr_wdth Varies Num_regs * data_wdth/8

byteen Varies Not suggested for new designs

cmdaccept 1

data_wdth Varies 8, 16, 32 and 64 bits; 32 is preferred

force_aligned 1 Normally read/written by aligned CPU

interrupt Varies For cores with multiple interrupt lines use
SFlag

mdatainfo 0

mreset Varies

respaccept 1 Include when possible!

serror Varies If core has internally-generated errors

sreset Varies If core receives own (non-interface) reset

writenonpost_enable Varies Not usually needed

writeresp_enable 1 Precise write responses needed for posted
writes.

OCP Profiles 339

OCP-IP Confidential

• Select reset options based on the expected use of the core in a larger
system.

• Use regular Write commands for precise completion, unless the core is
capable of per-transfer posting decisions, where mixing Write and
WriteNonPost helps.

15.1.8.1 Block Data Flow Profile (Deprecated)
This profile has been supplanted by the high-speed profile.

The block data flow profile is designed for master type (read/write, read-only,
or write-only) interfaces of cores exchanging data blocks with memory. This
profile is particularly effective for managing pipelined access of defined-length
traffic (for example, MPEG macroblocks) to and from memory.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Block-based communication (includes a single data element block)

• A single request/multiple data burst model using incremental or a stream
burst sequence

• De-coupled, pipelined command and data flows

• 32 bit address

• Natural data width and block size

• Use of byte enables

• Single threaded

• Support for producer/consumer synchronization through non-posted
writes

340 Open Core Protocol Specification

OCP-IP Confidential

Figure 94 Block Data Flow Signal Processing

Interface Configuration
Table 75 lists the OCP configuration parameters that need to be set along with
the recommended values. For default values refer to Table 29, “Configuration
Parameter Defaults,” on page 68.

Table 75 Block Data Flow Parameter Settings

Parameter Value Notes

addr_width 32

burstlength 1

burstlength_width Core specific Choose a burst length that is natural to
the operation of the core

burstseq 1 If the core is STRM burst capable

burstseq_strm_enable 1 If the core is STRM burst capable

burstsinglereq 1

byteen 1 For interfaces that are capable of
partial access

data_width Core specific Choose a data width that is natural to
the operation of the core

dataaccept 1

datahandshake 1

mdatabyteenable 1

read_enable 1 For read capable interface only

respaccept 1

Master Slave

MCmd, MAddr, MBurstLength, MByteEn,

MBurstSeq, MBurstSingleReq

MData, MDataByteEn, MDataValid

SData, SResp

SCmdAccept

SDataAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost | Read}

Master Slave

MCmd, MAddr, MBurstLength, MByteEn,

MBurstSeq, MBurstSingleReq

MData, MDataByteEn, MDataValid

SData, SResp

SCmdAccept

SDataAccept

MRespAccept

MCmd =
{ Idle | Write | Write NonPost | Read}

OCP Profiles 341

OCP-IP Confidential

Implementation Notes
When implementing this profile, consider the following suggestions:

• Start read transactions as early as possible to minimize read latency
behind ongoing transactions.

• To implement a synchronization scheme (typically the case when data
written by the IP core to shared memory is read by another core in the
system), the IP core should issue a synchronization request (for instance
through an OCP flag interface) only after receiving a response that the last
write transaction has committed. To accomplish this step, perform all
write transactions up to the last one as posted writes. Make the final write
transaction a non-posted write. This will lead to reception of a response
once the non-posted write transaction has committed, i.e., completed at
the final destination.

• Error responses should lead to an interrupt.

15.2 Bridging Profiles
The bridging profiles are designed to simplify or automate the creation of
bridges to other interface protocols. The bridge can have an OCP master or
slave port. There are two types:

• The simple H-bus profile is intended to provide a connection through an
external bridge, for example to a CPU with an AMBA AHB protocol.

• The X-bus interfaces support cacheable and non-cacheable instruction
and data traffic between a CPU and the memories and register interfaces
of other targets. The X-bus profiles might be used with a CPU core that
internally uses the AMBA AXI protocols, and is externally bridged to OCP.

15.2.1 Simple H-bus Profile
This profile allows you to create OCP master wrappers to native interfaces of
simple CPU type initiators with multiple-request/multiple-data, read and
write transactions.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Address mapped communication

• Natural address width

write_enable 1 For write capable interface only

writenonpost_enable 1 See note on synchronization below

writeresp_enable 1 Needed for posted writes

Parameter Value Notes

• Byte enable

• Natural data width

• Constrained burst size

• Single thread

• Caching and similar extensions mapped to MReqInfo or corresponding
OCP commands

Figure 95 Simple H-Bus Signal Processing

Interface Configuration
Table 76 lists the OCP configuration parameters that need to be set along with
the recommended values. For default values refer to Table 29, “Configuration
Parameter Defaults,” on page 68.

Table 76 Simple H-Bus Parameter Settings

Parameter Value Notes

addr_wdth Varies Use native address width

burstlength 1

burstlength_wdth 5 Only short burst supported

burstprecise 0 MBurstPrecise signal is not part of the
interface. All bursts are precise

burstseq 1 Subset of burst codes common with
OCP and CPU

burstseq_wrap_enable 1

byteen 1

data_wdth Varies 8, 16, 32 and 64 bits

force_aligned 1

mreset 1

MCmd = { Idle | Read | ReadEx | Wr }

MCmd, Maddr, Mdata, MBurstLength, MByteEn, MReqInfo,
MBurstSeq

SCmdAccept

SData, SResp

MRespAccept

Master Slave

OCP Profiles 343

OCP-IP Confidential

Implementation Notes
When implementing this profile, consider the following suggestions:

• If the CPU’s burst parameters such as data alignment are not supported
in OCP, such bursts are broken into single transactions.

• All requests have a response.

• If the CPU address and write data are pipelined, the OCP bridge will align
them.

• CPU specific information is mapped to the MReqInfo field, however, since
this field is often used for proprietary bits by OCP users, a bit-to-bit
mapping is not provided. For this field concatenate bit fields starting from
bit 0. If the in-band field contains control information that has equivalent
native OCP functionality, map the information to the corresponding OCP
request. For example, a bit that can be buffered can be mapped to OCP
posted or non-posted write types.

15.2.2 X-Bus Packet Write Profile
This profile is designed to create OCP master wrappers to native interfaces of
CPU type initiators with single-request/multiple-data, write-only
transactions.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Packet type communication

• Natural address width

• Separate command/write data handshake

• Byte enable

• Natural data width

• Multi-thread (blocking)

readex_enable 1 For CPUs with locked access

reqinfo 1

reqinfo_wdth Varies Map CPU-specific in-band info here

reqlast 1 Can be created of burst length

respaccept 1

sreset 1

writeresp_enable 1

Parameter Value Notes

344 Open Core Protocol Specification

OCP-IP Confidential

• Caching and similar extensions mapped to MReqInfo

Figure 96 X-bus Packet Write Signal Processing

Interface Configuration
Table 77 lists the OCP configuration parameters that need to be set along with
the recommended values. For default values refer to Table 29, “Configuration
Parameter Defaults,” on page 68.

Table 77 X-bus Packet Write Parameter Settings

Parameter Value Notes

addr_wdth Varies Use native address width

burstlength 1

burstlength_wdth 5 Only short burst support

burstprecise 0 MBurstPrecise signal is not part of the
interface. All bursts are precise

burstseq 1 Subset of burst codes common with OCP
and CPU

burstseq_strm_enable 1

burstseq_wrap_enable 1

byteen 0 Only databyteen needed for write-only

data_wdth Varies 8, 16, 32 and 64 bits

dataaccept 1

datahandshake 1

Master Slave

MCmd, MAddr, MBurstLength, MReqInfo, MBurstSeq

MData, MDataByteEn

SCmdAccept

SDataAccept

MCmd =
{ Idle | Write | WriteNonPost}

MDataValid

SResp

MRespAccept

Master Slave

MCmd, MAddr, MBurstLength, MReqInfo, MBurstSeq

MData, MDataByteEn

SCmdAccept

SDataAccept

MCmd =
{ Idle | Write | WriteNonPost}

MDataValid

SResp

MRespAccept

OCP Profiles 345

OCP-IP Confidential

Implementation Notes
When implementing this profile, consider the following suggestions:

• Data ordering among read and write port transactions is the responsibility
of the CPU. The bridge must consider the read and write ports as single
master with regard to exclusive access.

• Only precise bursts are supported. If CPU burst parameters do not map
to OCP, break the burst into single accesses.

• CPU specific information is mapped as in the H-bus profile.

15.2.3 X-Bus Packet Read Profile
This profile helps you create OCP master wrappers for native interfaces of
CPU type initiators with single-request multiple-data read-only transactions.

Core Characteristics
Cores with the following characteristics would benefit from using this profile:

• Packet type communication

datalast 1 Can be created of burst size

interrupt 0 Interrupts are not part of this interface

mdatabyteen 1

mreset 1

read_enable 0 Write only

reqdata_together Varies A simpler bridge can often be made if 1,
some performance loss possible

reqinfo 1

reqinfo_wdth Varies Map CPU-specific in-band info here

reqlast 1 Superfluous for single request, datalast
suffices

respaccept 1

resplast 1

sdata 0

sreset 1

sthreadbusy 0 Blocking threads only

threads Varies Natural number of threads

writenonpost_enable 1

writeresp_enable 1 Needed for posted writes only

Parameter Value Notes

346 Open Core Protocol Specification

OCP-IP Confidential

• Natural address width

• Single-request multiple-data read

• Byte enable

• Natural data width

• Multi-thread (blocking)

• Caching and similar extensions mapped to MReqInfo

• Write support for ReadEx/Write synchronization

Figure 97 X-bus Packet Read Signal Processing

Interface Configuration
Table 78 lists the OCP configuration parameters that need to be set along with
the recommended values. For default values refer to Table 29, “Configuration
Parameter Defaults,” on page 68.

Table 78 X-bus Packet Read Parameter Settings

Parameter Value Notes

addr_wdth Varies Use native address width

burstlength 1

burstlength_wdth 5 Only short burst support

burstprecise 0 MBurstPrecise signal is not part of the
interface. All bursts are precise

Master Slave

SResp, SData, SRespLast, SThreadID

SCmdAccept

MCmd =
{ Idle | Read | ReadEx | Write}

MRespAccept

MData, MDataValid, MDataThreadID

SDataAccept

MCmd, MAddr, MBurstLength, MReqInfo, MThreadID, MBurstSeq

Master Slave

SResp, SData, SRespLast, SThreadID

SCmdAccept

MCmd =
{ Idle | Read | ReadEx | Write}

MRespAccept

MData, MDataValid, MDataThreadID

SDataAccept

MCmd, MAddr, MBurstLength, MReqInfo, MThreadID, MBurstSeq

OCP Profiles 347

OCP-IP Confidential

Implementation Notes
When implementing this profile, consider the following suggestions:

• Data integrity among read and write port transactions is the responsibility
of the CPU. The bridge must consider the read and write ports as single
master with regard to exclusive access. Both transfers in the ReadEx/
Write pair should be issued on the X-bus packet read interface.

• Only precise bursts are supported. If the CPU burst parameters do not
map to OCP, break the burst into single accesses.

• CPU specific information is mapped as in the H-bus profile.

burstseq 1 Subset of burst codes common with
OCP and CPU

burstseq_strm_enable 1

burstseq_wrap_enable 1

burstsinglereq 1

byteen 1

data_wdth Varies 8, 16, 32 and 64 bits

force_aligned 0 If CPU alignment is not supported in
OCP, such bursts are broken into
single transactions.

interrupt 0 Interrupts are not part of this interface

mreset 1

readex_enable 1

reqinfo 1

reqinfo_wdth Varies Map CPU-specific in-band info here

respaccept 1

resplast 1

sreset 1

sthreadbusy 0 Blocking threads only

threads Varies Natural number of threads

write_enable 1 To support ReadEx

Parameter Value Notes

348 Open Core Protocol Specification

OCP-IP Confidential

OCP-IP Confidential

16 Core Performance

To make it easier for the system integrator to choose cores and architect the
system, an IP core provider should document a core’s performance character-
istics. This chapter supplies a template for a core performance report on
page 354, and directions on how to fill out the template.

16.1 Report Instructions
To document the core, you will need to provide the following information:

1. Core name. Identify the core by the name you assigned.

2. Core ID. Specify the identification of the core inside the system-on-chip.
The information consists of the vendor code, core code, and revision code.

3. Core is/is not process dependent. Specify whether the core is process-
dependent or not. This is important for the frequency, area, and power
estimates that follow.

If multiple processes are supported, name them here and specify
corresponding frequency/area/power numbers separately for each core if
they are known.

4. Frequency range for this core. Specify the frequency range that the core
can run at. If there are conditions attached, state them clearly.

5. Area. Specify the area that the core occupies. State how the number was
derived and be precise about the units used.

6. Power estimate. Specify an estimate of the power that the core consumes.
This naturally depends on many factors, including the operations being
processed by the core. State all those conditions clearly, and if possible,
supply a file of vectors that was used to stimulate the core when the power
estimate was made.

350 Open Core Protocol Specification

OCP-IP Confidential

7. Special reset requirements. If the core needs MReset_n/SReset_n asserted
for more than the default (16 OCP clock cycles) list the requirement.

8. Number of interfaces.

9. Interface information. For each OCP interface that the core provides, list
the name and type.

The remaining sections focus on the characteristics and performance of
these OCP interfaces.

For master OCP interfaces:
a. Issue rate (per OCP cycle for sequences of reads, writes, and

interleaved reads/writes). State the maximum issue rate. Specify
issue rates for sequences of reads, writes, and interleaved reads and
writes.

b. Maximum number of operations outstanding (pipelining support).
State the number of outstanding operations that the core can support;
is there support for pipelining.

c. If the core has burst support, state how it makes use of bursts, and
how the use of bursts affects the issue rates.

d. High level flow-control. If the core makes use of high-level flow control,
such as full/empty bits, state what these mechanisms are and how
they affect performance.

e. If multiple threads are present, explain the use of threads.

f. Connection ID support. Explain the use and meaning of connection
information.

g. Use of side-band signals. For each sideband signal (such as
SInterrupt, MFlag) explain the use of the signal.

h. If the OCP interface has any implementation restrictions, they need to
be clearly documented.

For slave OCP interfaces:
a. Unloaded latency for each operation (in OCP cycles). Describe the

unloaded latency of each type of operation.

b. Throughput of operations (per OCP cycle for sequences of reads,
writes, and interleaved reads/writes). State the maximum throughput
of the operations for sequences of reads, writes, and interleaved reads
and writes.

c. Maximum number of operations outstanding (pipelining support).
State the number of outstanding operations that the core can support,
i.e. is there support for pipelining.

Core Performance 351

OCP-IP Confidential

d. Burst support and effect on latency and throughput numbers. If the
core has burst support, state how it makes use of bursts, and how the
use of bursts affects the latency and throughput numbers stated
above.

e. High level flow-control. If the core makes use of high-level flow control,
such as full/empty bits, state what these mechanisms are and how
they affect performance.

f. If multiple threads are present, explain the use of threads.

g. Connection ID support. Explain the use and meaning of connection
information.

h. Use of side-band signals. For each sideband signal (such as
SInterrupt, MFlag) explain the use of the signal.

i. If the OCP interface has any implementation restrictions, they need to
be clearly documented.

For every non-OCP interface, you will need to provide all of the same
information as for OCP interfaces wherever it is applicable.

352 Open Core Protocol Specification

OCP-IP Confidential

16.2 Sample Report

1. Core name flashctrl

2. Core identity
Vendor code
Core code
Revision code

0x50c5
0x002
0x1

3. Core is/is not process
dependent

Not

4. Frequency range for this core <100Mhz with NECCBC9-VX library

5. Area 4400 gates
2input NAND equivalent gates

6. Power estimate not available

7. Special reset requirements

8. Number of interfaces 2

9. Interface information:
Name
Type

ip
slave

For master OCP interfaces:

a. Issue rate (per OCP cycle
for sequences of reads,
writes, and interleaved
reads/writes)

b. Maximum number of
operations outstanding
(pipelining support)

c. Effect of burst support on
issue rates

d. High level flow-control

e. Use of threads (if any)

f. Use of connection
information

g. Use of side-band signals

h. Implementation restrictions

Core Performance 353

OCP-IP Confidential

For slave OCP interfaces:

a. Unloaded latency for each
operation (in OCP cycles)

Register read or write: 1 cycle. The flash read takes SBFL_TAA
(read access time). Can be changed by writing
corresponding register field of emem configuration register.
The flash write operation takes about 2000 cycles since it
has to go through the sequence of operations - writing
command register, reading the status register twice.

i. Throughput of operations
(per OCP cycle for
sequences of reads, writes,
and interleaved reads/
writes)

No overlap of operations therefore reciprocal of latency.

j. Maximum number of
operations outstanding
(pipelining support)

No pipelining support.

k. Effect of burst support on
latency and throughput
numbers

No burst support.

l. High level flow-control No high-level flow-control support.

m. Use of threads (if any) No thread support.

n. Use of connection
information

No connection information support.

o. Use of side-band signals Reset_n, Control, SError. Control is used to provide additional
write protection to critical blocks of flash memory.
SError is used when an illegal width of write is performed.
Only 16 bit writes are allowed to flash memory.

p. Implementation restrictions

For every non-OCP interface
Provide all of the same
information as for OCP
interfaces wherever it is
applicable.

Hitachi flash card HN29WT800
Only 1 flash ROM part is supported, therefore the CE_N is
hardwired on the board.
The ready signal RDY_N, is not used since not all parts
support it.
For the BYTE_N signal, only 16-bit word transfers are
supported

354 Open Core Protocol Specification

OCP-IP Confidential

16.3 Performance Report Template
Use the following template to document a core.

1. Core name

2. Core identity
Vendor code
Core code
Revision code

3. Core is/is not process
dependent

4. Frequency range for this core

5. Area

6. Power estimate

7. Special reset requirements

8. Number of interfaces

9. Interface information:
Name
Type

For master OCP interfaces:

a. Issue rate (per OCP cycle
for sequences of reads,
writes, and interleaved
reads/writes)

b. Maximum number of
operations outstanding
(pipelining support)

c. Effect of burst support on
latency and throughput
numbers

d. High level flow-control

e. Use of threads (if any)

f. Use of connection
information

g. Use of side-band signals

h. Implementation restrictions

Core Performance 355

OCP-IP Confidential

For slave OCP interfaces:

a. Unloaded latency for each
operation (in OCP cycles)

i. Throughput of operations
(per OCP cycle for
sequences of reads, writes,
and interleaved reads/
writes)

j. Maximum number of
operations outstanding
(pipelining support)

k. Effect of burst support on
latency and throughput
numbers

l. High level flow-control

m. Use of threads (if any)

n. Use of connection
information

o. Use of side-band signals

p. Implementation restrictions

For every non-OCP interface
Provide all of the same
information as for OCP
interfaces wherever it is
applicable.

Part III Protocol Compliance

17 Compliance

This section contains the OCP compliance checks that can help you create
checking solutions in the language and tool of your choice.

The guidelines listed in this section are based on the “Specification” and
“Guidelines” parts of this document and allow you to verify an IP/Verification
IP (VIP) for OCP compliance. In all cases, “Part I, Specification” is the definitive
reference. Any references made to “Part II, Guidelines” are not definitive as
Part I supersedes the guidelines.

For a core to be considered OCP compliant it must satisfy the compliance
definition as described in Section 1.2 on page 3.

17.1 Configuration Compliance

17.1.1 Interface Configuration
The main challenge in developing an OCP VIP lies in accounting for the high
degree of configurability of OCP. Figure 98 shows the different inputs that can
affect OCP configurability. To properly define the OCP interfaces of an IP/VIP,
consider the following contexts.

Open System Context
For an open system, it must be possible to setup all of the OCP interfaces
with a file using the <core>_rtl.conf syntax, which is required for OCP
compliance. Fixed configuration IP/VIP must be delivered with a
core_rtl.conf file describing the configuration. The metadata properties for
this are described in Chapter 8.

360 Open Core Protocol Specification

OCP-IP Confidential

Configurable IP/VIP supporting multiple OCP configurations must
support the setup of any configuration using a <core>_rtl.conf file. The
mechanisms used to fix the configuration must provide a method for
generating a core_rtl.conf file that represents the fixed configuration and
can be used to configure the IP/VIP directly.

For IP providers <core>_rtl.conf generation likely occurs during the IP
generation step. When the IP code is generated based on configuration,
and other settings in the GUI, the <core>_rtl.conf file is generated along
with the IP.

Closed System Context
In a closed system, the verification of an IP/VIP with one or more OCP
interfaces may be driven from a <core>_rtl.conf file. A vendor is free to
implement any other solution. For example, a VERA verification
environment could use a VERA object to control the OCP stimuli
generators instead of a <core>_rtl.conf file.

If the IP/VIP is being developed in a closed system for delivery in an open
system context, then the verification must include the <core>_rtl.conf files
and any applicable <core>_rtl.conf generators that are delivered with the
IP/VIP.

17.1.2 Configuration Parameter Extraction
Depending on the system context, the VIP must extract the OCP
configuration parameters from the <core>_rtl.conf file (open) or from any
alternate solution (closed). Parameters with indeterminate values must be
retrieved using the configuration parameter defaults summarized in
Table 29, “Configuration Parameter Defaults,” on page 68 (Table 22 of the
OCP 2.0 Specification). Some parameters are required in certain
configurations, and for those, no default is specified. For example:
addr_wdth must always be specified if addr == 1.

