OK initiative
it’s OK to develop standards for custom design

Open Kit Initiative Launch
DAC 2003
June 2
I’m OK
You’re OK

“but custom design isn’t feeling that well”
Today’s Agenda

9:00 Welcome - Nick English

9:10 Problem Statement - Jim Solomon

9:25 Open Kit Initiative - Nick

9:40 Accellera - Vassilios Gerousis

9:55 Q&A and Invitation to Join, Vassilios

it’s OK to develop standards for custom design OK initiative
OK, so what’s the problem?

Jim Solomon
What is the Market Demanding?

IBS Corp projects that MS-SOCs account for 30% of SOCs in 2003, DOUBLING to 70% in 2006

Source: Cadence/ IBS Corporation

it’s OK to develop standards for custom design

OK initiative
What We Need to Meet The Demand

- Task automation and flow optimization
- New, innovative EDA tools
- Custom design IP
- Reuse of that IP
- Rapid access to foundries

The direction is known, but the progress has been slow.
How are we doing?

- **Productivity**
 - Really, has it improved in 10 years? 20?
- **Automated Design Tools**
 - Still mostly manual today
- **Custom/Analog IP Market**
 - No company with long-term success
- **Standards**
 - Spice? - paper, pencil - word-of-mouth

So What Gives: The Market or The Method?

it’s OK to develop standards for custom design OK initiative
So what’s Not OK in Custom Design

<table>
<thead>
<tr>
<th>OK</th>
<th>Not OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time it takes to integrate design kits</td>
<td>X</td>
</tr>
<tr>
<td>Agreement on Design Kit Data</td>
<td>X</td>
</tr>
<tr>
<td>Standardized delivery methods</td>
<td>X</td>
</tr>
<tr>
<td>Designer’s trust of Kit/Tool results</td>
<td>X</td>
</tr>
<tr>
<td>Custom IP reuse experiences</td>
<td>X</td>
</tr>
</tbody>
</table>

“Overall satisfaction in the industry with these elements of the design chain” X

“Now that we share foundries, libraries, and tools, this stuff matters”

it’s OK to develop standards for custom design OK initiative
The 30,000 Foot View: A Jungle

Everyone is struggling to find their way

it’s OK to develop standards for custom design

OK initiative
OK initiative

it’s OK to develop standards for custom design

The 30,000 Foot View: Future

A design kit standard to serve the custom design community
Silicon World: 5 Basic Components

- Components
 - Transistor
 - Diode
 - Res
 - Cap
 - Ind

- But... Standards?
 - GDSII?
 - HSPICE?
 - Artist?
 - Calibre?
 - Virtuoso?
 - Cadence PDK?

- Lack of standards at elemental level
 - Creates huge inefficiencies
 - Inhibits progress in the custom design world

“We’re proposing a stronger foundation”

it’s OK to develop standards for custom design OK initiative
OK!, Here is what we are going to do about it

Well Nick, I’ve described the problem, so how are we going to make it OK?
OK Objective

Put a Strong Foundation to the IC Design Process

Reduce Redundant Work by Multiple Companies and the Inefficiencies and Nuisances

Work in Areas of Minimal Competition Between Vendors

Continue Standardization Efforts That are helping the industry
Things to work on

- Design Function, Nomenclature and categories
- Design kit elements and formats
- Tool & technology fit
- Design type and applications

- Management of all this stuff
 - Ownership
 - Qualification
 - Revision Control
 - Distribution

it’s OK to develop standards for custom design
There Is A Way To Go About It

- Isolate **Component** from **Tool** from **Process**
- Allow **C, T, P** to advance Independently
- Allow Efficient Commerce in **C or T or P**
 - Without having to be unduly dependent on one another
- Allow for Exceptions and/or Proprietary IP

- **Getting started**
 - Outline the entire problem, or as much as we can
 - Simplify that problem to a basic set
 - Do the simple, useful things first
Who Cares?

- Designer community
- Library & IP developers
- Internal DA groups
- EDA tool providers
- Foundries
Benefits to Design Community

- Fewer mistakes in getting Si out
- Less confusion in comparing foundries
- More flexibility in choosing tools
- Less confusion in comparing tools
- Quicker ramp-up of new tool flows
Benefits to Foundries

- Fewer Kits to Produce
- Faster “bring-up” and easier support of new tool flows
- Fewer errors due to versioning and/or compatibility issues
- Faster customer adoption of new Kits
- Easier to differentiate foundry specialty offerings
Benefits to Library & IP Developers

- Fewer different elements of the kits to understand and maintain
- Quicker understanding of process differences
- Organized **OK** structures to deal with
 - Common device level foundation
- Easier regression testing of migrated components
Benefits to EDA Companies