17.2 Protocol Compliance
Once all the OCP configuration parameters are known, illegal OCP
configurations must be flagged. Chapter 19 contains compliance checks
for the configuration parameters. Chapter 4 contains most of the cross-
constraints. For example: if readex_enable is set to 1, write_enable or
writenonpost_enable must be set to 1.

17.2.1 Select the Relevant Checks
Based on the OCP configuration parameters, select a subset of the checks
in the VIP OCP library. This subset is used for the actual verification. If a
signal used by a check is not configured in the OCP interface and if no
other tie-off value is specified, Table 16, “OCP Signal Configuration
Parameters,” on page 31 (Table 12 of the OCP 2.0 Specification) specifies
the inferred default tie-off values. For example, the MBurstPrecise default
tie-off value is 1 or precise.

Compliance 361

OCP-IP Confidential

Check the compliance of the DUT OCP interfaces using static or dynamic
verification techniques described in the next section

Figure 98 OCP Configurability

17.3 Verification Techniques
The verification guidelines are valid for developers using static or dynamic
verification methods. This section provides an overview of static and dynamic
verification methods, along with guidance on how these checks can be used
to support these verification efforts.

17.3.1 Dynamic Verification
Dynamic verification methodology consists of:

• Driving a set of stimuli through the OCP interface into the DUT.

OCP interface
 configuration

Configuration parameter defaults

Table 22, OCP 2.0 Specification

Table 25, OCP 2.2 Specification

OCP configuration parameters

 Relevant
checks
subset

Signal default tie - off values

Table 12, OCP 2.0 Specification

Table 13, OCP 2.2 Specification

Database containing
all OCP compliance

checks

Static

verification

Dynamic
 verification

 OCP configuration
parameters cross

constraints
checking

362 Open Core Protocol Specification

OCP-IP Confidential

• Using a protocol checker on the VIP monitor traces of OCP interface
activity to make sure that the protocol is not violated.

• Assessing the quality of the stimuli using functional and code coverage.

The OCP configuration parameters determine which protocol checks must be
active and how the OCP functional coverage is defined.

Stimuli
Because of the degree of difficulty of defining a golden set of stimuli for any
OCP interface configuration, you will need to implement a smart and efficient
set of stimuli. This may be accomplished using constraint-driven random
stimuli generation. The quality of the stimuli must be assessed using both
functional and code coverage as described below.

Protocol Checks
The protocol checker is a passive component that monitors a specific set of
OCP configuration parameters to determine whether the OCP protocol is
violated. The protocol checker can be written in a variety of languages
including HDL, PSL, SVA, E, NSCa, or VERA. The protocol checker must be
instantiated on each OCP interface of the DUT.

To allow this document to be easily referenced, the names of the protocol
checks must match the names given to the compliance checks described in
this document.

Functional Coverage
Measure the quality of the applied stimuli. The target is 100% functional
coverage. Run code coverage on the RTL to determine whether there are any
verification holes such as uncovered FSM states or missed branches. Based
on the code coverage analysis, additional coverage metrics may be required.

The guidelines for OCP functional coverage are provided in Chapter 20. Any
additional coverage metrics, based on code-coverage analysis, are design
dependent and are out of the scope of this document.

17.3.2 Static Verification
The static verification approach is also referred to as formal verification and
relies on the following key elements:

• OCP protocol assertions (or protocol checkers)

• OCP protocol constraints (optional)

• OCP functional coverage

This approach uses a formal tool to prove that, given the stimulus limits
defined by the OCP protocol constraints, the OCP interface of the DUT never
violates OCP protocol assertions. The formal proof may be exhaustive (the
assertions are never violated) or bounded (up to a certain depth of the state

Compliance 363

OCP-IP Confidential

space the assertions are never violated). Stimuli are not needed; instead the
tool relies on the 'all acceptable stimuli' definitions provided by the OCP
protocol constraints.

The OCP configuration parameters determine:

• Which protocol assertions must be active.

• How the functional coverage must be defined.

• Which protocol constraints must be active.

Protocol Assertions
Formal verification revolves around taking the protocol assertions and
attempting to prove that they are never violated. If a violation is found, the
formal tool provides a test sequence that illustrates the violation on the
design. The assertions can be written in different languages such as HDL, PSL
or SVA.

To allow this document to be easily referenced, the names of the assertions
must match the names given to the compliance checks described in this
document.

Protocol Constraints
To place bounds on the stimuli that a formal engine must consider, the design
must be connected to protocol constraints or some form of generator
description. Constraints can be specified using the same language as is used
for protocol assertions, typically in HDL, PSL, SVA, or OVA.

Protocol constraints are not provided and must be obtained or created for use
with formal tools. Constraints must be specific enough to prevent invalid test
sequences that can lead to false negative test results (as indicated by protocol
assertion failures) but not so specific that they prevent valid test sequences.
The latter situation can lead to false positive test results implied by protocol
assertion success over an incomplete set of test sequences.

Using functional coverage, false positive results can be checked, however, the
false negatives cannot be checked as easily.

Functional Coverage
You must insure that all of the protocol assertions are verified to a reasonable
extent, and that the protocol constraints are sound. To accomplish this, some
functional coverage must be added as a function of the OCP configuration
parameters. The functional coverage definition should cover:

• Which assertions warrant exhaustive proofs

• Which assertions are ok with just bounded proofs, at what depth

• Detect and correct an over-constrained environment

The guidelines for the OCP functional coverage are described in Chapter 20.

OCP-IP Confidential

18 Protocol Compliance Checks

The compliance checks listed in this chapter are extracted from the OCP
Specification and are intended to serve as guidelines to verify an IP for OCP
compliance. In all cases “Part I, Specification” is the definitive reference.

The compliance check names have been created using the following template:

<hierarchy>_<check type>_<critical signal>_<extra details>

In which:

<hierarchy> signal, request, datahs, response, burst, transfer, rdex

<check type> valid, hold, value, exact, phase_order, lock_release,
sequence, order, reorder

<critical signal> (optional) any OCP signal name that is impacted by the
compliance check

<extra details> a short additional explanation

18.1 Activation Tables
Tables 79–85 list the parameters needed for each check to be initiated. The
following assumptions are made with respect to these tables:

• An understanding of how a combination of these parameters can lead to
an illegal configuration.

• The tables only show the minimum parameters needed for a check to be
fired. Each configuration needs the parameters defined for each check
plus the parameters needed to make it a legal configuration. For example,
a check for INCR bursts would need some command (read_enable,
write_enable, etc.) parameters defined to test the check.

366 Open Core Protocol Specification

OCP-IP Confidential

Table 79 Dataflow Signal Checks

Name Activation Parameters

1.1.1 signal_valid_<signal>_when_reset_inactive
MCmd

MDataValid
MThreadBusy
SDataThreadBusy
SResp
SThreadBusy

-
datahandshake
mthreadbusy
sdatathreadbusy
resp
sthreadbusy

1.1.2 request_valid_<signal>
MAddr
MAddrSpace
MAtomicLength
MBlockHeight
MBlockStride
MBurstLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MByteEn
MConnID
MReqLast
MThreadID
SCmdAccept

addr
addrspace
atomiclength
blockheight
blockstride
burstlength
burstprecise
burstseq
burstsinglereq
byteen
connid
reqlast
threads > 1
cmdaccept

1.1.3 datahs_valid_<signal>
MDataByteEn

MDataLast
MDataThreadID
SDataAccept

mdatabyteen
datalast
datahandshake & threads > 1
dataaccept

1.1.4 response_valid_<signal>
MRespAccept
SRespLast
SThreadID

respaccept
resplast
resp & threads > 1

1.1.5 request_valid_MTagInOrder Taginorder

1.1.6 response_valid_STagInOrder resp & taginorder

1.1.7 request_valid_MTagID_when_MTagInOrder_zero tags > 1

1.1.8
datahs_valid_MDataTagID_when_MTagInOrder_zero

datahandshake & tags > 1

1.1.9 response_valid_STagID_when_STagInOrder_zero resp & tags > 1

Protocol Compliance Checks 367

OCP-IP Confidential

Table 80 Dataflow Phase Checks

Name Activation Parameters

1.2.1 request_exact_SThreadBusy sthreadbusy & sthreadbusy_exact
& ~sthreadbusy_pipelined

1.2.2 request_pipelined_SThreadBusy sthreadbusy & sthreadbusy_exact
& sthreadbusy_pipelined

1.2.3 request_hold_<signal>
MAddr
MAddrSpace
MAtomicLength
MBlockHeight
MBlockStride
MBurstLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MByteEn
MCmd
MConnID
MData

MDataInfo

MReqInfo
MReqLast
MThreadID

cmdaccept & addr
cmdaccept & addrspace
cmdaccept & atomiclength
cmdaccept & blockheight
cmdaccept & blockstride
cmdaccept & burstlength
cmdaccept & burstprecise
cmdaccept & burstseq
cmdaccept & burstsinglereq
cmdaccept & byteen
cmdaccept
cmdaccept & connid
cmdaccept & mdata

& !datahandshake
cmdaccept & mdatainfo

& !datahandshake
cmdaccept & reqinfo
cmdaccept & reqlast
cmdaccept & threads > 1

1.2.4 request_value_MCmd_<command>
BCST
RDL
WRC
RD
RDEX
WR
WRNP

!broadcast_enable
!rdlwrc_enable
!rdlwrc_enable
!read_enable
!readex_enable
!write_enable
!writenonpost_enable

1.2.5 request_value_<signal>_word_aligned
MAddr
MBlockStride

addr
blockstride

1.2.6 request_value_<signal>_0x0
MAtomicLength
MBurstLength
MBlockHeight

atomiclength
burstlength
blockheight
blockstride

1.2.7 request_value_MBurstSeq_<sequence>
BLCK
DLFT1
DLFT2
INCR
STRM
UNKN
WRAP
XOR

burstlength & !burstseq_blck_enable
burstlength & !burstseq_dflt1_enable
burstlength & !burstseq_dflt2_enable
burstlength & !burstseq_incr_enable
burstlength & !burstseq_strm_enable
burstlength & !burstseq_unkn_enable
burstlength & !burstseq_wrap_enable
burstlength & !burstseq_xor_enable

1.2.8 request_value_MByteEn_force_aligned byteen & force_aligned

1.2.9 request_value_MThreadID threads > 1

368 Open Core Protocol Specification

OCP-IP Confidential

1.2.10 datahs_exact_SDataThreadBusy datahandshake & sdatathreadbusy &
sdatathreadbusy_exact &
~sdatathreadbusy_pipelined

1.2.11 datahs_pipelined_SDataThreadBusy datahandshake & sdatathreadbusy &
sdatathreadbusy_exact &
sdatathreadbusy_pipelined

1.2.12 datahs_hold_<signal>
MData

MDataByteEn

MDataInfo

MDataThreadID

MDataValid
MDataLast

dataaccept & mdata
& datahandshake

mdatabyteen & dataaccept
& datahandshake

dataaccept & mdatainfo
& datahandshake

datahandshake & threads > 1
& dataaccept

dataaccept & datahandshake
datalast & dataaccept

& datahandshake

1.2.13 datahs_value_MDataByteEn_force_aligned Mdatabyteen & datahandshake &
force_aligned

1.2.14 datahs_value_MDataThreadID datahandshake & threads > 1

1.2.15 response_exact_MThreadBusy resp & mthreadbusy &
mthreadbusy_exact &
~mthreadbusy_pipelined

1.2.16 response_pipelined_MThreadBusy resp & mthreadbusy &
mthreadbusy_exact &
mthreadbusy_pipelined

1.2.17 response_hold_<signal>
SData

SDataInfo
SResp
SRespInfo
SRespLast
SThreadID

respaccept & sdata & resp
& (read_enable |
readex_enable | rdlwrc_enable)

respaccept & sdatainfo
respaccept & resp
respaccept & resp & respinfo
respaccept & resp & resplast
respaccept & resp & threads > 1

1.2.18 response_value_SResp_FAIL_without_WRC resp & rdlwrc_enable

1.2.19 response_value_SThreadID resp & threads > 1

1.2.20 request_hold_MTagInOrder cmdaccept & taginorder & tags > 1

1.2.21 response_hold_STagInOrder resp & respaccept & taginorder
& tags > 1

1.2.22 request_hold_MTagID_when_MTagInOrder_zero cmdaccept & tags > 1

1.2.23
datahs_hold_MDataTagID_when_MTagInOrder_zero

datahandshake & dataaccept
& tags > 1

1.2.24 response_hold_STagID_when_STagInOrder_zero resp & respaccept & tags > 1

1.2.25 request_value_MTagID_when_MTagInOrder_zero tags > 1

1.2.26 datahs_value_MTagID_when_MTagInOrder_zero datahandshake & tags > 1

Name Activation Parameters

Protocol Compliance Checks 369

OCP-IP Confidential

Table 81 Dataflow Burst Checks

1.2.27 response_value_STagID_when_STagInOrder_zero resp & tags > 1

1.2.28
datahs_order_MDataTagID_when_MTagInOrder_zero

burstlength & datahandshake
& tags > 1

1.2.29 response_reorder_STagID_tag_interleave_size burstsinglereq & resp & tags > 1

1.2.30 response_reorder_STagID_overlapping_addresses resp & tags > 1
& (addr | addrspace | byteen)

Name Activation Parameters

1.3.1 burst_hold_MBurstLength_precise burstlength

1.3.2 burst_hold_<signal>
MAddrSpace
MAtomicLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MCmd
MConnID
MReqInfo
SRespInfo

burstlength & addrspace
burstlength & atomiclength
burstlength & burstprecise
burstseq & burstlength
burstlength & burstsinglereq
burstlength
burstlength & connid
burstlength & reqinfo
burstlength & respinfo

1.3.3 burst_hold_<signal>_BLCK
MBlockHeight

MBlockStride

burstlength & burstseq_blck_enable
& burstseq & blockheight

burstlength & burstseq_blck_enable
& burstseq & blockstride

1.3.4 burst_hold_<signal>_STRM
MByteEn

MDataByteEn

burstlength & burstseq_strm_enable
& byteen & burstseq

burstlength & burstseq_strm_enable
& datahandshake
& mdatabyteen & burstseq

1.3.5 burst_phase_order_reqdata_together reqdata_together & datahandshake

1.3.6 burst_sequence_MAddr_BLCK burstlength & addr
& burstseq_blck_enable & burstseq

1.3.7 burst_sequence_MAddr_INCR burstlength & addr
& burstseq_incr_enable & burstseq

1.3.8 burst_sequence_MAddr_STRM burstlength & addr &
burstseq_strm_enable & burstseq

1.3.9 burst_sequence_MAddr_WRAP burstlength & burstseq_wrap_enable &
addr & burstseq

1.3.10 burst_sequence_MAddr_XOR burstlength & burstseq_xor_enable &
addr & burstseq

Name Activation Parameters

370 Open Core Protocol Specification

OCP-IP Confidential

1.3.11 burst_value_<signal>_<sequence>
MByteEn STRM

MDataByteEn STRM

MByteEn DFLT2

MDataByteEn DFLT2

burstlength & burstseq_strm_enable
& byteen & burstseq

burstseq & burstseq_strm_enable
& mdatabyteen & datahandshake

burstlength & burstseq_dflt2_enable
& byteen & burstseq

burstseq & burstseq_dflt2_enable
& mdatabyteen & datahandshake

1.3.12 burst_value_MAddr_INCR_burst_aligned burstlength & burstseq_incr_enable &
burst_aligned & burstseq

1.3.13 burst_value_MAddr_<sequence>_no_wrap
INCR

BLCK

burstlength
& burstseq_incr_enable & addr

burstlength
& burstseq_blck_enable & addr

1.3.14 burst_value_MBurstLength_<sequence>
WRAP

XOR

burstlength & burstseq &
burstseq_wrap_enable

burstlength & burstseq &
burstseq_xor_enable

1.3.15 burst_value_MBurstLength_INCR_burst_aligned burstlength & burstseq_incr_enable &
burst_aligned & burstseq

1.3.16 burst_value_MBurstPrecise_<sequence>
WRAP

XOR

BLCK

burstprecise & burstseq_wrap_enable
& burstlength & burstseq

burstprecise & burstseq_xor_enable
& burstlength & burstseq

burstprecise & burstseq_blck_enable
& burstlength & burstseq

1.3.17 burst_value_MBurstPrecise_INCR_burst_aligned burstaligned & burstprecise &
burstseq_incr_enable & burstseq

1.3.18 burst_value_MBurstPrecise_SRMD burstprecise & burstsinglereq

1.3.19 burst_value_MBurstSeq_UNKN_SRMD burstsinglereq & burstreq &
burstseq_unkn_enable

1.3.20 burst_value_MCmd_<command>
RDEX
RDL
WRC

burstlength & readex_enable
burstlength & rdlwrc_enable
burstlength & rdlwrc_enable

1.3.21 burst_value_MReqLast_MRMD reqlast

1.3.22 burst_value_MReqLast_SRMD Reqlast & burstsinglereq

1.3.23 burst_value_MReqRowLast_MRMD mreqlast &mreqrowlast

1.3.24 burst_value_MReqRowLast_SRMD mreqlast &mreqrowlast

1.3.25 burst_value_MDataLast_MRMD datalast & mdata

1.3.26 burst_value_MDataLast_SRMD datalast & mdata

1.3.27 burst_value_MDataRowLast_MRMD mdatalast & mdatarowlast

Name Activation Parameters

Protocol Compliance Checks 371

OCP-IP Confidential

Table 82 Dataflow Transfer Checks

Table 83 Dataflow ReadEx Checks

1.3.28 burst_value_MDataRowLast_SRMD mdatalast & mdatarowlast

1.3.29 burst_value_SRespLast_MRMD resplast & resp

1.3.30 burst_value_SRespLast_SRMD resplast & resp & burstsinglereq

1.3.31 burst_value_SRespRowLast_MRMD sresplast & sresprowlast

1.3.32 burst_value_SRespRowLast_SRMD sresplast & sresprowlast

1.3.33 burst_hold_MTagID_when_MTagInOrder_zero burtstlength & tags > 1

1.3.34 burst_hold_MTagInOrder burstlength & tags > 1 & taginorder

Name Activation Parameters

1.4.1 transfer_phase_order_datahs_before_request_begin datahandshake

1.4.2 transfer_phase_order_datahs_before_request_end datahandshake

1.4.3 transfer_phase_order_response_before_request_begin resp

1.4.4 transfer_phase_order_response_before_request_end resp

1.4.5 transfer_phase_order_response_before_datahs_begin resp & datahandshake

1.4.6 transfer_phase_order_response_before_datahs_end resp & datahandshake

1.4.7 transfer_phase_order_response_before_last_datahs_begin
_SRMD_wr

resp & datahandshake
& burstsinglereq

1.4.8 transfer_phase_order_response_before_last_datahs_end_
SRMD_wr

resp & datahandshake
& burstsinglereq

1.4.9 transfer_phase_order_reqdata_together_MRMD reqdata_together
& burstsinglereq

Name Activation Parameters

1.5.1 rdex_hold_<signal>
MAddr
MAddrSpace
MByteEn
MDataByteEn)

readex_enable & addr
readex_enable & addrspace
readex_enable & byteen
readex_enable & mdatabyteen &
datahandshake

1.5.3 rdex_lock_release_no_burst_allowed burstlength & readex_enable

Name Activation Parameters

372 Open Core Protocol Specification

OCP-IP Confidential

Table 84 Sideband Checks

Table 85 Connection Protocol Checks

Name Activation Parameters

1.6.1 signal_valid_<signal>
MReset_n
SReset_n

mreset
sreset

1.6.2 signal_valid_<signal>_when_reset_inactive
ControlBusy
ControlWr
MError
SError
SInterrupt
StatusBusy
StatusRd

controlbusy
controlwr
merror
serror
interrupt
statusbusy
statusrd

1.6.3 signal_hold_<signal>_16_cycles
MReset_n
SReset_n

mreset
sreset

1.6.4 signal_hold_Control_after_reset control

1.6.5 signal_hold_Control_2_cycles control

1.6.6 signal_hold_Control_ControlBusy_active controlbusy

1.6.7 signal_hold_ControlWr_after_reset controlwr

1.6.8 signal_value_ControlWr_Control_transitioned control & controlwr

1.6.9 signal_value_ControlWr_ControlBusy_active controlbusy & controlwr

1.6.10 signal_hold_ControlWr_2_cycle controlwr

1.6.11 signal_value_ControlBusy controlwr & controlbusy

1.6.12 signal_hold_StatusRd_2_cycles statusrd

1.6.13 signal_value_StatusRd_StatusBusy_active statusrd & statusbusy

Name Activation Parameters

1.7.1 signal_valid_<signal>
MConnect
SConnect
SWait

connection

1.7.2 signal_hold_MConnect_2_cycles connection

1.7.3
signal_value_MCmd_MConnect_not_connected

connection

1.7.4 signal_order_MConnect_transaction connection

1.7.5 signal_value_SWait_MConnect_stable_state connection

1.7.6 signal_value_SConnect_MConnect_connected connection

1.7.7 signal_value_SConnect_MConnect_connected connection

1.7.8 signal_value_MConnect_ConnectCap connection

1.7.9 signal_value_SConnect_ConnectCap connection

1.7.10 signal_value_SWait_ConnectCap connection

Protocol Compliance Checks 373

OCP-IP Confidential

18.2 Compliance Checks

18.2.1 Dataflow Signals Checks

Rule 1.1.1 signal_valid_<signal>_when_reset_inactive

When reset is inactive, the following signals should never have an X or Z value
on the rising edge of the OCP clock:

MCmd MDataValid MThreadBusy
SDataThreadBusy SResp SThreadBusy

Rule 1.1.2 request_valid_<signal>
The following signals should never have an X or Z value on the rising edge of
the OCP clock during a request phase:

MAddr MAddrSpace MAtomicLength
MBurstLength MBurstPrecise MBurstSeq
MBurstSingleReq MByteEn MConnID
MReqLast MThreadID SCmdAccept
MBlockHeight MBlockStride MReqRowLast

MBlockHeight and MBlockStride can be invalid for non-BLCK requests during
the request phase.

Protocol hierarchy Reset activity

Signal group Dataflow

Critical signals
MCmd, MDataValid, MThreadBusy, SDataThreadBusy, SResp,
SThreadBusy

Assertion type X, Z

Reference Section 4.3.3.1 on page 46

374 Open Core Protocol Specification

OCP-IP Confidential

If datahandshake=1 and mdatabyteen=1 then MByteEn can be invalid for
write accesses during the request phase

Rule 1.1.3 datahs_valid_<signal>
The following signals should never have an X or Z value on the rising edge of
the OCP clock during a datahandshake phase:

MDataByteEn MDataLast MDataRowLast
MDataThreadID SDataAccept

Rule 1.1.4 response_valid_<signal>
The following signals should never have an X or Z value on the rising edge of
the OCP clock during a response phase:

MRespAccept SRespLast SRespRowLast
SThreadID

Protocol hierarchy Request phase

Signal group Dataflow

Critical signals

MAddr, MAddrSpace, MAtomicLength, MBurstLength,
MBurstPrecise, MBurstSeq, MBurstSingleReq, MByteEn,
MConnID, MReqLast, MThreadID, SCmdAccept,
MBlockHeight, MBlockStride, MReqRowLast

Assertion type X, Z

References
Section 4.3.3.1 on page 46
Section 12.1.2.1 on page 215

Protocol hierarchy Datahandshake

Signal group Dataflow

Critical signals
MDataByteEn, MDataLast, MDataRowLast, MDataThreadID,
SDataAccept

Assertion type X, Z

Reference
Section 4.3.3.1 on page 46
Section 12.1.2.3 on page 217

Protocol hierarchy Response

Signal group Dataflow

Critical signals MRespAccept, SRespLast, SRespRowLast, SThreadID

Assertion type X, Z

Reference
Section 4.3.3.1 on page 46
Section 12.1.2.2 on page 216

Protocol Compliance Checks 375

OCP-IP Confidential

Rule 1.1.5 request_valid_MTagInOrder
MTagInOrder should not be X/Z during the request phase.

Rule 1.1.6 response_valid_STagInOrder
STagInOrder should not be X/Z during the response phase.

Rule 1.1.7 request_valid_MTagID_when_MTagInOrder_zero
If MTagInOrder is 0 during the request phase, MTagID should not be X/Z
during the request phase.

Protocol hierarchy Request

Signal group Dataflow - tag extensions

Critical signals MTagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals MTagID, MTagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

376 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.1.8 datahs_valid_MDataTagID_when_MTagInOrder_zero
If datahandshake is active and MTagInOrder is 0 (during the request phase),
MDataTagID should not be X/Z during the datahandshake phase.

Rule 1.1.9 response_valid_STagID_when_STagInOrder_zero
If STagInOrder is 0 during the request phase, STagID should not be X/Z
during the response phase.

18.2.2 DataFlow Phase Checks

Rule 1.2.1 request_exact_SThreadBusy
If sthreadbusy_exact = 1 and sthreadbusy_pipelined = 0, when a given
slave thread is busy, the master must stay idle on this thread.

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, MTagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID, STagInOrder

Assertion type X, Z

Reference Section 12.4 on page 232

Protocol hierarchy Request

Signal group Dataflow - thread extensions

Critical signals MCmd

Assertion type Value

References
Section 4.3.2.4 on page 44
Section 12.5.1 on page 233

Protocol Compliance Checks 377

OCP-IP Confidential

Rule 1.2.2 request_pipelined_SThreadBusy
If sthreadbusy_exact = 1 and sthreadbusy_pipelined = 1, and an
SThreadbusy bit was set to 1 in the prior cycle, the master cannot present a
request on a thread in the current cycle.

Rule 1.2.3 request_hold_<signal>
Once a request phase has begun, the following signals may not change their
value until the OCP slave has accepted the request.

The following exceptions apply:

1. If datahandshake=1 and mdatabyteen=1 then MByteEn can change for
write accesses during the request phase.

2. For read requests the MData and MDataInfo fields can change during the
request phase.

3. For write requests the SData and SDataInfo fields can change during the
response phase.

4. Non-enabled data bytes in MData and bits in MDataInfo fields can change
during the request and datahandshake phases.

5. Non-enabled data bytes in SData and bits in SDataInfo fields can change
during the response phase.

6. MDataByteEn can change during read-type transfers.

Protocol hierarchy Request

Signal group Dataflow - thread extensions

Critical signals MCmd

Assertion type Value

Reference Section 4.3.2.4 on page 44

Basic Signals
MAddr
MCmd
MData

Burst Extensions
MAtomicLength
MBurstLength
MBurstPrecise
MBurstSeq
MBurstSingleReq
MReqLast
Thread Extensions
MConnID
MThreadID
MBlockHeight
MBlockStride
MReqRowLast

Simple Extensions
MAddrSpace
MByteEn
MDataInfo
MReqInfo

378 Open Core Protocol Specification

OCP-IP Confidential

7. MTagID can change if MTagInOrder is asserted, and MDataTagID can
change for the corresponding datahandshake phase.

8. STagID can change if STagInOrder is asserted.

Rule 1.2.4 request_value_MCmd_<command>
The following <Command> is illegal if the corresponding <Parameter> is set to
0.

Command Parameter
BCST broadcast_enable
RD read_enable
RDEX readex_enable
RDL rdlwrc_enable
WR write_enable
WRC rdlwrc_enable
WRNP writenonpost_enable

Rule 1.2.5 request_value_MAddr_word_aligned
Signal MAddr must be OCP word aligned as follows:

Protocol hierarchy Request

Signal group Dataflow

Critical signals

MAddr, MCmd, MData, MAddrSpace, MByteEn, MDataInfo,
MReqInfo, MAtomicLength, MBurstLength, MBurstPrecise,
MBurstSeq, MBurstSingleReq, MReqLast, MConnID,
MThreadID, MBlockHeight, MBlockStride, MReqRowLast

Assertion type Hold

References Section 12.1.2.1 on page 215

Protocol hierarchy Request

Signal group Dataflow - basic signals

Critical signals MCmd

Assertion type Value

Reference Section 4.9.1.1 on page 59

Protocol Compliance Checks 379

OCP-IP Confidential

if data_wdth = 16 then MAddr[0] = 0
if data_wdth = 32 then MAddr[1:0] = 0
if data_wdth = 64 then MAddr[2:0] = 0
if data_wdth = 128 then MAddr[3:0] = 0

Rule 1.2.6 request_value_<signal>_0x0
During a request phase:

MAtomicLength and MBurstLength must not be zero.
If MBurstSeq != BLCK, MBlockHeight and MBlockStride values are don’t
care.
If MBurstSeq == BLCK, MBlockHeight must be greater than zero.
If MBurstSeq == BLCK and MBlockHeight > 1, MBlockStride must be
greater than zero.

Rule 1.2.7 request_value_MBurstSeq_<sequence>
The following <burst type> is illegal if its corresponding <parameter > is set to
0.

Burst type Parameter
BLCK burstseq_blck_enable
DLFT1 burstseq_dflt1_enable
DLFT2 burstseq_dflt2_enable
INCR burstseq_incr_enable
STRM burstseq_strm_enable

Protocol hierarchy Request

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Value

Reference Section 3.1.1 on page 13

Protocol hierarchy Request

Signal group Dataflow - burst extensions

Critical signals MAtomicLength, MBurstLength, MBlockHeight, MBlockStride

Assertion type Value

References
Section 3.1.3 on page 19
Footnotes on page 34

380 Open Core Protocol Specification

OCP-IP Confidential

UNKN burstseq_unkn_enable
WRAP burstseq_wrap_enable
XOR burstseq_xor_enable

Rule 1.2.8 request_value_MByteEn_force_aligned
If force_aligned=1, the byte enable values during a request phase are
restricted to the following patterns for data_wdth > 32:

data_wdth=32 and MByteEn has one of the following values:

0001
0010
0100
1000
0011
1100
1111
0000

data_wdth=64 and MByteEn has one of the following values:

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
00000011
00001100
00110000
11000000
00001111
11110000
11111111
00000000

data_wdth=128 and MByteEn has one of the following values:

0000000000000001
0000000000000010
0000000000000100
0000000000001000

Protocol hierarchy Request

Signal group Dataflow - burst extensions

Critical signals MBurstSeq

Assertion type Value

References Section 4.9.1.2 on page 59

Protocol Compliance Checks 381

OCP-IP Confidential

0000000000010000
0000000000100000
0000000001000000
0000000010000000
0000000100000000
0000001000000000
0000010000000000
0000100000000000
0001000000000000
0010000000000000
0100000000000000
1000000000000000
0000000000000011
0000000000001100
0000000000110000
0000000011000000
0000001100000000
0000110000000000
0011000000000000
1100000000000000
0000000000001111
0000000011110000
0000111100000000
1111000000000000
0000000011111111
1111111100000000
1111111111111111
0000000000000000

If datahandshake=1 and mdatabyteen=1 then MByteEn can change for write
accesses during the request phase.

Rule 1.2.9 request_value_MThreadID
MThreadID value is always < threads.

Protocol hierarchy Request

Signal group Dataflow - simple extensions

Critical signals MByteEn

Assertion type Value

References Section 4.9.1.3 on page 60

Protocol hierarchy Request

Signal group Dataflow - thread extensions

Critical signals MThreadID

Assertion type Value

Reference Section 3.1.5 on page 23

382 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.2.10 datahs_exact_SDataThreadBusy
If sdatathreadbusy_exact = 1 and sdatathreadbusy_pipelined = 0, when
a given slave data thread is busy, the master must not present a data phase
on this thread.

Rule 1.2.11 datahs_pipelined_SDataThreadBusy
If sdatathreadbusy_exact = 1 and sdatathreadbusy_pipelined = 1, and
an SDataThreadbusy bit was set to 1 in the prior cycle, the master cannot
present a datahandshake on a thread in the current cycle.

Rule 1.2.12 datahs_hold_<signal>
Once a datahandshake phase has begun, the following signals may not
change their value until the OCP slave has accepted the data.

Protocol hierarchy Datahandshake

Signal group Dataflow - thread extensions

Critical signals MDataValid

Assertion type Value

Reference Section 4.3.2.4 on page 44

Protocol hierarchy Datahandshake

Signal group Dataflow - thread extensions

Critical signals MDataValid

Assertion type Value

Reference Section 4.3.2.4 on page 44

Basic Signals
MData
MDataValid

Burst Extensions
MDataLast
MDataRowLast

Simple Extensions
MDataByteEn
MDataInfo

Thread Extensions
MDataThreadID

Protocol Compliance Checks 383

OCP-IP Confidential

Rule 1.2.13 datahs_value_MDataByteEn_force_aligned
If force_aligned=1, the data byte enable values during a datahandshake
phase are restricted to the following patterns for data_wdth > 32:

data_wdth=32 and MDataByteEn has one of the following values:

0001
0010
0100
1000
0011
1100
1111
0000

data_wdth=64 and MDataByteEn has one of the following values:

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
00000011
00001100
00110000
11000000
00001111
11110000
11111111
00000000

data_wdth=128 and MDataByteEn has one of the following values:

0000000000000001
0000000000000010
0000000000000100
0000000000001000
0000000000010000
0000000000100000
0000000001000000

Protocol hierarchy Datahandshake

Signal group Dataflow

Critical signals
MData, MDataByteEn, MDataInfo, MDataLast,
MDataRowLast, MDataThreadID, MDataValid,

Assertion type Hold

Reference Section 12.1.2.3 on page 217

384 Open Core Protocol Specification

OCP-IP Confidential

0000000010000000
0000000100000000
0000001000000000
0000010000000000
0000100000000000
0001000000000000
0010000000000000
0100000000000000
1000000000000000
0000000000000011
0000000000001100
0000000000110000
0000000011000000
0000001100000000
0000110000000000
0011000000000000
1100000000000000
0000000000001111
0000000011110000
0000111100000000
1111000000000000
0000000011111111
1111111100000000
1111111111111111
0000000000000000

Rule 1.2.14 datahs_value_MDataThreadID
MDataThreadID value must be < threads.

Protocol hierarchy Datahandshake

Signal group Dataflow - simple extensions

Critical signals MDataByteEn

Assertion type Value

Reference Section 4.9.1.3 on page 60

Protocol hierarchy Datahandshake

Signal group Dataflow - thread extensions

Critical signals MDataThreadID

Assertion type Value

Reference Section 3.1.5 on page 23

Protocol Compliance Checks 385

OCP-IP Confidential

Rule 1.2.15 response_exact_MThreadBusy
If mthreadbusy_exact = 1 and mthreadbusy_pipelined = 0, when a given
master thread is busy, the slave must not present a response on that thread.

Rule 1.2.16 response_pipelined_MThreadBusy
If sthreadbusy_exact = 1 and sthreadbusy_pipelined = 1, and an
MThreadbusy bit was set to 1 in the prior cycle, the slave cannot present a
response on a thread in the current cycle.

Rule 1.2.17 response_hold_<signal>
Once a response phase has begun, the following signals may not change their
value until the master has accepted the response.

Protocol hierarchy Response

Signal group Dataflow - thread extensions

Critical signals SResp

Assertion type Value

Reference Section 4.3.2.4 on page 44

Protocol hierarchy Response

Signal group Dataflow - thread extensions

Critical signals SResp

Assertion type Value

Reference Section 4.3.2.4 on page 44

Basic Signals
SData
SResp

Burst Extensions
SRespLast
SRespRowLast

Simple Extensions
SDataInfo
SRespInfo

Thread Extensions
SThreadID

Protocol hierarchy Response

Signal group Dataflow

Critical signals
SData, SDataInfo, SResp, SRespInfo, SRespLast,
SRespRowLast, SThreadID

Assertion type Hold

Reference Section 12.1.2.2 on page 216

386 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.2.18 response_value_SResp_FAIL_without_WRC
The FAIL response can occur only on a WRC request.

Rule 1.2.19 response_value_SThreadID
SThreadID value must be < threads.

Rule 1.2.20 request_hold_MTagInOrder
If taginorder = 1, the MTagInOrder signal cannot change until accepted by the
OCP slave (SCmdAccept = 1).

Protocol hierarchy Response

Signal group Dataflow - basic signals

Critical signals SResp

Assertion type Value

References Section 4.4 on page 49

Protocol hierarchy Response

Signal group Dataflow - thread extensions

Critical signals SThreadID

Assertion type Value

Reference Section 3.1.5 on page 23

Protocol hierarchy Request

Signal group Dataflow - tag extensions

Critical signals MTagInOrder

Assertion type Hold

Reference Section 12.1.2.1 on page 215

Protocol Compliance Checks 387

OCP-IP Confidential

Rule 1.2.21 response_hold_STagInOrder
If taginorder = 1, the STagInOrder signal cannot change until accepted by the
master (MRespAccept = 1).

Rule 1.2.22 request_hold_MTagID_when_MTagInOrder_zero
If tags > 1, the MTagID signal cannot change until accepted by the OCP slave
(SCmdAccept = 1).

Rule 1.2.23 datahs_hold_MDataTagID_when_MTagInOrder_zero
When tags > 1, during a datahandshake phase corresponding to a non in-
order request phase (MTagInOrder = 0), the MDataTagID signal cannot
change value until accepted by the OCP slave (SDataAccept = 1).

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagInOrder

Assertion type Hold

Reference Section 12.1.2.2 on page 216

Protocol hierarchy Request

Signal group Dataflow - tag extensions

Critical signals MTagID, MTagInOrder

Assertion type Hold

Reference Section 12.1.2.1 on page 215

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, MTagInOrder

Assertion type Hold

Reference Section 12.1.2.3 on page 217

388 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.2.24 response_hold_STagID_when_STagInOrder_zero
If tags > 1, the STagID signal cannot change until it is accepted by the master
(MRespAccept = 1).

Rule 1.2.25 request_value_MTagID_when_MTagInOrder_zero
The MTagID signal must always be < tags.

Rule 1.2.26 datahs_value_MTagID_when_MTagInOrder_zero
The MDataTagID signal must always be < tags.

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID, STagInOrder

Assertion type Hold

Reference Section 12.1.2.2 on page 216

Protocol hierarchy Request

Signal group Dataflow - tag extensions

Critical signals MTagID, MTagInOrder

Assertion type Value

Reference Section 3.1.4 on page 22

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, MTagInOrder

Assertion type Value

Reference Section 3.1.4 on page 22

Protocol Compliance Checks 389

OCP-IP Confidential

Rule 1.2.27 response_value_STagID_when_STagInOrder_zero
The STagID signal must always be < tags.

Rule 1.2.28 datahs_order_MDataTagID_when_MTagInOrder_zero
When datahandshake = 1, for tagged write transactions, the datahandshake
phase must observe the same order as the request phase.

Rule 1.2.29 response_reorder_STagID_tag_interleave_size
When tags > 1 and tag_interleave_size > 0 the slave must ensure that
responses associated with packing burst sequences stay together up to the
tag_interleave_size. When tags > 1 and tag_interleave_size == 0 no
interleaving of responses between any packing burst sequences with different
tags is allowed.

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID, STagInOrder

Assertion type Value

Reference Section 3.1.4 on page 22

Protocol hierarchy Datahandshake

Signal group Dataflow - tag extensions

Critical signals MDataTagID, (MTagInOrder

Assertion type Data_order

Reference Section 4.7.1 on page 57

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID

Assertion type Reorder

References
Section 4.7.1 on page 57
Section 4.9.1.7 on page 62

390 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.2.30 response_reorder_STagID_overlapping_addresses
Responses to requests with different tags on the same thread that target
overlapping addresses (as determined by MAddrSpace, MAddr, and MByteEn
[or MDataByteEn, if applicable]) can be re-ordered with respect to another.

Rule 1.2.31 request_value_MBlockStride_word_aligned
Signal MBlockStride must be OCP word aligned as follows:

if data_wdth = 16 then MBlockStride[0] = 0
if data_wdth = 32 then MBlockStride[1:0] = 0
if data_wdth = 64 then MBlockStride[2:0] = 0
if data_wdth = 128 then MBlockStride[3:0] = 0.

18.2.3 Dataflow Burst Checks

Rule 1.3.1 burst_hold_MBurstLength_precise
For precise bursts, MBurstLength must hold its value during all request
phases of the entire burst.

Protocol hierarchy Response

Signal group Dataflow - tag extensions

Critical signals STagID

Assertion type Reorder

References Section 4.7.1 on page 57

Protocol hierarchy Request

Signal group Dataflow - burst extensions

Critical signals MBlockStride

Assertion type Value

References Section 3.1.3 on page 19

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MBurstLength

Assertion type Hold

References Section 4.6.3 on page 55

Protocol Compliance Checks 391

OCP-IP Confidential

Rule 1.3.2 burst_hold_<signal>
The following signals must hold the same value on all request phases of the
entire burst:

MAddrSpace MBurstSingleReq
MAtomicLength MCmd
MBurstPrecise MConnID
MBurstSeq MReqInfo

The hold requirements for SRespInfo in a burst are different for the 2.0 versus
2.2 specifications.

OCP 2.0 page 44 states that:
SRespInfo must be held steady by the slave for every transfer in a burst.

OCP 2.2 page 55 states that:
If possible, slaves should hold SRespInfo steady for every transfer in a
burst

Rule 1.3.3 burst_hold_<signal>_BLCK
<signal> must hold for BLCK bursts. Applicable to MBlockHeight and
MBlockStridesignals.

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals
MAddrSpace, MAtomicLength, MBurstPrecise, MBurstSeq,
MBurstSingleReq, MCmd, MConnID, MReqInfo, (SRespInfo)

Assertion type Hold

Reference Section 4.6.3 on page 55

Protocol hierarchy Burst

Signal group Dataflow - simple extensions

Critical signals MBlockHeight, MBlockStride

Assertion type Hold

Reference Section 4.6.3 on page 55

392 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.3.4 burst_hold_<signal>_STRM
For STRM bursts, MByteEn / MDataByteEn must hold the same value on all
request / datahandshake phases of the entire burst.

Rule 1.3.5 burst_phase_order_reqdata_together
For single request multiple data bursts, if reqdata_together = 1, the master
must present the request and first write data in the same cycle, and the slave
must accept the request and the first write data in the same cycle.

Rule 1.3.6 burst_sequence_MAddr_BLCK
Within a block burst, the address begins with the provided address and
proceeds through a set of MBlockHeight subsequences, each of which follows
the normal INCR burst sequence for MBurstLength transfers. The starting
address of each subsequence should be the starting address of the prior
subsequence plus MBlockStride.

Protocol hierarchy Burst

Signal group Dataflow - simple extensions

Critical signals MByteEn, MDataByteEn

Assertion type Hold

References Section 4.6.1.1 on page 54

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MCmd, MDataValid

Assertion type Ordering

Reference Section 4.9.2 on page 63

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MBlockHeight, MBurstLength, MBlockStride

Assertion type Ordering

Reference Section 4.6.1 on page 53

Protocol Compliance Checks 393

OCP-IP Confidential

Rule 1.3.7 burst_sequence_MAddr_INCR
Within an INCR burst, the address increases for each new master request by
the OCP word size.