- Speeds new tool adoption/usage/proliferation

- Increases value with more of a total solution (tools + standard, i.e. known design kits)

- Promotes openness and levels the playing field

- Tool writers know what to expect of the data structures and behavior

it’s OK to develop standards for custom design
Time To Take Action

- Time to find a better way
- Time to stop subscribing to the old beliefs
- Time to establish a foundation that everyone can build on
- Time to empower the Custom IC designer

OK !

it’s OK to develop standards for custom design
Well Vassilios, Jim challenged me.
So, let me ask you: How can Accellera help make it OK?
A Proven Standards Approach™

it’s OK to develop standards for custom design
Accellera is a business driven standard organization:
- Over 400 technical experts (volunteers).
- Proven standards (Verilog, SDF, ALF, SystemVerilog, PSL, Verilog-AMS, SCE-API, etc.).
- Excellent Technical Standards built with proven donated technology.
- Quick standards for innovative tools.
- Release to IEEE when standards are solid with tools and usage.

it’s OK to develop standards for custom design
Accellera Standard Landscape

Accellera Theme (System To Silicon)

<table>
<thead>
<tr>
<th>Property Specification Language</th>
<th>Open Verification Library OVL</th>
<th>SystemVerilog 3.1 (The First HDVL (Embedded Verification, Formal Assertion, Architectural Language, And C/API Interface))</th>
<th>High Level Transaction For modeling, tools, emulation and debuggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL 1.01</td>
<td></td>
<td>Verilog-AMS 2.1</td>
<td>SCE-API 1.0</td>
</tr>
</tbody>
</table>

IEEE ALF library Foundations From RTL to Silicon Modeling

Open Kit (OK)

it’s OK to develop standards for custom design
Accellera OK Technical Committee

- Accellera had a kick off meeting to investigate the formation of an Accellera OK Technical Committee.
- We developed mission and a set of proposed goals.
- All attendees expressed commitment to participate in OK.
- The OK Technical Committee Proposal will be presented to Accellera Board for final approval on June 4.
Open Kit Mission

- Develop and promote a standard for a design kit to enable and facilitate more efficient and automated custom IC design.
Proposed Goals/Objectives

- Build a strong foundation for automated custom IC design
 - Standard nomenclatures.
 - Interchange format between tools.
 - Standard manufacturing manuals
 - Device Models
 - Layer definitions.
 - Netlist and symbols and display files (Color, size, shape, appearance, _)
 - Etc.
Invitation to Join

- Join the Accellera OK Technical Committee. Join Artisan, AWR, Cadence, Synopsys, Mentor, NEC, and Infineon
- Help create the best WG processes
- Define the Open Kit roadmap
- Begin the OK standard development

You can make it OK!

it’s OK to develop standards for custom design
Q&A and Invitation

it’s OK to develop standards for custom design

For more information: Nick English
nenglish@cox.net
760-522-5966
760-543-5881 fax
it’s OK to develop standards for custom design

Technical Approach

Nick English
There Is A Way To Go About It

Isolate Component from Tool from Process

Allow C, T, P to advance Independently

Allow Efficient Commerce in C or T or P

Without having to be unduly dependent on one another

Allow for Exceptions and/or Proprietary IP

Getting started

Outline the entire problem, or as much as we can

Simplify to a basic set

Do the simple, useful things first

it’s OK to develop standards for custom design

OK initiative
Standards to Permit Efficient “Value-add”

Component, Process and Tool Independence

IP Creator
- Internal IP data
 - Auto Gen
- Internal Fab data
 - Auto Gen

Foundry
- Component data
 - Auto Gen
- Fab data
 - Auto Gen

EDA tools
- Component EDA Views
 - Auto Gen

IC Designer
- EDA Flow

it’s OK to develop standards for custom design

OK initiative
Possible Silicon-Level Standards

- Standards to document...
 - Spice Model
 - DRC rules
 - LVS rules
 - Extraction (device/interconnect) rules
 - Process Layers
Possible Component-Level Standards

- Standards to document....
 - Device name
 - Device type: nfet, pfet, diode, etc
 - Symbol graphic
 - Parameter and Corner methods
 - Layout functions
 - Electrical and physical relationships
Organize OK 4-D Table

<table>
<thead>
<tr>
<th>Design Function Categories</th>
<th>Kit Elements</th>
<th>Vendor’s Tools & Technologies</th>
<th>Design Types</th>
</tr>
</thead>
</table>

it’s OK to develop standards for custom design
OK 4-Dimensions

1. Design Functions & Data-Base Categories
 - Process, Device, Circuit simulation, Physical Implementation and Verification, Extraction, etc.