Rule 1.3.8 burst_sequence_MAddr_STRM
Within a STRM burst, the address remains constant on all request phases of
the burst.

Rule 1.3.9 burst_sequence_MAddr_WRAP
Within a WRAP burst, the address increases for each new master request by
the OCP word size, and wraps on the burst length x OCP word size.

Rule 1.3.10 burst_sequence_MAddr_XOR
Within an XOR burst, the address increases for each new OCP master request
as follows:

BASE
Is the lowest byte address in the burst, which must be aligned with the
total burst size.

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Table 23 on page 53

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Table 23 on page 53

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Table 23 on page 53

394 Open Core Protocol Specification

OCP-IP Confidential

FIRST_OFFSET
Is the byte offset (from BASE) of the first transfer in the burst.

CURRENT_COUNT
Is the count of current transfer in the burst starting at 0.

WORD_SHIFT
Is the log2 of the OCP word size in bytes.

The current address of the transfer is BASE | (FIRST_OFFSET ^
(CURRENT_COUNT << WORD_SHIFT)).

Rule 1.3.11 burst_value_<signal>_<sequence>
When mdatabyteen = 0, during STRM or DFLT2 bursts, MByteEn should
never take the value 0.

When mdatabyteen = 1, during read-type STRM or DFLT2 bursts, MByteEn
should never take the value 0.

When mdatabyteen = 1, during write-type STRM or DFLT2 bursts,
MDataByteEn should never take value 0.

Rule 1.3.12 burst_value_MAddr_INCR_burst_aligned
When burst_aligned=1, the first burst request of an INCR burst must have
its address aligned. The equation below indicates which MAddr bits must be
0.

Equation

MAddr [(size-1)+BL:0] = 0
Where:
size = ceil(log2(bytes(data_width)))for data_width > 1 byte
BL = log2(MBurstLength)for MBurstLength > 1

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Ordering

Reference Section 4.6.1 on page 53

Protocol hierarchy Burst

Signal group Dataflow - simple extensions

Critical signals MByteEn, MDataByteEn

Assertion type Value

Reference Section 4.6.1.1 on page 54

Protocol Compliance Checks 395

OCP-IP Confidential

Example

For an interface with data_width=32, size=2 and:
MBurstLength = 2:MAddr[2:0] = 0
MBurstLength = 4:MAddr[3:0] = 0

Rule 1.3.13 burst_value_MAddr_<sequence>_no_wrap
An INCR or BLCK burst can never cross the address space boundary.

Rule 1.3.14 burst_value_MBurstLength_<sequence>
The length of a WRAP or XOR burst must be a power of two.

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Value

References Section 4.9.1.4 on page 60

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MAddr

Assertion type Value

Reference Section 4.6.1 on page 53

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MBurstLength

Assertion type Value

Reference Section 4.6.1 on page 53

396 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.3.15 burst_value_MBurstLength_INCR_burst_aligned
When burst_aligned = 1, the length of an INCR burst must be a power of
two.

Rule 1.3.16 burst_value_MBurstPrecise_<sequence>
BLCK, WRAP and XOR bursts can be issued only as precise bursts.

Rule 1.3.17 burst_value_MBurstPrecise_INCR_burst_aligned
When burst_aligned = 1, INCR bursts can be issued only as precise bursts.

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MBurstLength

Assertion type Value

References Section 4.9.1.4 on page 60

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MBurstPrecise

Assertion type Value

References Section 4.6.1 on page 53

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MBurstPrecise

Assertion type Value

Reference Section 4.6.1 on page 53

Protocol Compliance Checks 397

OCP-IP Confidential

Rule 1.3.18 burst_value_MBurstPrecise_SRMD
Single request multiple data transfers can be issued only as precise bursts.

Rule 1.3.19 burst_value_MBurstSeq_UNKN_SRMD
An unknown burst sequence (value UNKN) is illegal during a single request
multiple data transfer.

Rule 1.3.20 burst_value_MCmd_<command>
The RDEX, RDL, and WRC commands cannot be part of a burst.

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MBurstPrecise

Assertion type Value

Reference Section 4.6.5 on page 55

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MBurstSeq

Assertion type Value

Reference Section 4.3.2.1 on page 42

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MCmd

Assertion type Value

References Section 4.6 on page 52

398 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.3.21 burst_value_MReqLast_MRMD
The signal MReqLast must be 0 for all request phases of a MRMD burst,
except on the last one when it must be 1. For BLCK bursts the last request
phase is the last request phase of the last MBlockHeight subsequence.

Rule 1.3.22 burst_value_MReqLast_SRMD
The signal MReqLast must be 1 for any single request (SRMD being active or
not).

Rule 1.3.23 burst_value_MReqRowLast_MRMD
For BLCK bursts the signal MReqRowLast must be 0 for all request phases
other than the last phases in each row, when it must be 1. For non-BLCK
bursts the signal MReqRowLast must be 0 for all request phases of a MRMD
burst, except on the last one when it must be 1. When mreqlast and
mreqrowlast are both enabled, whenever MReqLast is asserted
MReqRowLast must also be asserted.

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MReqLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MReqLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MReqRowLast

Assertion type Ordering

Reference Section 4.6.6 on page 56

Protocol Compliance Checks 399

OCP-IP Confidential

Rule 1.3.24 burst_value_MReqRowLast_SRMD
The signal MReqRowLast must be 1 for any single request (SRMD being active
or not).

Rule 1.3.25 burst_value_MDataLast_MRMD
The MDataLast signal must be 0 for all datahandshake phases in an MRMD
burst, except on the last one when it must be 1. For BLCK bursts the last
datahandshake phase is the last datahandshake phase of the last MBlock-
Height subsequence.

Rule 1.3.26 burst_value_MDataLast_SRMD
The MDataLast signal must be 0 for all datahandshake phases of an SRMD
burst, except on the last one when it must be 1. For BLCK bursts the last
datahandshake phase is the last datahandshake phase of the last MBlock-
Height subsequence.

Rule 1.3.27 burst_value_MDataRowLast_MRMD
For BLCK bursts the signal MDataRowLast must be 0 for all datahandshake
phases other than the last phases in each row, when it must be 1. For non-
BLCK bursts the signal MDataRowLast must be 0 for all datahandshake

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MReqRowLast

Assertion type Ordering

Reference Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MDataLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MDataLast

Assertion type Value

References Section 4.6.6 on page 56

400 Open Core Protocol Specification

OCP-IP Confidential

phases of a MRMD burst, except on the last one when it must be 1. If
mdatalast and mdatarowlast are both enabled, whenever MDataLast is
asserted MDataRowLast must also be asserted.

Rule 1.3.28 burst_value_MDataRowLast_SRMD
For BLCK bursts the signal MDataRowLast must be 0 for all datahandshake
phases other than the last phases in each row, when it must be 1. For non-
BLCK bursts the signal MDataRowLast must be 0 for all datahandshake
phases of a SRMD burst, except on the last one when it must be 1. When
mdatalast and mdatarowlast are both enabled, whenever MDataLast is
asserted MDataRowLast must also be asserted.

Rule 1.3.29 burst_value_SRespLast_MRMD
The signal SRespLast must be 0 for all response phases of an MRMD burst,
except on the last one where it must be 1. For BLCK bursts the last response
phase is the last response phase of the last MBlockHeight subsequence.

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MDataRowLast, MDataLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MDataLast

Assertion type Value

References Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals SRespLast

Assertion type Value

Reference Section 4.6.6 on page 56

Protocol Compliance Checks 401

OCP-IP Confidential

Rule 1.3.30 burst_value_SRespLast_SRMD
The signal SRespLast must be 1 for any single response (with SRMD active or
not).

Rule 1.3.31 burst_value_SRespRowLast_MRMD
For BLCK bursts the signal MRespRowLast must be 0 for all response phases
other than the last phases in each row, when it must be 1. For non-BLCK
bursts the signal MRespRowLast must be 0 for all response phases of a
MRMD burst, except on the last one when it must be 1. If sresplast and
sresprowlast are both enabled, whenever SRespLast is asserted
SRespRowLast must also be asserted.

Rule 1.3.32 burst_value_SRespRowLast_SRMD
The signal MRespRowLast must be 1 for any single response (SRMD being
active or not).

Rule 1.3.33 burst_hold_MTagID_when_MTagInOrder_zero
The MTagID signal must remain constant for all transfers of a burst when
MTagInOrder is zero. The master cannot interleave requests (or
datahandshake) phases with different tags within a transaction. This check

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals SRespLast

Assertion type Value

Reference Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MRespRowLast, SRespLast

Assertion type Value

Reference Section 4.6.6 on page 56

Protocol hierarchy Burst

Signal group Dataflow - burst extensions

Critical signals MRespRowLast

Assertion type Value

Reference Section 4.6.6 on page 56

402 Open Core Protocol Specification

OCP-IP Confidential

should only focus on the request phase. The datahandshake phase is covered
by phase property “datahs_order_MDataTagID_when_ MTagInOrder_zero.”
This last property checks that the datahandshake phase observes the same
order as the request phase.

Rule 1.3.34 burst_hold_MTagInOrder
The MTagInOrder signal must remain constant for all transfers of a burst.

18.2.4 DataFlow Transfer Checks

Rule 1.4.1 transfer_phase_order_datahs_before_request_begin
For each thread, for each transaction tag, a datahandshake phase cannot
begin before the associated request phase begins, but can begin in the same
clock cycle.

Protocol hierarchy Burst

Signal group Dataflow - tag extensions

Critical signals MTagID, (MTagInOrder)

Assertion type Hold

Reference Section 4.7.1 on page 57

Protocol hierarchy Burst

Signal group Dataflow - tag extensions

Critical signals MTagInOrder

Assertion type Hold

Reference Section 4.7.1 on page 57

Protocol hierarchy Transfer

Signal group Dataflow - basic signals

Critical signals MDataValid, MCmd

Assertion type Ordering

Reference Section 4.3.2.2 on page 43

Protocol Compliance Checks 403

OCP-IP Confidential

Rule 1.4.2 transfer_phase_order_datahs_before_request_end
For each thread, for each transaction tag, a datahandshake phase cannot end
before the associated request phase ends, but can end in the same clock
cycle.

Rule 1.4.3 transfer_phase_order_response_before_request_begin
For each thread, for each transaction tag, a response phase cannot begin
before the associated request phase begins, but can begin in the same clock
cycle.

Rule 1.4.4 transfer_phase_order_response_before_request_end
For each thread, for each transaction tag, a response phase cannot end before
the associated request phase ends, but can end in the same clock cycle.

Protocol hierarchy Transfer

Signal group Dataflow - basic signals

Critical signals MDataValid, MCmd

Assertion type Ordering

Reference Section 4.3.2.2 on page 43

Protocol hierarchy Transfer

Signal group Dataflow - basic signals

Critical signals MCMd, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

Protocol hierarchy Transfer

Signal group Dataflow - basic signals

Critical signals MCMd, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

404 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.4.5 transfer_phase_order_response_before_datahs_begin
For each thread, for each transaction tag, when datahandshake = 1, the
response phase cannot begin before the associated datahandshake begins,
but can begin in the same clock cycle.

Rule 1.4.6 transfer_phase_order_response_before_datahs_end
For each thread, for each transaction tag, when datahandshake = 1, the
response phase cannot end before the associated datahandshake ends, but
can end in the same clock cycle.

Rule 1.4.7 transfer_phase_order_response_before_last_datahs_begin
_SRMD_wr
For each thread, for each transaction tag, with a write-type SRMD, the
response phase cannot begin before the last datahandshake phase begins,
but it can begin in the same clock cycle.

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

Protocol hierarchy Transfer

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

References Section 4.3.2.2 on page 43

Protocol Compliance Checks 405

OCP-IP Confidential

Rule 1.4.8 transfer_phase_order_response_before_last_datahs_end_
SRMD_wr
For each thread, for each transaction tag, with a write-type SRMD, the
response phase cannot end before the last datahandshake phase ends, but it
can end in the same clock cycle.

Rule 1.4.9 transfer_phase_order_reqdata_together_MRMD
For multiple request multiple data bursts, if both reqdata_together and
burstsinglereq are set to 1, the master must present the request and the
associated write data in the same cycle for each transfer, and the slave must
accept the request and the associated write data in the same cycle.

18.2.5 DataFlow ReadEx Checks

Rule 1.5.1 rdex_hold_<signal>
The unlocking command following a ReadEx must retain the same address
and address space values

When mdatabyteen = 0, the unlocking command following a ReadEx must
retain the same MByteEn value.

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MDataValid, SResp

Assertion type Ordering

Reference Section 4.3.2.2 on page 43

Protocol hierarchy Burst

Signal group Dataflow - basic signals

Critical signals MCmd, MDataValid

Assertion type Ordering

Reference Section 4.9.2 on page 63

406 Open Core Protocol Specification

OCP-IP Confidential

When mdatabyteen = 1, the unlocking command following a ReadEx must
retain for MDataByteEn the value given to MByteEn during the ReadEx
command. If MByteEn is absent, MDataByteEn must be all 1s.

Rule 1.5.2 rdex_lock_release_no_WR/WRNP
If a ReadEx is issued on an address on a particular thread, no other request
with the same address can be issued on any other thread until the ReadEx is
unlocked.

The command following the ReadEx on the same thread must be a write
command (WR or WRNP). This command unlocks the ReadEx.

Rule 1.5.3 rdex_lock_release_no_burst_allowed
The unlocking command following a RDEX must have MBurstLength = 1.

Protocol hierarchy ReadEx

Signal group Dataflow - basic signals, simple extensions

Critical signals MAddr, MAddrSpace, MByteEn, MDataByteEn

Assertion type Hold

References
Section 4.4 on page 49
Section 4.6 on page 52

Protocol hierarchy ReadEx

Signal group Dataflow - basic signals

Critical signals MCmd

Assertion type Ordering

References
Section 4.4 on page 49
Section 4.6 on page 52

Protocol hierarchy ReadEx

Signal group Dataflow - basic signals

Critical signals MBurstLength

Assertion type Value

Reference
Section 4.4 on page 49
Section 4.6 on page 52

Protocol Compliance Checks 407

OCP-IP Confidential

18.3 Sideband Checks

Rule 1.6.1 signal_valid_<signal>
Signals MReset_n and SReset_n are never X or Z.

Rule 1.6.2 signal_valid_<signal>_when_reset_inactive
When reset is inactive, the following signals should never have an X or Z value
on the rising edge of the OCP clock:

ControlBusy ControlWr MError
SError SInterrupt
StatusBusy StatusRd

Rule 1.6.3 signal_hold_<signal>_16_cycles
If they are active, signals MReset_n and SReset_n must stay active at least 16
consecutive cycles.

Protocol hierarchy Reset activity

Signal group Sideband - reset

Critical signals MReset, SReset

Assertion type X, Y

Reference
Section 4.3.3.1 on page 46
Section 4.3.3.4 on page 48

Protocol hierarchy Reset activity

Signal group Sideband - reset

Critical signals
ControlBusy, ControlWr, MError, SError, SInterrupt, StatusBusy,
StatusRd

Assertion type X, Y

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Reset activity

Signal group Sideband - reset

Critical signals MReset, SReset

Assertion type Hold

References Section 4.3.3.1 on page 46

Rule 1.6.4 signal_hold_Control_after_reset
The Control signal must be held steady for the first two cycles after reset is
de-asserted.

Rule 1.6.5 signal_hold_Control_2_cycles
The Control signal must be held steady for a full cycle after the cycle in which
it has transitioned.

Rule 1.6.6 signal_hold_Control_ControlBusy_active
If the ControlBusy signal was sampled active at the end of the previous cycle,
the Control signal must not transition in the current cycle.

Protocol hierarchy Control

Signal group Sideband - control

Critical signals Control

Assertion type Hold

References Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals Control

Assertion type Hold

References Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals Control

Assertion type Value

Reference Section 4.3.3.4 on page 48

Protocol Compliance Checks 409

OCP-IP Confidential

Rule 1.6.7 signal_hold_ControlWr_after_reset
The ControlWr signal must not be asserted in the cycle following a reset.

Rule 1.6.8 signal_value_ControlWr_Control_transitioned
If signal Control transitions in a cycle, signal ControlWr must be driven active
on that cycle.

Rule 1.6.9 signal_value_ControlWr_ControlBusy_active
The ControlWr signal must not be asserted if ControlBusy is active.

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Hold

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Hold

References Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Value

Reference Section 4.3.3.4 on page 48

410 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.6.10 signal_hold_ControlWr_2_cycle
The ControlWr signal must not remain asserted for two consecutive cycles.s

Rule 1.6.11 signal_value_ControlBusy
The ControlBusy signal can only be asserted in a cycle after the ControlWr
signal is asserted or after the reset transitions to inactive.

Rule 1.6.12 signal_hold_StatusRd_2_cycles
If the StatusRd signal was asserted in the previous cycle, it must not be
asserted in the current cycle.

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlWr

Assertion type Hold

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Control

Signal group Sideband - control

Critical signals ControlBusy

Assertion type Value

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Status

Signal group Sideband - status

Critical signals StatusRd

Assertion type Hold

References Section 4.3.3.4 on page 48

Protocol Compliance Checks 411

OCP-IP Confidential

Rule 1.6.13 signal_value_StatusRd_StatusBusy_active
The StatusRd signal must not be asserted while StatusBusy is asserted.

18.4 Connection Protocol Checks

Rule 1.7.1 disconnect_signal_valid_<signal>
The disconnect signals (listed below) are always valid, including during the
OCP reset

MConnect SConnect SWait

Rule 1.7.2 signal_hold_MConnect_2_cycles
The MConnect signal must be held steady for a full cycle after the cycle in
which MConnect has transitioned to M_CON, M_DISC, or M_OFF.

Protocol hierarchy Status

Signal group Sideband - status

Critical signals StatusRd, StatusBusy

Assertion type Value

Reference Section 4.3.3.4 on page 48

Protocol hierarchy Reset activity

Signal group Sideband

Critical signals MConnect, SConnect, SWait

Assertion type X, Z

Reference Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect

Assertion type Hold

References Section 4.3.3.2 on page 46

412 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.7.2 signal_value_MCmd_MConnect_not_connected
The MCmd signal must be IDLE if MConnect is not in the M_CON state.

Rule 1.7.3 signal_order_MConnect_transaction
If signal MConnect transitions from M_CON in a cycle, there should not be
any non-finshed OCP transaction at that cycle.

Rule 1.7.4 signal_value_SWait_MConnect_stable_state
If signal MConnect transitions to a stable state (M_OFF, M_DISC, M_CON) in
a cycle, SWait must be 0 (S_OK) at that cycle.

Protocol hierarchy Control

Signal group Sideband

Critical signals MCmd, MConnect

Assertion type Value

Reference Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals Inband OCP signals

Assertion type Value

References Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect, SWait

Assertion type Value

References Section 4.3.3.2 on page 46

Protocol Compliance Checks 413

OCP-IP Confidential

Rule 1.7.5 signal_value_SConnect_MConnect_connected
If signal MConnect transitions to M_CON in a cycle, SConnect must be 1
(S_CON) in the previous cycle.

Rule 1.7.6 signal_value_SConnect_MConnect_disconnected
If signal MConnect transitions to M_DISC in a cycle, SConnect must be 0
(S_DISC) at that cycle.

Rule 1.7.7 signal_value_MConnect_ConnectCap
If ConnectCap is 0, Master must stay connected, so MConnect is M_CON.

Protocol hierarchy

Signal group Sideband

Critical signals MConnect, SConnect

Assertion type Value

References Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect, SConnect

Assertion type Value

References Section 4.3.3.2 on page 46

Protocol hierarchy

Signal group Sideband

Critical signals MConnect

Assertion type Value

Reference Section 3.2.1 on page 26

414 Open Core Protocol Specification

OCP-IP Confidential

Rule 1.7.8 signal_value_SConnect_ConnectCap
If ConnectCap is 0, Slave must stay connected, so SConnect is S_CON.

Rule 1.7.9 signal_value_SWait_ConnectCap
If ConnectCap is 0, Slave must not stall disconnect interface, so SWait is
S_OK.

Protocol hierarchy

Signal group Sideband

Critical signals SConnect

Assertion type Value

Reference Section 3.2.1 on page 26

Protocol hierarchy

Signal group Sideband

Critical signals SWait

Assertion type Value

Reference Section 3.2.1 on page 26

OCP-IP Confidential

19 Configuration Compliance
Checks

The configuration checks listed in this chapter are extracted from the OCP
Specification and are intended to serve as guidelines to verify an IP for OCP
compliance. In all cases “Part I, Specification” is the definitive reference.

The configuration checks listed in this chapter are based on the “Specifi-
cation” and “Guidelines” parts of this document and allow you to verify an IP/
VIP for OCP compliance. In all cases, “Part I, Specification” is the definitive
reference. Any references made to “Part II, Guidelines” are not definitive as
Part I supersedes the guidelines.

The section describes the configuration checks needed for an OCP port. The
names assigned to the configuration compliance checks have been created
using the following template:

<hierarchy>_cfg_<critical_param>_<relationship>_<extra_details>

In which:

<hierarchy>: request, datahandshake, response, sideband, test,
master_slave

<critical_param> : any OCP parameter that is impacted by the configuration
check

<relationship> : (optional) enable, depends, match
<extra details> : a short additional explanation

The majority of the configuration checks involve an enable relationship. For
these enable checks ‘paramA_enable_paramB’ implies that paramA is
somehow enabled by paramB. In these situations the individual check
descriptions provide details on the enabling relationship between the
parameters.

416 Open Core Protocol Specification

OCP-IP Confidential

19.1 Request Group

Rule 2.1.1 request_cfg_cmd_enable
One of the command enable parameters must be enabled. The critical
parameters are: read_enable, readex_enable, write_enable,
writenonpost_enable, broadcast_enable, or rdlwrc_enable.

Rule 2.1.2 request_cfg_readex_enable_write_writenonpost
readex_enable can only be enabled if write_enable or writenonpost_
enable is enabled.

Rule 2.1.3 request_cfg_addr_wdth_depends_data_wdth
data_wdth defines a minimum addr_wdth value that is based on the data
bus byte width, and is defined as:

Rule 2.1.4 request_cfg_blockstride_wdth_depends_data_wdth
If the blockstride parameter is enabled, then data_wdth defines a
minimumblockstride_wdth value:

Protocol hierarchy Request

Critical parameters
read_enable, readex_enable, write_enable, writenonpost_
enable, broadcast_enable, rdlwrc_enable

Reference Section 3.1.1 on page 13

Protocol hierarchy Request

Critical parameters readex_enable, write_enable, writenonpost_enable

Reference Section 4.9.1.1 on page 59

Protocol hierarchy Request

Critical parameters addr_wdth, data_wdth

Reference MAddr on page 14

Protocol hierarchy Request

Critical parameters blockstride_wdth, data_wdth

Reference MBlockStride on page 20

min_addr_wdth max[1, log2 data_wdth() 2]–=

min_blockstride_wdth max[1, log2 data_wdth() 2]–=

Configuration Compliance Checks 417

OCP-IP Confidential

Rule 2.1.5 request_cfg_byteen_enable_mdata_sdata
byteen can only be enabled when either sdata or mdata is also enabled.

Rule 2.1.6 request_cfg_byteen_enable_data_wdth
byteen is only supported when data_wdth is a multiple of 8.

Rule 2.1.7 request_cfg_sthreadbusy_exact_enable_sthreadBusy
sthreadbusy_exactcan only be enabled if sthreadbusy is enabled.

Rule 2.1.8 request_cfg_sdata_enable_resp
sdata can only be enabled if resp is enabled.

Protocol hierarchy Request

Critical parameters byteen, sdata, mdata

Reference Section 3.1.2 on page 16

Protocol hierarchy Request

Critical parameters byteen, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Request

Critical parameters sthreadbusy, sthreadbusy_exact

Reference Table 26 on page 61

Protocol hierarchy Request

Critical parameters sdata, resp

Reference Table 26 on page 61

418 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.1.9 request_cfg_sthreadbusy_enable_sthreadbusy_exact_
cmdaccept
sthreadbusy can only be enabled if one of sthreadbusy_exact or
cmdaccept is enabled.

Rule 2.1.10 request_cfg_atomiclength_enable_burstlength
atomiclength can only be enabled if burstlength is enabled.

Rule 2.1.11 request_cfg_burstprecise_enable_burstlength
burstprecise can only be enabled if burstlength is enabled.

Rule 2.1.12 request_cfg_burstseq_enable_burstlength
burstseq can only be enabled if burstlength is enabled.

Protocol hierarchy Request

Critical parameters sthreadbusy, sthreadbusy_exact, cmdaccept

Reference Table 26 on page 61

Protocol hierarchy Request

Critical parameters atomiclength, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burstprecise, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burstseq, burstlength

Reference Footnotes on page 34

Configuration Compliance Checks 419

OCP-IP Confidential

Rule 2.1.13 request_cfg_burstsinglereq_enable_burstlength
burstsinglereq can only be enabled if burstlength is enabled.

Rule 2.1.14 request_cfg_reqlast_enable_burstlength
reqlast can only be enabled if burstlength is enabled.

Rule 2.1.15 request_cfg_reqrowlast_enable_burstlength
reqrowlast can only be enabled if burstlength is also enabled.

Rule 2.1.16 request_cfg_reqrowlast_enable_reqlast_burstseq_blck_
enable
reqrowlast can only be enabled if reqlast and burstseq_blck_enable are
enabled.

Protocol hierarchy Request

Critical parameters burstsinglereq, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters reqlast, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters reqrowlast, burstlength

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters reqlast, reqrowlast, burstseq_blck_enable

Reference Footnotes on page 34

420 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.1.17 request_cfg_burstlength_enable_burstseq_enable
burstlength can only be enabled if at least one of the burst sequences is
enabled.

Rule 2.1.18 request_cfg_burstseq_<type>_enable_burstseq
burstseq_<type>_enable can only be enabled if burstseq is enabled.
burstseq must be enabled if two or more burst sequences (specified by
burstseq_<type>_enable) are enabled.

Rule 2.1.19 request_cfg_reqdata_together_enable_burstsinglereq
reqdata_together can only be enabled if burstsinglereq is enabled.

Rule 2.1.20 request_cfg_force_aligned_enable_data_wdth
force_aligned can only be enabled if data_wdth is a power of 2

Protocol hierarchy Request

Critical parameters burstlength

Reference Section 3.1.3 on page 19

Protocol hierarchy Request

Critical parameters burstseq, burstseq_<type>_enable

Reference Section 4.9.1.2 on page 59

Protocol hierarchy Request

Critical parameters reqdata_together, burstsinglereq

Reference Section on page 63

Protocol hierarchy Request

Critical parameters force_aligned, data_wdth

Reference Section 4.9.1.3 on page 60

Configuration Compliance Checks 421

OCP-IP Confidential

Rule 2.1.21 request_cfg_mdatainfo_enable_mdata
mdatainfo can only be enabled if mdata is enabled.

Rule 2.1.22 request_cfg_sdatainfo_enable_sdata
sdatainfo can only be enabled if sdata is enabled.

Rule 2.1.23 request_cfg_atomiclength_wdth_depends_burstlengthwdth
atomiclength_wdth must be less than or equal to burstlength_wdth.

Rule 2.1.24 request_cfg_value_burstlength_wdth_0x1
burstlength_wdth must be greater than 1 if burstlength is enabled.

Rule 2.1.25 request_cfg_burst_aligned_enable_burstlength
burst_aligned can only be enabled if burstlength is enabled.

Protocol hierarchy Request

Critical parameters mdatainfo, mdata

Reference MDatInfo on page 17

Protocol hierarchy Request

Critical parameters sdatainfo, sdata

Reference MDatInfo on page 18

Protocol hierarchy Request

Critical parameters atomiclength_wdth, burstlength_wdth

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burstlength, burstlength_wdth

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters burst_aligned, burstlength

Reference Section 4.9.1.4 on page 60

422 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.1.26 request_cfg_burstseq_enable_addr
burstseq can only be enabled if addr is enabled.

Rule 2.1.27 request_cfg_burstsinglereq_enable_burstseq_enable
burstsinglereq must be disabled if burstseq_unkn_enable is the only
enabled burst sequence.

Rule 2.1.28 request_cfg_taginorder_enable_tags
taginorder is only enabled if tags > 1.

Rule 2.1.29 request_cfg_tag_interleave_size_depends_
burstlength_wdth
tag_interleave_size must be 1 if burstlength_wdth is 0 and otherwise
must be 0 or a power-of-two which is less than or equal to 2**(burstlength_
wdth-1).

Protocol hierarchy Request

Critical parameters addr, burstseq

Reference MBurstSeq on page 21

Protocol hierarchy Request

Critical parameters burstseq_unkn_enable, burstsinglereq

Reference Section 4.6.1 on page 53

Protocol hierarchy Request

Critical parameters taginorder, tags

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters tag_interleave_size, burstlength_wdth

Reference Section 4.9.1.7 on page 62

Configuration Compliance Checks 423

OCP-IP Confidential

Rule 2.1.30 request_cfg_<block_signal>_enable_burstseq_blck_
enable
blockheight and blockstride are only enabled when burstseq_blck_
enable is also enabled.

Rule 2.1.31 request_cfg_value_blockheight_wdth_0x1
If blockheight is enabled, blockheight_wdth must be greater than 1.

Rule 2.1.32 request_cfg_<threadbusy_pipelined_cfg>_enable_
<threadbusy_exact_cfg>
The parameters mthreadbusy_pipelined, sdatathreadbusy_pipelined,
and sthreadbusy_pipelined can be enabled to 1 only when the
corresponding _exact parameter is enabled.

Rule 2.1.33 request_cfg_reqdata_together_enable_cmdaccept_
dataaccept
reqdata_together can only be enabled if cmdaccept and dataaccept
match.

Protocol hierarchy Request

Critical parameters blockheight, blockstride, burstseq_blck_enable

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters blockheight, blockheight_wdth

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters
mthreadbusy_pipelined, sdatathreadbusy_pipelined, and
sthreadbusy_pipelined

Reference Section 4.3.2.4 on page 44

Protocol hierarchy Request

Critical parameters reqdata_together, cmdaccept, dataaccept

Reference Implicit

424 Open Core Protocol Specification

OCP-IP Confidential

19.2 Datahandshake Group

Rule 2.2.1 datahandshake_cfg_datalast_enable_burstlength
datalast can only be enabled if burstlength is enabled.

Rule 2.2.2 request_cfg_burstsinglereq_enable_datahandshake_cmd_
enable
burstsinglereq can only be enabled if datahandshake is enabled or none of
the write command types are enabled.

Rule 2.2.3 datahandshake_cfg_datahandshake_enable_mdata
datahandshake can only be enabled if mdata is also enabled.

Rule 2.2.4 datahandshake_cfg_datalast_enable_datahandshake
datalast can only be enabled if datahandshake is also enabled.

Protocol hierarchy Request

Critical parameters datalast, burstlength

Reference Footnotes on page 34

Protocol hierarchy Datahandshake

Critical parameters
burstsinglereq, datahandshake, write_enable, writenonpost_
enable, rdlwrc_enable

Reference Section 4.6.5 on page 55

Protocol hierarchy Datahandshake

Critical parameters datahandshake, mdata

Reference Section 3.1.1 on page 13

Protocol hierarchy Datahandshake

Critical parameters datalast, datahandshake

Reference Section 3.1.3 on page 19

Configuration Compliance Checks 425

OCP-IP Confidential

Rule 2.2.5 datahandshake_cfg_datarowlast_enable_datahandshake
datarowlast can only be enabled if datahandshake is also enabled.

Rule 2.2.6 datahandshake_cfg_datrowalast_enable_burstlength
datarowlast can only be enabled if burstlength is also enabled.

Rule 2.2.7 datahandshake_cfg_datarowlast_enable_datalast_
burstseq_blck_enable
datarowlast can only be enabled if datalast and burstseq_blck_enable
are enabled.

Rule 2.2.8 datahandshake_cfg_dataaccept_enable_datahandshake
dataaccept can only be enabled if datahandshake is also enabled.

Protocol hierarchy Datahandshake

Critical parameters datarowlast, datahandshake

Reference Section 3.1.3 on page 19

Protocol hierarchy Datahandshake

Critical parameters datarowlast, burstlength

Reference Section 3.1.3 on page 19

Protocol hierarchy Datahandshake

Critical parameters
datarowlast, datalast, datahandshake, burstseq_blck_
enable

Reference Section 3.1.3 on page 19

Protocol hierarchy Datahandshake

Critical parameters dataaccept, datahandshake

Reference Section 3.1.1 on page 13

426 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.2.9 datahandshake_cfg_sdatathreadbusy_enable_
datahanshake
sdatathreadbusy can only be enabled if datahandshake is also enabled.

Rule 2.2.10 datahandshake_cfg_mdatabyteen_enable_datahanshake
mdatabyteen can only be enabled if datahandshake is also enabled.

Rule 2.2.11 datahandshake_cfg_mdatabyteen_enable_mdata
mdatabyteen can only be enabled if mdata is also enabled.

Rule 2.2.12 datahandshake_cfg_mdatabyteen_depends_data_wdth
mdatabyteen can only be enabled if data_wdth is a multiple of 8.

Rule 2.2.13 datahandshake_cfg_mdatainfo_depends_data_wdth
mdatainfo can only be enabled if data_wdth is a multiple of 8.

Protocol hierarchy Datahandshake

Critical parameters sdatathreadbusy, datahandshake

Reference Section 3.1.5 on page 23

Protocol hierarchy Datahandshake

Critical parameters mdatabyteen, datahandshake

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters mdatabyteen, mdata

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters mdatabyteen, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters mdatainfo, data_wdth

Reference Section 3.1.2 on page 16

Configuration Compliance Checks 427

OCP-IP Confidential

Rule 2.2.14 datahandshake_cfg_mdatainfo_wdth_depends_
mdatainfobyte_wdth
mdatainfo_wdth must be greater than or equal to mdatainfobyte_wdth *
data_wdth / 8.

Rule 2.2.15 datahandshake_cfg_sdatainfo_depends_data_wdth
sdatainfo can only be enabled if data_wdth is a multiple of 8.

Rule 2.2.16 datahandshake_cfg_sdatainfo_wdth_depends_s
datainfobyte_wdth
sdatainfo_wdth must be greater than or equal to sdatainfobyte_wdth *
data_wdth /8.

Rule 2.2.17 datahandshake_cfg_sdatathreadbusy_enable_
sdatathreadbusy_exact
sdatathreadbusy_exact can only be enabled if sdatathreadbusy is
enabled.

Protocol hierarchy Datahandshake

Critical parameters mdatainfo_wdth, mdatainfobyte_wdth, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters sdatainfo, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters sdatainfo_wdth, sdatainfobyte_wdth, data_wdth

Reference Section 3.1.2 on page 16

Protocol hierarchy Datahandshake

Critical parameters sdatathreadbusy, sdatathreadbusy_exact

Reference Table 26 on page 61

428 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.2.18 datahandshake_cfg_sdatathreadbusy_exact_enable_
sdatathreadbusy
sdatathreadbusy_exact can onlybe enabled if sdatathreadbusy is
enabled.

Rule 2.2.19 datahandshake_cfg_dataaccept_enable_
sdatathreadbusy_exact
dataaccept can only be enabled if sdatathreadbusy_exact is not enabled.

Rule 2.2.20 datahandshake_cfg_reqdata_together_enable_
datahandshake
reqdata_together is only enabled if datahandshake is enabled.

19.3 Response Group

Rule 2.3.1 response_cfg_resplast_enable_burstlength
resplast can only be enabled if burstlength is enabled.

Protocol hierarchy Datahandshake

Critical parameters sdatathreadbusy_exact, sdatathreadbusy

Reference Table 26 on page 61

Protocol hierarchy Datahandshake

Critical parameters dataaccept, sdatathreadbusy_exact

Reference Table 26 on page 61

Protocol hierarchy Datahandshake

Critical parameters reqdata_together, datahandshake

Reference Table 24 on page 59

Protocol hierarchy Response

Critical parameters resplast, burstlength

Reference Footnotes on page 34

Configuration Compliance Checks 429

OCP-IP Confidential

Rule 2.3.2 response_cfg_respaccept_enable_resp
respaccept can only be enabled if resp is also enabled.

Rule 2.3.3 response_cfg_resplast_enable_resp
resplast can only be enabled if resp is also enabled.

Rule 2.3.4 response_cfg_resprowlast_enable_resp
resprowlast can only be enabled if resp is also enabled.

Rule 2.3.5 response_cfg_resprowlast_enable_burstlength
resprowlast can only be enabled if burstlength is also enabled.

Protocol hierarchy Response

Critical parameters respaccept, resp

References
Section 3.1.2 on page 16
Footnotes on page 34

Protocol hierarchy Response

Critical parameters resplast, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters resprowlast, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters resprowlast, burstlength

References
Section 3.1.3 on page 19
Footnotes on page 34

430 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.3.6 response_cfg_resprowlast_enable_resplast_burstseq_blck_
enable
resprowlast can only be enabled if resplast and burstseq_blck_enable
are enabled.

Rule 2.3.7 response_cfg_respinfo_enable_resp
respinfo can only be enabled if resp is also enabled.

Rule 2.3.8 response_cfg_mthreadbusy_enable_resp
mthreadbusy can only be enabled if resp is enabled.

Rule 2.3.9 response_cfg_sdata_enable_resp
sdata can only be enabled if resp is also enabled.

Protocol hierarchy Response

Critical parameters resprowlast, resplast, burstseq_blck_enable

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters respinfo, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters mthreadbusy, resp

References
Section 3.1.3 on page 19
Footnotes on page 34

Protocol hierarchy Response

Critical parameters sdata, resp

References
Section 3.1.2 on page 16
Footnotes on page 34

Configuration Compliance Checks 431

OCP-IP Confidential

Rule 2.3.10 response_cfg_sdatainfo_enable_resp
sdatainfo can only be enabled if resp is also enabled.

Rule 2.3.11 response_cfg_<cmd_enable>_enable_writeresp_enable
writenonpost_enable and rdlwrc_enable are only enabled if writeresp_
enable is enabled.

Rule 2.3.12 response_cfg_<cmd_enable>_enable_resp
read_enable and rdlwrc_enable are only enabled if resp is enabled.

Rule 2.3.13 response_cfg_mthreadbusy_exact_enable_mthreadbusy
mthreadbusy_exact can only be enabled if mthreadbusy is enabled.

Rule 2.3.14 response_cfg_respaccept_enable_mthreadbusy_exact
respaccept can only be enabled if mthreadbusy_exact is not enabled.

Protocol hierarchy Response

Critical parameters sdatainfo, resp

References
Section 3.1.2 on page 16
Footnotes on page 34

Protocol hierarchy Response

Critical parameters writenonpost_enable, writeresp_enable, rdlwrc_enable

Reference Section 4.9.1.1 on page 59

Protocol hierarchy Response

Critical parameters read_enable, rdlwrc_enable, resp

References “Section 3.1.1 on page 13

Protocol hierarchy Response

Critical parameters mthreadbusy, mthreadbusy_exact

Reference Section 4.9.1.5 on page 61

Protocol hierarchy Response

Critical parameters respaccept, mthreadbusy_exact

Reference Table 26 on page 61

432 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.3.15 response_cfg_mthreadbusy_enable_mthreadbusy_exact_
respaccept
mthreadbusy can only be enabled if exactly one of mthreadbusy_exact and
respaccept is enabled.

19.4 Sideband Group

Rule 2.4.1 sideband_cfg_statusbusy_enable_status
statusbusy can only be enabled if status is enabled.

Rule 2.4.2 sideband_cfg_mreset_sreset
Either mreset or sreset must be enabled.

Rule 2.4.3 sideband_cfg_controlwr_enable_control
controlwr can only be enabled if control is enabled.

Protocol hierarchy Response

Critical parameters mthreadbusy, mthreadbusy_exact respaccept

Reference Table 26 on page 61

Protocol hierarchy Sideband

Critical parameters statusbusy, status

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters mreset, sreset

Reference Section 3.2 on page 25

Protocol hierarchy Sideband

Critical parameters control, controlwr

Reference Footnotes on page 34

Configuration Compliance Checks 433

OCP-IP Confidential

Rule 2.4.4 sideband_cfg_controlbusy_enable_control
controlbusy is enabled but control is not enabled.

Rule 2.4.5 sideband_cfg_controlbusy_enable_controlwr
controlbusy is enabled but controlwr is not enabled.

Rule 2.4.6 sideband_cfg_statusrd_enable_status
statusrd can only be enabled if status is enabled.

Rule 2.4.7 sideband_cfg_statusbusy_enable_status
statusbusy can only be enabled if status is enabled.

Protocol hierarchy Sideband

Critical parameters control, controlbusy

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters controlbusy, controlwr

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters status, statusrd

Reference Footnotes on page 34

Protocol hierarchy Sideband

Critical parameters status, statusbusy

Reference Footnotes on page 34

434 Open Core Protocol Specification

OCP-IP Confidential

19.5 Test Group

Rule 2.5.1 test_cfg_jtagreset_enable_jtag_enable
jtagtrst_enable can only be enabled if jtag_enable is also enabled.

19.6 Interface Interoperability
The checks contained in this section identify configuration checks for
connected devices. These checks are written under the assumption that the
configurations accurately reflect the enabled protocol features of the
individual devices. They do not reflect exceptions that are noted in the specifi-
cation and that are acceptable when used in conjunction with tie-offs.

Rule 2.6.1 master_slave_cfg_read_enable_match
If the slave has read_enable set to 0, the master must have read_enable set
to 0.

Rule 2.6.2 master_slave_cfg_readex_enable_match
If the slave has readex_enable set to 0, the master must have readex_
enable set to 0.

Protocol hierarchy Test

Critical parameters jtagtrst_enable, jtag_enable

Reference Footnotes on page 34

Protocol hierarchy Request

Critical parameters read_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters readex_enable

Reference Section 4.9.5 on page 64

Configuration Compliance Checks 435

OCP-IP Confidential

Rule 2.6.3 master_slave_cfg_rdlwrc_enable_match
If the slave has rdlwrc_enable set to 0, the master must have rdlwrc_
enable set to 0.

Rule 2.6.4 master_slave_cfg_write_enable_match
If the slave has write_enable set to 0, the master must have write_enable
set to 0.

Rule 2.6.5 master_slave_cfg_writenonpost_enable_match
If the slave has writenonpost_enable set to 0, the master must have
writenonpost_enable set to 0.

Rule 2.6.6 master_slave_cfg_broadcast_enable_match
If the slave has broadcast_enable set to 0, the master must have
broadcast_enable set to 0.