2. Design Kit Elements
 - Hierarchical Elements of Data
 - Transistor Level data, Models, DR., DRC, LVS, Interconnect, Electrical and Topology data, etc.
 - Tool-Dependent Elements
 - Tool-Independent Elements

3. Vendor’s Tools & Technologies
 - EDA, Foundry, Library, IP Vendors

4. Design Types and Applications
 - Custom Digital, Mix-Sig., Analog, RF
 - Level 1, 2, etc.

it’s OK to develop standards for custom design
it's OK to develop standards for custom design

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Base</td>
<td>Hierarchy 1</td>
<td>Hierarchy 2</td>
<td>Hierarchy 3</td>
<td>Hierarchy 4</td>
<td>Synopsys</td>
<td>Mentor</td>
<td>Artisan</td>
<td>AWR</td>
<td>Cadence</td>
<td>IBM</td>
<td>TSMC</td>
<td>Etc.</td>
</tr>
<tr>
<td></td>
<td>Device</td>
<td>SEM Data</td>
<td>Taurus-Device</td>
<td>Taurus-Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interconnect</td>
<td>Cross-Sections</td>
<td>Display</td>
<td>Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENVIRONMENT</td>
<td>ENVIRONMENT</td>
<td>ENVIRONMENT</td>
<td>ENVIRONMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Simulation</td>
<td>HARDS</td>
<td>HARDS</td>
<td>HARDS</td>
<td>HARDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Models</td>
<td>Models</td>
<td>Models</td>
<td>Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Models</td>
<td>Models</td>
<td>Models</td>
<td>Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Models</td>
<td>Models</td>
<td>Models</td>
<td>Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Verification</td>
<td>Place & Route</td>
<td>Tech. Files</td>
<td>Nodes Files</td>
<td>Physical Verification</td>
<td>Place & Route</td>
<td>Tech. Files</td>
<td>Nodes Files</td>
<td>Physical Verification</td>
<td>Place & Route</td>
<td>Tech. Files</td>
<td>Nodes Files</td>
</tr>
</tbody>
</table>
Let’s Simplify The Goal

Step 1: For all participants to agree on a first level *Open Kit for Custom Digital Design*

Step 2: Identify Tool-Dependent, Tool-Independent, and Tool-Dependent-Abstracted components (TD, TI, TDA) and decide what to do about each of them

Step 3: When we succeed here, we will proceed to the next level...

it’s OK to develop standards for custom design

OK initiative
Basic OK 3-D Table, much simpler & more manageable

<table>
<thead>
<tr>
<th>Design Function & Data Base Category</th>
<th>Design Kit Elements</th>
<th>Digital Custom DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hierarchy-1</td>
<td>Hierarchy-2</td>
<td>Hierarchy-3</td>
<td>Hierarchy-4</td>
<td>Std.</td>
<td></td>
</tr>
<tr>
<td>Process & Device Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interconnect</td>
<td>Cross-Sections</td>
<td>Topology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIA-528</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traffic</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resiliency</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadence</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td>Circuit Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS Models</td>
<td>B-values</td>
<td>Typical</td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>Diode Models</td>
<td>Typical, Corners</td>
<td></td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>BJT Models</td>
<td>Typical, Corners</td>
<td></td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>Resistors Models</td>
<td>Typical, Corners</td>
<td></td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>Capacitors Models</td>
<td>Typical, Corners</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corner</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td>Physical Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Cells</td>
<td>Device, Cell Lib</td>
<td>CMOS</td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BJT</td>
<td>Poly, etc.</td>
<td></td>
<td></td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poly, etc.</td>
<td></td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metal</td>
<td></td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIM cap., etc.</td>
<td></td>
<td></td>
<td></td>
<td>TDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layout Tech. File</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer Mapping</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display Files</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td>Schematic Tech. Files</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symbols</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minicircuits</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display Files</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td>Place & Route Tech. Files</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Routing Rules Files</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display Files</td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI</td>
<td></td>
</tr>
</tbody>
</table>

it’s OK to develop standards for custom design OK initiative
1. Agree on TI kit elements

2. Analyze and agree on the TDA kit elements. This may require a technical Working Group to develop an abstraction in order to convert or translate the incompatible parameters to a set of new compatible parameters.
 - This may require generation of an automatic conversion / translation utility or code by the Working Group

3. Agree on TD kit elements and decide how many different versions of design kits are necessary to be proposed by the Working Group
OK Management Issues

1. Ownership
 - Who owns the “Darn” thing?

2. Qualification
 - EDA-Foundry
 - Library-Foundry
 - Designer-Foundry

3. Revision Control
 - Tool, Process, Library Synchronization

4. Distribution
 - Web-Base Accounts
 - Automatic Releases
 - Schedule Releases

it’s OK to develop standards for custom design
Remember

Outline the entire problem, or as much as we can

Simplify to a basic set

Do the simple things first

And then proceed...
it’s OK to develop standards for custom design

Thank you

Nick English