Protocol hierarchy Request

Critical parameters rdlwrc_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters write_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters writenonpost_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters broadcast_enable

Reference Section 4.9.5 on page 64

436 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.6.7 master_slave_cfg_burstseq_blck_enable_match
If the slave has burstseq_blck_enable set to 0, the master must have
burstseq_blck_enable set to 0.

Rule 2.6.8 master_slave_cfg_burstseq_incr_enable_match
If the slave has burstseq_incr_enable set to 0, the master must have
burstseq_incr_enable set to 0.

Rule 2.6.9 master_slave_cfg_burstseq_strm_enable_match
If the slave has burstseq_strm_enable set to 0, the master must have
burstseq_strm_enable set to 0.

Rule 2.6.10 master_slave_cfg_burstseq_dflt1_enable_match
If the slave has burstseq_dflt1_enable set to 0, the master must have
burstseq_dflt1_enable set to 0.

Protocol hierarchy Request

Critical parameters burstseq_blck_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_incr_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_strm_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_dflt1_enable

Reference Section 4.9.5 on page 64

Configuration Compliance Checks 437

OCP-IP Confidential

Rule 2.6.11 master_slave_cfg_burstseq_dflt2_enable_match
If the slave has burstseq_dflt2_enable set to 0, the master must have
burstseq_dflt2_enable set to 0.

Rule 2.6.12 master_slave_cfg_burstseq_wrap_enable_match
If the slave has burstseq_wrap_enable set to 0, the master must have
burstseq_wrap_enable set to 0.

Rule 2.6.13 master_slave_cfg_burstseq_xor_enable_match
If the slave has burstseq_xor_enable set to 0, the master must have
burstseq_xor_enable set to 0.

Rule 2.6.14 master_slave_cfg_burstseq_unkn_enable_match
If the slave has burstseq_unkn_enable set to 0, the master must have
burstseq_unkn_enable set to 0.

Protocol hierarchy Request

Critical parameters burstseq_dflt2_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_wrap_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_xor_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burstseq_unkn_enable

Reference Section 4.9.5 on page 64

438 Open Core Protocol Specification

OCP-IP Confidential

Rule 2.6.15 master_slave_cfg_force_aligned_match
If the slave has force_aligned, the master has force_aligned or it must
limit itself to aligned byte enable patterns.

Rule 2.6.16 master_slave_cfg_mdatabyteen_match
Configuration of the mdatabyteen parameter is identical between master and
slave.

Rule 2.6.17 master_slave_cfg_burst_aligned_match
If the slave has burst_aligned, the master has burst_aligned or it must
limit itself to issue all INCR bursts using burst_aligned rules.

Rule 2.6.18 master_slave_cfg_<threadbusy_param>_match
If the interface includes SThreadBusy, the sthreadbusy_exact and
sthreadbusy_pipelined parameters are identical between master and
slave.

Protocol hierarchy Request

Critical parameters force_aligned

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters mdatabyteen

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters burst_aligned

Reference Section 4.9.5 on page 64

Protocol hierarchy Response

Critical parameters sthreadbusy_exact, sthreadbusy_pipelined

Reference Section 4.9.5 on page 64

Configuration Compliance Checks 439

OCP-IP Confidential

Rule 2.6.19 master_slave_cfg_<mthreadbusy_param>_match
If the interface includes MThreadBusy, the mthreadbusy_exact and
mthreadbusy_pipelined parameters are identical between master and
slave.

Rule 2.6.20 master_slave_cfg_<sdatathreadbusy_param>_match
If the interface includes SDataThreadBusy, the sdatathreadbusy_exact
and sdatathreadbusy_pipelined parameters are identical between master
and slave.

Rule 2.6.21 master_slave_cfg_tag_interleave_size_match
If tags > 1, the master’s tag_interleave_size is smaller than or equal to
the slave’s tag_interleave_size.

Rule 2.6.22 master_slave_cfg_datahandshake_match
Configuration of the datahandshake parameter is identical between master
and slave.

Protocol hierarchy Response

Critical parameters mthreadbusy_exact, mthreadbusy_pipelined

Reference Section 4.9.5 on page 64

Protocol hierarchy Response

Critical parameters sdatathreadbusy_exact, sdatathreadbusy_pipelined

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters tag_interleave_size

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters datahandshake

Reference Section 4.9.5 on page 64

Rule 2.6.23 master_slave_cfg_writeresp_enable_onewaymatch
Configuration of the writeresp_enable parameter is identical between
master and slave. If master has writeresp_enable=0 then slave must be
configured with writeresp_enable=0. If master has writeresp_enable=1
and slave is configured with writeresp_enable=0 then both write_
enable=0 and broadcast_enable = 0 (i.e., WR and BCST must not be
enabled).

Rule 2.6.24 master_slave_cfg_reqdata_together_match
Configuration of the reqdata_together parameter is identical between
master and slave.

Rule 2.6.25 master_slave_cfg_mreset_match
If the master has mreset enabled to 1, the slave has mreset enabled to 1.

Rule 2.6.26 master_slave_cfg_sreset_match
If the slave has sreset enabled to 1, the master has sreset enabled to 1.

Protocol hierarchy Request

Critical parameters writeresp_enable, write_enable, broadcast_enable

Reference Section 4.9.5 on page 64

Protocol hierarchy Request

Critical parameters reqdata_together

Reference Section 4.9.5 on page 64

Protocol hierarchy Sideband

Critical parameters mreset

Reference Section 4.9.5 on page 64

Protocol hierarchy Sideband

Critical parameters sreset

Reference Section 4.9.5 on page 64

Configuration Compliance Checks 441

OCP-IP Confidential

Rule 2.6.27 master_slave_cfg_tags_match
The master and slave tags values must match.

Rule 2.6.28 master_slave_cfg_interoperability

If either master or slave have connection parameter set to 0, then ConnectCap
for master and slave that have this parameter to 1 must be tied off to 0.

Rule 2.6.29 master_slave_cfg_connectcap_match
Configuration of the ConnectCap signal value is identical between master and
slave, if both master and slave have connection set to 1.

Protocol hierarchy Request

Critical parameters tags

Reference Section 4.9.5 on page 64

Protocol hierarchy sideband

Critical parameters connection

Reference Section 3.2.1 on page 26

Protocol hierarchy sideband

Critical parameters connection

Reference Section 3.2.1 on page 26

442 Open Core Protocol Specification

OCP-IP Confidential

OCP-IP Confidential

20 Functional Coverage

The functional coverage approach described in this chapter is bottom-up,
meaning the analysis starts at the signal level and goes up to the transaction
level. The transfer level has been skipped for reasons highlighted in
Section 20.2 on page 447. Along this path several coverage types are used.
The signal level uses toggle, state, and meta coverages, while the transaction
level uses cross and meta coverages.

Toggle coverage
Toggle coverage provides baseline information that a system is connected
properly, and that higher level coverage or compliance failures are not
simply the result of connectivity issues. Toggle coverage answers the
question: Did a bit change from a value of 0 to 1 and back from 1 to 0?
This type of coverage does not indicate that every value of a multi-bit
vector was seen but measures that all the individual bits of a multi-bit
vector did toggle. In certain cases, not all bits can toggle. A system that
only supports RD commands, (“010”) for example, will only need toggle
coverage on MCmd bit1. MCmd bit0 and bit2 will always be 0. Therefore
they must be filtered from the MCmd toggle coverage.

State coverage
State coverage applies to signals that are a minimum of two bits wide. In
most cases, the states (also commonly referred to as coverage bins) can be
easily identified as all possible combinations of the signal. For example,
for the SResp signal, the states could be 00 (IDLE), 01 (DVA), 10 (FAIL)
and 11 (ERR). If the state space is too large, an intelligent classification of
the states must be made. In the case of the MAddr signal for example, a
possible choice of the coverage bins could be one bin to cover the lower
address range, one bin to cover the upper address range and one bin to
cover all other intermediary addresses.

Meta coverage
Meta coverage is collecting second-order coverage data. Possible meta
coverage measurements include accept backpressure delays, threadbusy
backpressure delays and inter-phase delays. Meta coverage information is

444 Open Core Protocol Specification

OCP-IP Confidential

particularly useful to flag excessive latencies (possibly indicating dead-
locks) and to evaluate the OCP backpressure mechanisms (accept /
threadbusy).

Cross coverage
Cross coverage measures the activity of one or multiple categories. A
category is defined at the transaction level that typically groups multiple
OCP signals to form a more abstract, higher-level view of a particular
aspect of the OCP protocol. The most pertinent category example is the
transTypes. This category combines the MCmd, MBurstLength and
MBurstSingleReq signals into a higher-level category. Cross coverage on
one category, for example the transTypes category, indicates which kind
of transactions were applied to the system under test (for instance,
MRMD-RD-4, SINGLE-WRNP, etc.). Cross coverage on multiple
categories, for example the transTypes and transResults categories, not
only provides information about the transactions applied to the system,
but also on their results. In essence, cross coverage measures the types
of transactions passing through a system.

20.1 Signal Level
Table 86 summarizes the OCP functional coverage approach for the signal
level. The table maps all OCP signals (non-sideband) into phase groups (req /
datahs / resp) and provides coverage information in the two outermost right
columns. Each coverage type field is colored either in green or in yellow. Green
fields are mandatory for functional coverage. Yellow fields are optional for
functional coverage.

Level 1—Baseline Coverage
Level 1—baseline column establishes a solid baseline for the signal level
functional coverage, so it contains only mandatory coverage. The coverage
type is toggle coverage. Toggle coverage provides a minimum level of
confidence to the verification engineer that the device under test is alive
and properly connected to the rest of the system. It proves as well that no
OCP signals are stuck at 0 or 1. In some cases, filters should be applied
to the toggle coverage to exclude coverage of bits that can never toggle
(refer to the MCmd example on page 443).

Level 2 Coverage
The level 2 coverage type column defines additional coverage. Possible
coverage types are state or meta. State coverage defines states (bins) for a
multi-bit vector to provide a higher level of abstraction. Meta coverage
covers accept / threadbusy backpressure delays.

Mandatory fields must be covered and are with their respective coverage
type:

MAddr/MCmd/SResp :state coverage

MAddrSpace/MByteEn/MDataByteEn :state coverage

MAtomicLength/MBurstLength/MBurstSeq :state coverage

MBlockHeight/MBlockStride :state coverage

Functional Coverage 445

OCP-IP Confidential

Optional column level 2 fields and their coverage types are:

Signals that are only one bit wide only have toggle coverage:

Table 86 Signal Level Functional Coverage

MTagID/MDataTagID/STagID :state coverage

MThreadID/MDataThreadID/SthreadID :state coverage

MData/SData :state coverage

MDataValid :meta coverage

SCmdAccept/SDataAccept/MRespAccept :meta coverage

MReqInfo/MDataInfo/SDataInfo/SRespInfo :state coverage

MConnID :state coverage

SThreadBusy/SDataThreadBusy/MThreadBusy :meta coverage

MBurstPrecise/MBurstSingleReq

MReqLast/MDataLast/SRespLast

MTagInOrder/STagInOrder

MReqRowLast/MDataRowLast/SRespRowLast

Phase Groups Coverage Type

Signal Group Signal Req Datahs Resp
Level 1
Baseline

Level 2

Basic MAddr X Toggle State

MCmd X Toggle State

MData X Toggle State

MDataValid X Toggle Meta

MRespAccept X Toggle Meta

SCmdAccept X Toggle Meta

SData X Toggle State

SDataAccept X Toggle Meta

SResp X Toggle State

446 Open Core Protocol Specification

OCP-IP Confidential

Simple MAddrSpace X Toggle State

MByteEn X Toggle State

MDataByteEn X Toggle State

MDataInfo X Toggle State

MReqInfo X Toggle State

SDataInfo X Toggle State

SRespInfo X Toggle State

Burst MAtomicLength X Toggle State

MBlockStride X Toggle State

MBlockHeight X Toggle State

MBurstLength X Toggle State

MBurstPrecise X Toggle

MBurstSeq X Toggle State

MBurstSingleReq X Toggle

MDataLast X Toggle

MDataRowLast X Toggle

MReqLast X Toggle

MReqRowLast X Toggle

SRespLast X Toggle

SRespRowLast X Toggle

Tag MDataTagID X Toggle State

MTagID X Toggle State

MTagInOrder X Toggle

STagID X Toggle State

STagInOrder X Toggle

Thread MConnID X Toggle State

MDataThreadID X Toggle State

MThreadBusy X Toggle Meta

MThreadID X Toggle State

SDataThreadBusy X Toggle Meta

SThreadBusy X Toggle Meta

SThreadID X Toggle State

Phase Groups Coverage Type

Signal Group Signal Req Datahs Resp
Level 1
Baseline

Level 2

Functional Coverage 447

OCP-IP Confidential

Table 87 outlines options for signal level meta coverage. For each phase group
(req/datahs/resp), two meta coverage types are identified: accept
backpressure delay and threadbusy backpressure delay. Other meta coverage
types could be identified.

Table 87 Signal Level Meta Coverage Examples

20.2 Transfer Level
The transfer level for functional coverage is being skipped. The underlying
reasons are:

• The most obvious order for the OCP functional coverage definition is to
follow the OCP hierarchy: signal, phase, transfer, transaction. However,
such reasoning does not work well for SRMD bursts. SRMD bursts can be
constructed as 1 req + n datahs + 1 resp. As such, the transfer concept
does not apply 100% because the number of phases per transfer is not
constant. Since it is desirable to have a uniform functional coverage
definition, which applies to all OCP transactions (MRMD, SRMD, or
SINGLE), it makes sense to skip the transfer level.

• Even if the transfer level was included, there are no valuable coverage
points. The combination of phases into transfers is a pure protocol check
related matter. Meta coverage to measure inter-phase delays may be
useful and is discussed at the transaction level.

Sideband MConnect Toggle State

SConnect Toggle

SWait Toggle

Phase Group Coverage Types Details

Request phase Accept backpressure delay MCmd – SCmdAccept delay

Thread busy backpressure
delay

SThreadBusy backpressure delay
(per bit)

Datahs phase Accept backpressure delay MDataValid – SDataAccept delay

Thread busy backpressure
delay

SDataThreadBusy backpressure
delay (per bit)

Response phase Accept backpressure delay SResp – MRespAccept delay

Thread busy backpressure
delay

MThreadBusy backpressure delay
(per bit)

Phase Groups Coverage Type

Signal Group Signal Req Datahs Resp
Level 1
Baseline

Level 2

448 Open Core Protocol Specification

OCP-IP Confidential

20.3 Transaction Level

transTypes Concept
Before discussing coverage at the transaction level, clarification is required
concerning the process of getting from the signal level to the transaction level.
In essence, signals are combined into phases that are then combined into
transactions. The unique transaction types represented in this table are
referred to as transTypes. Table 88 below summarizes this process and is
based on the phases in a transfer described in Section 4.3.2.1 on page 42.

Table 88 transTypes

Notes to Table 88:

1. The table shows how phases are combined into SINGLE transfers, MRMD
bursts and SRMD bursts. SINGLE transfers can be de-generated from
either MRMD or SRMD bursts.

2. L stands for the MBlockLength (one in the case of a SINGLE transfer) and
H stands for MBlockHeight.

3. transTypes are controlled by the signals MBurstSingleReq, MCmd and
MBlockHeight(H), MBurstLength (L) and the parameters datahandshake
and writeresp_enable.

4. RDEX, RDL, and WRC commands only apply to SINGLE transfers.

MBurstSingleReq MCmd

Phases Enabling Condition

Req Datahs Resp Datahandshake Writeresp_enable

0
MRMD
SINGLE transfer

RD/RDEX/RDL H*L H*L

WR/BCST H*L 0 0

WR/BCST H*L H*L 0 1

WRNP/WRC H*L H*L 0 don’t care

WR/BCST H*L H*L 1 0

WR/BCST H*L H*L H*L 1 1

WRNP/WRC H*L H*L H*L 1 don’t care

1
SRMD
SINGLE transfer

RD 1 H*L

WR/BCST 1 H*L 1 0

WR/BCST 1 H*L 1 1 1

WRNP 1 H*L 1 1 don’t care

Functional Coverage 449

OCP-IP Confidential

5. RD, RDEX, and RDL are not controlled by the datahandshake and
writeresp_enable parameters.

6. WRNP and WRC are not controlled by the writeresp_enable parameter.

7. The possible transTypes are:

• SINGLE transfers RD, WR, BCST, WRNP, RDEX, RDL, and WRC

• MRMD bursts RD, WR, BCST, and WRNP

• SRMD bursts RD, WR, BCST, snf WRNP

The following example illustrates this.

If MBurstSingleReq supports values 0 and 1 and
If MCmd only supports RD,WR,WRNP,RDEX and
If datahandshake == 1 and writeresp_enable == 1
then the transTypes will be:
a) SINGLE transfers, RD/WR/WRNP/RDEX
b) MRMD bursts, RD/WR/WRNP
c) SRMD bursts, RD/WR/WRNP

Category Concept
A category groups one or more OCP signals and serves as a building block for
cross coverage. A category also represents a higher level view of the OCP
protocol, allowing intelligent crosses to be made of one or more categories.
Table 89 lists and describes the proposed categories:

Table 89 Categories

Notes to Table 89:

1. The transBurstProps category may be split into multiple categories
enabling a higher granularity for cross coverage.

2. The flowTagTypes category combines the TagInOrder and TagID signals.
The tag type is encoded as follows:

Name Description

transTypes Category containing the transaction types based on Table 88

transTargets Category containing the transaction targets (MAddr /
MAddrSpace)

transResults Category containing the transaction results (SResp)

transBurstProps Category containing the burst properties (AtomicLength /
MBurstPrecise / MBurstSeq)

transByteens Category containing the transaction byte enables (MByteEn /
MDataByteEn)

flowThreads Category containing the flows as function of the ThreadID

flowTagTypes Category containing the flows as function of the TagInOrder / TagID

450 Open Core Protocol Specification

OCP-IP Confidential

• If TagInOrder, then tag type == tag-in-order (1 enumerated value)

• If not, then tag type == the TagID (multiple enumerated values)

If the TagID range is too large, sub-ranges should be defined. As such, the
tag type will have 1 + x enumerated values.

20.4 Mapping Signals into Categories
Table 90 shows the OCP signals (non-sideband) mapped into the categories
described in the previous section. Only signals that are not optional in the
level 2 column of Table 86, and are not MReqLast, MDataLast, or SRespLast,
are mapped.

Table 90 Signal Mapping into Categories

Signal

Categories

tran
sT

yp
es

tran
sT

argets

tran
sR

esu
lts

tran
sB

u
rstP

rop
s

tran
sB

yteen
s

F
low

 T
h

read
s

flow
T

agT
yp

es

MAddr X

MAddrSpace X

MAtomicLength X

MBlockHeight X

MBurstLength X

MBurstPrecise X

MBurstSeq X

MBurstSingleReq X

MByteEn X

MCmd X

MDataByteEn X

MDataTagID X

MDataThreadID X

MTagID X

MTagInOrder X

MThreadID X

SResp X

Functional Coverage 451

OCP-IP Confidential

20.4.1 Cross Coverage of One Category
Cross coverage can be applied to just one category. Since this kind of cross
coverage only makes sense if a category contains more then one signal, the
transResults and transByteens categories are excluded from this type of cross
coverage.

Cross coverage of one category can be useful in measuring what kind of
transTypes flowed through a design regardless of the signals contained in
other categories (for example, the transResults). A more useful coverage result
from applying crosses among several categories. Cross coverage of one
category is considered optional while cross coverage on multiple categories is
considered mandatory.

20.4.2 Cross Coverage on Multiple Categories
Cross coverage can also be applied to combinations of categories. Theoret-
ically, many crosses are possible (128 in total), but only some will make sense
for a specific OCP interface configuration and design architecture.

The crosses between the transTypes category and other categories are
considered mandatory and establish a solid base for cross coverage at the
transaction level. Table 91 shows some of the mandatory crosses that form a
sub-set of the theoretical possibilities. It is up to the user to declare additional
crosses that exclude the transTypes category, but are important for the
system under test. Such crosses are considered optional.

STagID X

STagInOrder X

SThreadID X

Signal

Categories

tran
sT

yp
es

tran
sT

argets

tran
sR

esu
lts

tran
sB

urstP
rop

s

tran
sB

yteen
s

F
low

 T
h

read
s

flow
T

agT
yp

es

452 Open Core Protocol Specification

OCP-IP Confidential

Table 91 Mandatory Crosses of Multiple Categories (Including transType)

20.5 Meta Coverage
Table 92 outlines possibilities for the transaction level meta coverage. Three
meta coverage types are identified: accept backpressure delays relative to the
position in a transaction, threadbusy backpressure delays relative to the
position in a transaction and several inter-phase delays. Other interesting
meta coverage types could be identified.

Table 92 Transaction Level Meta Coverage Examples

20.6 Sideband Signals Coverage
Toggle coverage

Toggle coverage must be applied to each individual bit of the sideband
signals to establish a solid coverage baseline.

Categories

tran
sT

yp
es

tran
sT

argets

tran
sR

esu
lts

tran
sB

urstP
rop

s

tran
sB

yteen
s

F
low

 T
h

read
s

flow
T

agT
yp

es

Cross Description

X X Cross all transaction types with all targets

X X Cross all transaction types for all threads

X X Cross all transaction types with all transaction
results

X X X Cross all transaction types for all bursts with all
byte enable patterns

X X X Cross all transaction types for all bursts with the
transaction results

Meta Coverage Types Coverage Details

Inter-phase delays req to req / datahs to datahs / resp to resp delays

req to datahs / req to resp / datahs to resp delays

First req accepted delay / last req accepted delay
for MRMD bursts

Accept backpressure delays
relative to the position in the
transaction

Measure when accept backpressure occurs in a
transaction

Threadbusy backpressure
delays relative to the position in
the transaction

Measure when threadbusy backpressure occurs in
a transaction

Functional Coverage 453

OCP-IP Confidential

State coverage
Sideband signals that consist of multiple bits can have state coverage
similar to the dataflow signals.

Meta coverage
Meta coverage can be added for the control and status signals. Some
examples of meta coverage that might be added for the control signals
handshake are:

• The delay between two ControlWr signal assertions.

• The length of the ControlBusy signal assertion.

• The ControlBusy assertion relative to the previous ControlWr
assertion.

Some examples of meta coverage that might be added for the status
signals handshake are:

• The delay between two StatusRd signal assertions.

• The length of the StatusBusy signal assertion.

20.7 Naming Conventions
This section describes he naming conventions for functional coverage.

Signal Level (Dataflow Signals)
Naming template:

signal_<coverage type>_<signal name | meta name>_<bin>

In which:

<coverage type>: toggle
state
meta

<signal name>: OCP signal
<meta name>: SCmdAcceptDelay

SDataAcceptDelay
MRespAcceptDelay
SThreadBusyDelay
SDataThreadBusyDelay
MThreadBusyDelay

<bin>: if enumerated types are defined in OCP use them
for example: SResp in [ERR,DVA,FAIL,IDLE]
else be free to choose a clear name

Examples:

signal_toggle_MAddr_bit0_0to1
signal_state_MByteEn_allOnes
signal_meta_SThreadBusyDelay_2

454 Open Core Protocol Specification

OCP-IP Confidential

Transaction Level (Dataflow Signals)
Naming template:

trans_<coverage type>_<cross name | meta name>[_<bin>]

In which:

<coverage type>:cross
meta

<cross name>:for cross coverage of 1 category:
transTypes
transTargets
transBurstProps
flowThreads
flowTagTypes

for cross coverage of multiple categories:
trans_<list of …>_flow_<list of …>
TypesThreads
ResultsTagTypes
Targets
BurstProps
Byteens

<meta name>:ScmdAcceptDelay
SDataAcceptDelay
MRespAcceptDelay
SThreadBusyDelay
SDataThreadBusyDelay
MThreadBusyDelay
ReqReqPhaseDelay
ReqRespPhaseDelay

…
[<bin>]: The bin naming is optional for cross coverage.

In most cases the bins will automatically be chosen by
the verification tool itself. However if the cross includes
signals which have specific OCP enumerated values defined
(as DVA for SResp), it’s advisable to use them.

Examples:

trans_cross_transTypes
trans_cross_trans_TypesResults
trans_cross_flow_ThreadsTagTypes
trans_cross_trans_TypesResults_flow_Threads
trans_meta_ReqReqPhaseDelay_4

Sideband Signals
Naming template:

sideband_<coverage type>_<signal name | meta name>_<bin>

Functional Coverage 455

OCP-IP Confidential

In which:

<coverage type>:toggle
state
meta

<signal name>:OCP signal
<meta name>:ControlWrControlWrDelay

ControlBusyDuration
ControlWrControlBusyDelay
StatusRdStatusRdDelay
StatusRdDuration

<bin>: be free to choose a clear name

Examples:

sideband_toggle_ControlWr
sideband_state_Control_3
sideband_meta_StatusRdDuration_5

456 Open Core Protocol Specification

OCP-IP Confidential

OCP-IP Confidential

A OCP Trace File

The OCP trace file consists of data recorded by an SVA monitor during
simulation. The name of the file generated by the OCP monitor is
<ocpName>.ocp. Because of the variable configuration of OCP connections,
SVA trace files may appear to have different formats. However, two OCP
connections with identical configurations generate trace files with identical
formats. The SVA trace file consists of header and trace data sections, as
described below.

A.1 Header
The header section defines the parameters of the OCP connection from which
the trace data originated. Example 2 shows a sample OCP trace file.

Example 2 Sample OCP Trace File

ocpversion=ocp2.2-1.6
name=ocp20_ocpmon2
mreset=1
addr_wdth=32
data_wdth=64
##

10.0 0 0 xxxxxxxx x xxxxxxxxxxxxxxxx 0 xxxxxxxxxxxxxxxx
110.0 1 0 xxxxxxxx x xxxxxxxxxxxxxxxx 0 xxxxxxxxxxxxxxxx
120.0
210.0 1 1 00000000 1 0000000087654321 0 xxxxxxxxxxxxxxxx
220.0
230.0
370.0 1 0 xxxxxxxx x xxxxxxxxxxxxxxxx 1 0000000087654321
380.0 1 0 xxxxxxxx x xxxxxxxxxxxxxxxx 0 xxxxxxxxxxxxxxxx

...

458 Open Core Protocol Specification

OCP-IP Confidential

Parameters in the header section show the parameter name and the assigned
value. The ocpversion is derived from the install tree and provides the OCPIP
revision number and release number. For example, ocpversion=ocp2.2-
1.6.

The name parameter identifies the OCP monitor from which the trace data was
recorded. For example, name=ocp20_ocpmon2 indicates the OCP monitor
name was ocp20_ocpmon2.

If a parameter is not specified in the header, the default value listed in
Table 29 on page 68 is used. If signals are enabled, width parameters are
required for the corresponding signals, but width parameters do not have
explicit defaults. Typically, trace files generated by monitors specify all
parameter values.

Since mreset and sreset do not have defaults, values must be specified for
each.

The header of the trace file always ends with a double pound sign (##).
Optional comment lines preceded by a pound sign may appear following the
header and contain information about the program that generated the file.

A.2 Trace Data
Each line of trace data represents the values of the OCP signals for a cycle of
data. The trace data is organized so that data remains in fixed fields with a
blank space between them. The first field is the simulation time during which
the sample was recorded. Some lines of data only have an entry for the
simulation time. This means that the OCP signals have not changed value in
that cycle. The first line of trace data must have more data than just the entry
for the simulation time; that is, there is no default signal state. If the
simulation time is not the only field that has an entry then all fields must have
an entry. Each entry must have enough data to fill all the bits of the signal for
that entry. If there is more data than there are bits, the extra most significant
bits will be truncated.

Each line in the data section maps to a snapshot of the OCP connection at the
rising edge of the simulation clock.

Table 93 describes each of the fields that exist in the trace data. Following the
field descriptions down this table is equivalent to following trace data columns
from left to right. The table indicates the required condition for the field to
appear in the trace file (specifically, if the required OCP parameter condition
is not met, the field will not be present in the trace data.). The table also
indicates how many bits of data are required by the field and the format of the
field.

For the hexadecimal format, it is possible to have value with Xs and Zs
intermixed with 0s and 1s. Such a value would have brackets, {}, around 4
digits to represent a binary encoding for a byte. For example, a 12-bit binary
number of 10001X011010 would be represented as 8{1X01}A. When all four
bits of a byte are X, a simple X represents the entire byte. When all four bits
of a byte are Z, a simple Z represents the entire byte.

459

OCP-IP Confidential

Table 93 OCP Trace File, Line Field Decoding

Field Parameter Condition Field Width in Bits Format

Simulation Time None (not applicable) floating point

MReset_n mreset parameter is 1 Always 1 hexadecimal

SReset_n sreset parameter is Always 1 hexadecimal

MCmd None Always 3 hexadecimal

MAddr addr is 1 addr_wdth hexadecimal

MAddrSpace addrspace is 1 addrspace_wdth hexadecimal

MByteEn byteen data_wdth / 8 hexadecimal

MConnID connid is 1 connid_wdth hexadecimal

MReqInfo reqinfo is 1 reqinfo_wdth hexadecimal

MThreadID threads > 1 threadid_wdth1 hexadecimal

MTagID tags > 0 tagid_wdth2 hexadecimal

MTagInOrder taginorder is 1 Always 1 hexadecimal

MAtomicLength atomiclength is 1 atomiclength_wdth hexadecimal

MBurstLength burstlength is 1 burstlength_wdth hexadecimal

MBlockHeight3 blockheight is 1 blockheight_wdth hexadecimal

MBlockStride3 blockstride is 1 blockstride_wdth hexadecimal

MBurstPrecise burstprecise is 1 Always 1 hexadecimal

MBurstSeq burstseq is 1 Always 3 hexadecimal

MBurstSingleReq burstsinglereq is 1 Always 1 hexadecimal

MReqLast reqlast is 1 Always 1 hexadecimal

MReqRowLast 3 reqrowlast is 1 Always 1 hexadecimal

SCmdAccept cmdaccept is 1 Always 1 hexadecimal

SThreadBusy sthreadbusy is 1 threads hexadecimal

MData mdata is 1 data_wdth hexadecimal

MDataInfo mdatainfo is 1 mdatainfo_wdth hexadecimal

MDataValid datahandshake is 1 Always 1 hexadecimal

MDataByteEn mdatabyteen is 1 data_wdth / 8 hexadecimal

MDataThreadID threads > 1 and
datahandshake is 1

threadid_wdth1 hexadecimal

MDataTagID tags > 1 and
datahandshake is 1

tagid_wdth2 hexadecimal

MDataLast datalast is 1 Always 1 hexadecimal

MDataRowLast 3 datarowlast is 1 Always 1 hexadecimal

460 Open Core Protocol Specification

OCP-IP Confidential

SDataAccept dataaccept is 1 Always 1 hexadecimal

SDataThreadBusy sdatathreadbusy is 1 threads hexadecimal

SResp resp is 1 Always 2 hexadecimal

SRespInfo respinfo is 1 respinfo_wdth hexadecimal

SThreadID threads > 1 and resp is 1 threadid_wdth 1 hexadecimal

STagID tags > 1 and resp is 1 tagid_wdth 2 hexadecimal

SData sdata is 1 data_wdth hexadecimal

SDataInfo sdatainfo is 1 sdatainfo_wdth hexadecimal

SRespLast resplast is 1 Always 1 hexadecimal

SRespRowLast 3 resprowlast is 1 Always 1 hexadecimal

MRespAccept respaccept is 1 Always 1 hexadecimal

MThreadBusy mthreadbusy is 1 threads hexadecimal

MFlag mflag is 1 mflag_wdth binary

MError merror is 1 Always 1 binary

SFlag sflag is 1 Always 1 binary

SError serror is 1 Always 1 binary

SInterrupt interrupt is 1 Always 1 binary

Control control is 1 control_wdth hexadecimal

ControlWr controlwr is 1 Always 1 binary

ControlBusy controlbusy is 1 Always 1 binary

Status status is 1 status_wdth hexadecimal

StatusRd statusrd is 1 Always 1 binary

StatusBusy statusbusy is 1 Always 1 binary

1. The threadid_wdth parameter is internal and calculated as follows:
threadid_wdth = max(1, log2(threads))

2. The tagid_wdth parameter is internally derived, and is calculated as follows:
tagid_wdth = max(1, log2(tags))

3. No signals are associated with *threadbusy_pipelined parameters. The existing Thread Signals are used
in that case.

Field Parameter Condition Field Width in Bits Format

Index

A
access mode information 18

addr parameter 69

addr_base statement 137

addr_size statement 137

addr_wdth parameter 14, 69

address
conflict 49
match 49
region statement 137
sequence

BLCK 228
burst 53, 227
DFLT1 227
DFLT2 228
INCR 227
STRM 227
UNKN 229
user defined 227
WRAP 228
XOR 228

space 9
coherent 77
non-coherent 77

transfer 17

addrspace parameter 17, 69

addrspace_wdth 17

addrspace_wdth parameter 69

arbitration, shared resource 8

area savings 216, 220

asynchronous
reset assertion 46, 246

atomicity requirements 55

atomiclength parameter 20, 69

atomiclength_wdth parameter 20, 69

ATPG vectors 253

B
basic OCP signals 13

BCST 15

bit
naming 136

BLCK address sequence 228

block
last

request 22
response 22
transfer 21

block data flow profile 339

blockheight parameter 20

blockheight_wdth parameter 20

blockstride parameter 20

blockstride_wdth parameter 20

bridging profiles 341

Broadcast command
description 8
enabling 59
transfer effects 50

broadcast_enable parameter 68

bundle
characteristics 134
defining

core 133
non-OCP interface 123

name 133
nets 134
port mapping 133
signals 125
statement 125

bundle statement 125

burst
address sequence 21, 53
address sequences 227
alignment 60
burst_aligned parameter 60
command restrictions 52
constant fields 55
definition 52
exclusive OR 53
extension 226
framing 170
imprecise

definition 52
MBurstLength 55
read 172
uses 227

INCR 60
incrementing precise read 175
interleaving 62
length 20
lengths 227
null cycles 177
packets 52
phases

datahandshake 56
precise

definition 52
MBustLength 54
read 170

precise write 165

462 Open Core Protocol Specification

request, last 22
response, last 22
sequences 59
signals 19
single request 21
single request/multiple data

conditions 229
definition 52
read 178
write 181

state machine 222
support

reporting instructions 350, 351
signals 19

tagged 187
transfers

atomic unit 20
total 20

types 52
wrapping 174
write

last 21

burst_aligned parameter 60, 68

burstlength parameter 20, 69

burstlength_wdth parameter 20, 69

burstprecise parameter 21, 69

bursts
precise

uses 227

burstseq 68

burstseq parameter 21, 69

burstseq_dflt1_enable parameter 68

burstseq_dflt2_enable parameter 68

burstseq_incr_enable parameter 68

burstseq_strm_enable parameter 68

burstseq_unkn_enable parameter 68

burstseq_wrap_enable parameter 68

burstseq_xor_enable parameter 68

burstsinglereq parameter 21, 69

bus
independence 8
of signals 125
wrapper interface module 2

byte enable
data width conversion 54
field 17
MByteEn signal 17
pattern 56
supported patterns 60
write 17

byteen parameter 17, 69

C
c2qtime

port constraints 149
timing 142

c2qtimemin 149

cache coherence
definition 74

cache line 75

cacheable storage attributes 18

capacitance
wireload 151
wireloaddelay 151

capacitive load 143

cell library name 143

chipparam variable 147

Clk signal
function 14
summary 31

ClkByp signal
function 29
summary 34
test extensions 253
timing 49

clkctrl_enable parameter 30, 71

clock
bypass signal 30
control test extensions 253
divided

enabling 214
timing 214

gated test 30
non-OCP 148
portname 149
signal 14
test 30

clockName 148

clockname field 149

clockperiod variable 146

cmdaccept parameter 15, 69

coh_enable 95

cohcmd_enable 95

coherence
intervention port 77
protocol

four hop 76
three hop 76

coherence-aware masters 77

coherent
master 77
slave 78

coherent address space 77

coherent commands 75

Index 463

cohfwdid_enable 96

cohfwdid_wdth 96

cohnc_enable 95

cohstate_enable 95

cohwrinv_enable 95

combinational
dependencies 39, 317, 318
Mealy state machine 220
paths 145, 154
slave state machine 221

command
encoding 15
limiting 15
request types 15

commands
basic 8
extensions 8
required 64

concurrency 233

configurable interfaces 135

ConnectCap
function 27
summary 33

connection
description 239
identifier

definition 239
field 24
support 350, 351
transfer handling 58
uses 10

transfers 58

connection parameter 26

connid parameter 24, 69

connid_wdth parameter 24, 69

control
event signal 28
field 28
information

specifying 28
timing 48

parameter 28, 71
timing 48

Control signal
function 25
summary 33
timing 48

control_wdth parameter 28, 71

controlbusy parameter 28, 71

ControlBusy signal
function 25
summary 33
timing 48

controlwr parameter 28, 71

ControlWr signal 48
function 25
summary 33

core
area 148, 349
code 131
control

busy 28
event 28
information 28

documentation 349
documentation template 354
endianness 62
frequency range 349
ID 349
interconnecting 144
interface

defining 133
endianness 52
timing parameters 142

interoperability 64
name 349
power consumption 349
process dependent 349
revision 131
RTL configuration file 129
status

busy 29
event 29
information 28

synthesis configuration file
defining 141

tie-off constants 67
timing 141, 315

core_id statement 130

core_name 129

core_stmt 129

D
data byte parity 18

data width
conversion 54
endianness 244

data_wdth 31

data_wdth parameter 14, 15, 16, 17, 20, 31, 34, 69

dataaccept parameter 16, 69

dataflow signals
definitions 13
naming 13
timing 41

datahandshake
extension 180
intra-phase output 237
parameter 15

464 Open Core Protocol Specification

phase
active 41
order 43

sequence 217
signal group 38

datahandshake parameter 63, 68

datalast parameter 21, 69

datarowlast parameter 69

ddr_space statement 137

debug and test interface 30, 253

DFLT1 burst sequence 53, 60

DFLT2 burst sequence 53, 60

direction statement 125

divided clock 214

driver strength 143

drivingcellpin parameter
timing requirements 143
values 149

DVA 16

DVA response 16, 49

E
EnableClk

function 14
summary 14, 31
use with divided clocks 214

enableclk parameter 214

endian parameter 62, 68, 244

endianness
attributes 62
bit ordering 244
concepts 51
data width issues 244
definitions 62
dynamic interconnect 245

ERR response 16

error
correction code 18
master 27
report mechanisms 11
signal 25
slave 27

exclusive OR bursts 53

extended OCP signals 16, 223

F
FAIL response 16, 49

false path constraints 145, 154

falsepath parameter 145, 154

fanout
maximum 150

FIFO
full 19

flags
core-specific 25
master 27
slave 28

flow-control 61, 350, 351

force_aligned parameter 60, 68

H
H-bus profile 341

high-frequency design 217

hold time
checking 142

holdtime
description 150
timing 142

I
icon statement 130

implementation restrictions 350, 351

imprecise burst 55

INCR burst sequence 53, 60

inout ports 151, 152

input
load 143
port syntax 151
signal timing 142

instance
size 148

interface
characteristics 350
clock control 30
compatibility 64
configurable 135
configuration file 123
core RTL description 129
debug and test 30
endianness 52
location 136
multiple 133
parameters 135
scan 29
statement 133
type statement 134
types 125

interface_types statement 125

interfaceparam variable 147

internal
scan techniques 253

interoperability rules 64

interrupt

Index 465

parameter 28
processing 10
signal 25
slave 28

interrupt parameter 71

intervention port 77

intport_exists 95

intport_writedata 95

J
jtag_enable parameter 30, 71

jtagtrst_enable 30

jtagtrst_enable parameter 71

L
latency

sensitive master 221

lazy synchronization
command sequences 242
mechanism 241

legacy commands 75

level0 timing 315, 316

level1 timing 315, 316

level2 timing 315, 316

loadcellpin
description 150
timing 143

loads parameter
description 150
timing 143

location statement 136

locked synchronization 241

longest path 149

M
MAddr

effect of data_wdth on 14
function 14
setting the width of 14
summary 31

MAddrSpace signal
function 16
summary 31

main port 77
MCmd 94
MCohCmd signal 94
SCohState 94
SResp 94

main port parameter
coh_enable 95
cohcmd_enable 95

cohfwdid_enable 96
cohnc_enable 95
cohstate_enable 95
cohwrinv_enable 95
intport_exists 95
intport_writedata 95
mcohid_enable 95
mcohid_wdth 96
rdlwrc_enable 95
read_enable 95
readex_enable 95
scohid_enable 96
scohid_wdth 96
upg_enable 95
write_enable 95
writenonpost_enable 95

master
coherence-aware 77, 78
coherent 77
error signal 27
flags 27
interface documentation 350
reset 27, 46
response accept 15
signal compatibility 64
slave interaction 235
thread busy 24

MAtomicLength signal
atomicity 55
function 19
summary 32

maxdelay parameter
description 154
timing 145

maxfanout variable 150

MBurstLength signal
burst lengths 54
function 19
summary 32
values 227

MBurstPrecise signal
function 19
summary 32

MBurstSeq signal
address sequences 227
encoding 21
function 19
summary 32

MBurstSingleReq signal
conditions 55
function 20
summary 32

MBurstSinqleReq signal
transfer phases 42

MByteEn signal
function 16

466 Open Core Protocol Specification

summary 31

MCmd 94, 99

MCmd signal
function 14
summary 31

MCohCmd 94, 99

mcohid_enable 95

mcohid_wdth 96

MConnect
function 26
summary 33

MConnID signal
function 23
summary 32

mdata parameter 15, 69

MData signal
data valid 15
description 14
request phase 217
summary 31

mdatabyteen parameter 17, 69

MDataByteEn signal
function 16
phases 41
summary 31

mdatainfo parameter 18, 69

MDataInfo signal
function 16
summary 31

mdatainfo_wdth parameter 18, 70

mdatainfobyte_wdth parameter 18, 70

MDataLast signal
function 20
phases 56
summary 32

MDataTagID signal
flow 57
function 22
summary 32

MDataThreadID signal
datahandshake 234
function 23
summary 32

MDataValid signal
datahandshake 217
function 14
summary 31
timing 217

MError 27

merror parameter 27, 71

MError signal
summary 33

Message 93
Non-Posted 93

mflag parameter 27, 71

MFlag signal
function 25
summary 33

mflag_wdth parameter 27, 71

MFlags 27

MReqInfo signal
function 17
summary 31

MReqLast signal
function 20
phases 56
summary 32

mreset parameter 27, 71

MReset_n signal
function 25
required cycles 46
summary 33
timing 46

MRespAccept signal
definition 14
response phase 216
response phase output 236
saving area 216
summary 31

MSecure subnet 245

MTagID signal
flow 57
function 22
summary 32

MTagInOrder signal 233
function 22
summary 32

mthreadbusy parameter 24, 70

MThreadBusy signal
definition 23
information 58
intra-phase output 236
semantics 44
summary 32
timing cycle 44

mthreadbusy_exact parameter 44, 61, 68

mthreadbusy_pipelined parameter 44, 70

MThreadID signal
function 23
summary 32

N
nets

bit naming 136
characterizing 125

Index 467

redirection 134
statement 125

non-coherent address space 77

Non-Posted Message 93

NULL response 16, 177

O
out-of-band information 27

output
port syntax 152
signal timing 142

P
packets 52

param variable 147

parameter
blockstride_wdth 20
mdatainfo_wdth 18
mdatainfobyte_wdth 18

parameter summary 31

partial word transfer 50

path
longest 149
shortest 149

phase
interoperability 66
intra-phase 235
options 63
ordering

between transfers 43
request 215
within transfer 43

protocol 40
timing 215
transfer 42

physical design parameters 143

pin
level timing 142

pipeline
decoupling request phase 226
request/response protocol 216
support 350
transfer 222
without MRespAccept 216
write data, slave 16

pipelined access 339

point-to-point signals 8

port
constraint variables 149
delay 154
inout 151, 152
input, syntax 151

mapping 133
module names 135
output, syntax 152
renaming 134
statement 134
timing constraints 141

Posted Message 93

posted write
model 42
timing diagram 163

power
consumption estimates 349
idling cores 214

precise burst 54

precise bursts 227

prefix command 135

profiles
benefits 319
block data flow 339
bridging 341
H-bus 341
register access 337
sequential undefined length data flow 335
types 334
X-bus packet read 345
X-bus packet write 343

programmable register interfaces 337

proprietary statement 137

protocol
interoperability 64
phases

mapping 41
order 43
rules 41

Q
Query 94

R
RDEX 15

rdlwrc_enable 95

rdlwrc_enable parameter 68

read
burst wrapping 174
data field 16
imprecise burst 172
incrementing precise burst 175
information 18
non-pipelined timing diagram 167
optimizing access 216
out-of-order completion 189

tagged 185, 187
precise burst 170

468 Open Core Protocol Specification

single request/multiple data 178
tagged 185, 187
threaded 189
timing diagram 159

Read command
enabling 59
transfer effects 49

read_enable 95

read_enable parameter 68

ReadEx command
burst restrictions 52
enabling 59
transfer effects 49

readex_enable 95

readex_enable parameter 68

ReadLinked command 242
burst restrictions 52
enabling 59
encoding 15
mnemonic 15
transfer effects 49

reference_port statement 134

register
access profile 337

reqdata_together parameter 63, 68, 181, 229

reqinfo parameter 18, 70

reqinfo_wdth parameter 18, 70

reqlast parameter 22, 70

reqrowlast parameter 22, 70

request
delays 162
flow-control mechanism 161
handshake 161
information 18
interleaving 55
last 56
last in a burst 22
order 23
phase

intra-phase 235
order 43
outputs 215, 235
signal group 41
timing 215
transfer ordering 43
worst-case combinational path 235

pipelined 168
signals

active 41
group 38

tag identifier 23
thread identifier 24

reset
asynchronous

completed transactions 46
asynchronous assertion 246
conditions 246
domains 247
dual signals 247
interface compatibility 247
master 27
phases 46
power-on 246
signal 25
slave 28
special requirements 350
state 46
timing 195

resistance
wireload 151
wireloaddelay 151

resp parameter 16, 70

respaccept parameter 15, 70

respinfo parameter 19, 70

respinfo_wdth parameter 19, 70

resplast parameter 22, 70

response
accept 15
accept extension 169
delays 162
encoding 16
field 16
information 19
last in a burst 22
mnemonics 16
null cycle 177
order 23
phase

active 41
intra-phase 236
order 43
slave 236
timing 216

pipelined 168
required types 64
signal group 38
tag identifier 23
thread identifier 24

resprowlast parameter 22, 70

revision_code 131

rootclockperiod variable 147

RTL
proprietary extenstions 137

S
scan

clock 253
control 253
data

Index 469

in 29
out 30

interface signals 29
mode control 29
Scanctrl signal 29
Scanin signal 29
Scanout signal 30
test environments 253
test mode 253

Scanctrl signal
function 29
summary 34
uses 253

scanctrl_wdth parameter 29, 71

Scanin signal
function 29
summary 34
timing 49

Scanout signal
function 29
summary 34
timing 49

scanport parameter 71

scanport_wdth parameter 29, 71

SCmdAccept signal
definition 14
request phase 215
request phase output 235
summary 31

scohid_enable 96

scohid_wdth 96

SCohState 94

SConnect
function 26
summary 33

sdata parameter 16, 70

SData signal
function 14
summary 31

SDataAccept signal
datahandshake 217
function 14
summary 31

sdatainfo parameter 18, 70

SDataInfo signal
function 17
summary 31

sdatainfo_wdth parameter 18, 70

sdatainfobyte_wdth parameter 70

sdatathreadbusy parameter 24, 70

SDataThreadBusy signal
function 23
semantics 44

summary 32
timing cycle 44

SDataThreadbusy signal
information 58

sdatathreadbusy_exact parameter 44, 68

sdatathreadbusy_pipelined parameter 44, 70

security
level 245, 333
parameters 245

semaphores 241

sequential undefined length data flow profile 335

serror parameter 27, 71

SError signal
function 25
summary 33

setuptime
description 150
timing 142

sflag parameter 28, 71

SFlag signal
function 25
summary 33

sflag_wdth parameter 28, 71

shared resource arbitration 8

shortest path 149

sideband signals
definitions 25
timing 46, 246

signal
attribute list 135
basic OCP 13
configuration 31
dataflow 13
direction 35
driver strength 143
extensions

simple 16
thread 23

group
division 38
mapping 41

interface interoperability 66
ordering 235
requirements 64
sideband 25
test 29
tie-off 67, 135

rules 66
tie-off values 31
timing

input 142
output 142
requirements 40
restrictions 235

470 Open Core Protocol Specification

ungrouped 44
width 136
width mismatch 66

SInterrupt signal
function 25
summary 33

slave
coherent 78
combinational paths 236
error 27
flag

description 28
interface documentation 350
interrupt 28
optimizing 233
pipelined write data 16
reset 28, 46
response field 16
response phase 236
signal compatibility 64
successful transfer 49
thread busy 24
transfer accept 15
write

accept 16
thread busy 24

sreset parameter 28, 71

SReset_n signal
function 25
required cycles 46
summary 33
timing 46

SResp 94

SResp signal
function 14
summary 31

SRespInfo signal
function 17
summary 31

SRespLast signal
function 20
phases 56
summary 32

STagID signal
flow 57
function 22
summary 32

STagInOrder signal 233
function 22
summary 32

state machine
combinational

master 220
Mealy 220
slave 221

diagrams 215

multi-threaded behavior 234
sequential master 217
sequential slave 219

states 76

status
busy 29
core 28
event 29
information

response 19
signals 28

parameter 28
timing 48

status parameter 71

Status signal
function 25
summary 33

status_wdth parameter 28, 71

statusbusy parameter 29, 71

StatusBusy signal
function 25
summary 33
timing 48

statusrd parameter 29, 71

StatusRd signal
function 25
summary 33
timing 48

sthreadbusy parameter 25, 70

SThreadBusy signal
function 23
information 58
semantics 44
slave request phase 235
summary 32
timing cycle 44

sthreadbusy_exact parameter 44, 61, 68, 191

sthreadbusy_pipelined parameter 44, 70

SThreadID signal
function 23
summary 32

STRM burst sequence 53, 60

subnet statement 136

SWait
function 26

synchronization
deadlock 243
lazy 241
locked 241

synchronous
handshaking signals 3
interface 8

system

Index 471

initiator 2
target 2

T
tag

burst handling 187
burst interleaving 62
definition 232
flow 57
identifier

binary-encoded value 23
interleaving 57
ordering 57
read handling 185
value 232

tag_interleave_size parameter 62

taginorder parameter 23, 70

tags parameter 22, 70

TCK signal
function 29
summary 34

TDI signal
function 29
summary 34

TDO signal
function 29
summary 34

test
clock 30
clock control extensions 253
data

in 30
out 30

logic reset 30
mode 30
signals

definitions 29
timing 46, 49

TestClk signal
function 29
summary 34
timing 49

thread
arbitration 192
blocking 191
busy

hint 191
master 24
signals 58
slave 24

busy semantics 234
busy signals 234
dependency 234
description 233
end-to-end identification 58

identifier
binary-encoded value 24
definition 239
request 24
response 24
uses 58

mapping 58
multiple

concurrent activity 58
non-blocking 61

multi-threaded interface 237
ordering 10
signal extensions 23
state machine implementation 234
transfer order 233
valid bits 238

threads parameter 24, 70

throughput
documenting 350
maximum 216
peak data 221

timing
categories

definitions 315
level0 316
level1 316
level2 316

combinational path 40
combinational paths 145
constraints

ports 141
core 141

connecting 144
interface parameters 142

dataflow signals 41
diagrams 159
max delay 145
parameters 149
pin-level 142
pins 143
sideband signals 46
signals 40, 235
test signals 46

TMS signal
function 29
summary 34

transfer
accept 15
address 14
address region 17
assigning 58
burst

linking 52
byte enable 17
command 15
concurrent activity 58
connection ID 24

data widths 9
effects of commands 49
efficiency 9, 54
endianness 52
order 10, 43
out-of-order 58
phases 42
pipelining 9
successful 49
type 15

TRST_N signal
function 29
summary 34

type statement 126

U
UNKN burst sequence 53, 60

upg_enable 95

V
vendor code 130

version 148
statement 125, 130

VHDL
ports 125
signals 125

vhdl_type command 125

Virtual Socket Interface Alliance 1

visible 77

W
width

data 9
interoperability 66
mismatch 66

wireloadcapacitance
description 151
See also wireloaddelay
timing 143

wireloaddelay
description 151
timing 143

wireloadresistance
description 151
timing 143

word
corresponding bytes 17
packing 54
padding 54
partial 50
power-of-2 15
size 9, 15
stripping 54

transfer 9, 50

worstcasedelay 148

WRAP burst sequence 53, 60

wrapper interface modules 2

write
byte enables 17
data

burst 21
extra information 17
master to slave 15
slave accept 16
tag ID 23
thread ID 24
valid 15

nonpost
phases 42
timing diagram 164

non-posted
semantics 240

posted
phases 42
semantics 240

precise burst 165
response enabled 163
single request, multiple data 181
timing diagram 159

Write command
burst restrictions 52
enabling 59
transfer effects 49

write_enable 95

write_enable parameter 68

WriteConditional command 242
burst restrictions 52
enabling 59
encoding 15
mnemonic 15
transfer effects 50

WriteNonPost command
burst restrictions 52
enabling 59
encoding 15
mnemonic 15
semantics 8
transfer effects 49

writenonpost_enable 95

writenonpost_enable parameter 68, 240

writeresp_enable parameter 68, 240

X
X-bus packet

read profile 345
write profile 343

XOR address sequence 53

Index 473

XOR burst sequence 60

474 Open Core Protocol Specification

OCP-IP Administration
3116 Page Street
Redwood City, CA 94063
Ph: +1 (512) 551.3377
Fax: +1 (650) 365.4658
admin@ocpip.org
www.ocpip.org

www.ocpip.org

	Introduction
	Support
	Changes for Version 3.0
	Acknowledgments

	1 Overview
	1.1 OCP Characteristics
	1.2 Compliance

	Part I Specification
	2 Theory of Operation
	3 Signals and Encoding
	3.1 Dataflow Signals
	3.1.1 Basic Signals
	3.1.2 Simple Extensions
	3.1.3 Burst Extensions
	3.1.4 Tag Extensions
	3.1.5 Thread Extensions

	3.2 Sideband Signals
	3.2.1 Connection, Reset, Interrupt, Error, and Core-Specific Flag Signals
	3.2.2 Control and Status Signals

	3.3 Test Signals
	3.3.1 Scan Interface
	3.3.2 Clock Control Interface
	3.3.3 Debug and Test Interface

	3.4 Signal Configuration
	3.4.1 Signal Directions

	4 Protocol Semantics
	4.1 Signal Groups
	4.2 Combinational Dependencies
	4.3 Signal Timing and Protocol Phases
	4.3.1 OCP Clock
	4.3.2 Dataflow Signals
	4.3.3 Sideband and Test Signals

	4.4 Transfer Effects
	4.4.1 Partial Word Transfers
	4.4.2 Posting Semantics
	4.4.3 Transaction Completion, Transaction Commitment

	4.5 Endianness
	4.6 Burst Definition
	4.6.1 Burst Address Sequences
	4.6.2 Burst Length, Precise and Imprecise Bursts
	4.6.3 Constant Fields in Bursts
	4.6.4 Atomicity
	4.6.5 Single Request / Multiple Data Bursts (Packets)
	4.6.6 MReqLast, MDataLast, SRespLast
	4.6.7 MReqRowLast, MDataRowLast, SRespRowLast

	4.7 Tags
	4.7.1 Ordering Restrictions

	4.8 Threads and Connections
	4.9 OCP Configuration
	4.9.1 Protocol Options
	4.9.2 Phase Options
	4.9.3 Signal Options
	4.9.4 Minimum Implementation
	4.9.5 OCP Interface Interoperability
	4.9.6 Configuration Parameter Defaults

	5 OCP Coherence Extensions: Theory of Operation
	5.1 Cache Coherence
	5.2 Local View vs. System View
	5.3 Coherent System Transactions
	5.3.1 Cache Line and Cache States
	5.3.2 Three Hop and Four Hop Protocols

	5.4 Address Space
	5.5 Entities and Ports
	5.6 Commands
	5.7 Self Intervention and Serialization
	5.8 Interconnect or Bridge Agent
	5.9 Port Characteristics
	5.10 Master Models
	5.10.1 Coherent Master
	5.10.2 Coherence-Aware Master
	5.10.3 Legacy Master

	5.11 Slave Models
	5.11.1 Coherent Slave: Directory Based
	5.11.2 Coherent Slave: Snoop Based
	5.11.3 Legacy Slave

	5.12 Multi-threading and Tags
	5.13 Burst Support
	5.14 Memory Consistency
	5.15 Race Condition, Deadlock, Livelock, and Starvation
	5.16 Heterogeneous Coherence System

	6 OCP Coherence Extensions: Signals and Encodings
	6.1 Definitions
	6.1.1 New Transaction Types

	6.2 Main Port: Parameters, Signals, and Encodings
	6.2.1 Introduction
	6.2.2 Main Port Parameters
	6.2.3 Signals and Encodings
	6.2.4 Transfer Phases
	6.2.5 Transfer Effects

	6.3 Intervention Port: Parameters, Signals, and Encodings
	6.3.1 Introduction
	6.3.2 Port Parameters
	6.3.3 Signals and Encodings
	6.3.4 Signal Groups
	6.3.5 Transfer Phases
	6.3.6 Phase Ordering within a Transfer
	6.3.7 Transfer Effects

	7 Interface Configuration File
	7.1 Lexical Grammar
	7.2 Syntax

	8 Core RTL Configuration File
	8.1 Syntax
	8.2 Components
	8.3 Sample RTL Configuration File

	9 Core Timing
	9.1 Timing Parameters
	9.1.1 Minimum Parameters
	9.1.2 Hold-time Parameters
	9.1.3 Technology Variables
	9.1.4 Connecting Two OCP Cores

	9.2 Core Synthesis Configuration File
	9.2.1 Syntax Conventions
	9.2.2 Version Section
	9.2.3 Clock Section
	9.2.4 Area Section
	9.2.5 Port Constraints Section
	9.2.6 Max Delay Constraints
	9.2.7 False Path Constraints
	9.2.8 Sample Core Synthesis Configuration File

	Part II Guidelines
	10 Timing Diagrams
	10.1 Simple Write and Read Transfer
	10.2 Request Handshake
	10.3 Request Handshake and Separate Response
	10.4 Write with Response
	10.5 Non-Posted Write
	10.6 Burst Write
	10.7 Non-Pipelined Read
	10.8 Pipelined Request and Response
	10.9 Response Accept
	10.10 Incrementing Precise Burst Read
	10.11 Incrementing Imprecise Burst Read
	10.12 Wrapping Burst Read
	10.13 Incrementing Burst Read with IDLE Request Cycle
	10.14 Incrementing Burst Read with NULL Response Cycle
	10.15 Single Request Burst Read
	10.16 Datahandshake Extension
	10.17 Burst Write with Combined Request and Data
	10.18 2-Dimensional Block Read
	10.19 Tagged Reads
	10.20 Tagged Bursts
	10.21 Threaded Read
	10.22 Threaded Read with Thread Busy
	10.23 Threaded Read with Thread Busy Exact
	10.24 Threaded Read with Pipelined Thread Busy
	10.25 Reset
	10.26 Reset with Clock Enable
	10.27 Basic Read with Clock Enable
	10.28 Slave Disconnect
	10.29 Connection Transitions with Slave Pacing

	11 OCP Coherence Extensions: Timing Diagrams
	12 Developers Guidelines
	12.1 Basic OCP
	12.1.1 Divided Clocks
	12.1.2 Signal Timing
	12.1.3 State Machine Examples
	12.1.4 OCP Subsets

	12.2 Simple OCP Extensions
	12.2.1 Byte Enables
	12.2.2 Multiple Address Spaces
	12.2.3 In-Band Information

	12.3 Burst Extensions
	12.3.1 OCP Burst Capabilities
	12.3.2 Compatibility with the OCP 1.0 Burst Model

	12.4 Tags
	12.5 Threads and Connections
	12.5.1 Threads
	12.5.2 Connections

	12.6 OCP Specific Features
	12.6.1 Write Semantics
	12.6.2 Lazy Synchronization
	12.6.3 OCP and Endianness
	12.6.4 Security

	12.7 Sideband Signals
	12.7.1 Reset Handling
	12.7.2 Connection Protocol

	12.8 Debug and Test Interface
	12.8.1 Scan Control
	12.8.2 Clock Control

	13 Developer’s Guidelines: OCP Coherent System Architecture Examples
	13.1 Snoop-Based Coherent Architecture
	13.2 Directory-Based Coherent System
	13.2.1 Legal Coherence Dependency

	13.3 OCP Coherence Models for Directory- Based Designs
	13.3.1 A Directory-Based OCP Coherent System
	13.3.2 Port Profiles
	13.3.3 Master Implementation Models
	13.3.4 Slave Implementation Models
	13.3.5 Directory-Based Interconnect System-Level Model
	13.3.6 Coherent and Coherent-Non-Cached Transaction Flows
	13.3.7 Three-Way Communication
	13.3.8 Handling Race Conditions

	13.4 Implementation Models for Snoop-Bus- Based Designs
	13.4.1 Snoop-Bus-Based OCP Coherent Master Model
	13.4.2 Snoop-Bus-Based OCP Coherence Interconnect Model
	13.4.3 Snoop-Bus-Based OCP Coherence Slave Model
	13.4.4 Coherence Transactions
	13.4.5 Snoop-Bus-Based CC_WB Race Conditions

	14 Timing Guidelines
	14.1 Level0 Timing
	14.2 Level1 Timing
	14.3 Level2 Timing

	15 OCP Profiles
	15.1 Consensus Profiles
	15.1.1 Simple Slave
	15.1.2 High Speed Profile
	15.1.3 Advanced High-Speed Profile
	15.1.4 Optional Features
	15.1.5 Security
	15.1.6 Additional Profiles
	15.1.7 Sequential Undefined Length Data Flow Profile
	15.1.8 Register Access Profile

	15.2 Bridging Profiles
	15.2.1 Simple H-bus Profile
	15.2.2 X-Bus Packet Write Profile
	15.2.3 X-Bus Packet Read Profile

	16 Core Performance
	16.1 Report Instructions
	16.2 Sample Report
	16.3 Performance Report Template

	Part III Protocol Compliance
	17 Compliance
	17.1 Configuration Compliance
	17.1.1 Interface Configuration
	17.1.2 Configuration Parameter Extraction

	17.2 Protocol Compliance
	17.2.1 Select the Relevant Checks

	17.3 Verification Techniques
	17.3.1 Dynamic Verification
	17.3.2 Static Verification

	18 Protocol Compliance Checks
	18.1 Activation Tables
	18.2 Compliance Checks
	18.2.1 Dataflow Signals Checks
	18.2.2 DataFlow Phase Checks
	18.2.3 Dataflow Burst Checks
	18.2.4 DataFlow Transfer Checks
	18.2.5 DataFlow ReadEx Checks

	18.3 Sideband Checks
	18.4 Connection Protocol Checks

	19 Configuration Compliance Checks
	19.1 Request Group
	19.2 Datahandshake Group
	19.3 Response Group
	19.4 Sideband Group
	19.5 Test Group
	19.6 Interface Interoperability

	20 Functional Coverage
	20.1 Signal Level
	20.2 Transfer Level
	20.3 Transaction Level
	20.4 Mapping Signals into Categories
	20.4.1 Cross Coverage of One Category
	20.4.2 Cross Coverage on Multiple Categories

	20.5 Meta Coverage
	20.6 Sideband Signals Coverage
	20.7 Naming Conventions

	A OCP Trace File
	A.1 Header
	A.2 Trace Data

	Index

