
Universal Verification Methodology
for SystemC (UVM-SystemC)

Language Reference Manual

Accellera SystemC Verification Working Group

July 2020

Copyright © 2020 Accellera Systems Initiative. All rights reserved.
Accellera Systems Initiative, 8698 Elk Grove Blvd. Suite 1, #114, Elk Grove, CA 95624, USA

Notices

Accellera Systems Initiative Standards documents are developed within Accellera Systems Initiative
(Accellera) and its Technical Committee. Accellera develops its standards through a consensus development
process, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are not necessarily members of Accellera and
serve without compensation. While Accellera administers the process and establishes rules to promote fairness
in the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy
of any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property
or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly
or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard
document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for
a specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test,
measure, purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to determine
that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will
initiate reasonable action to prepare appropriate responses. Since Accellera Standards represent a consensus
of concerned interests, it is important to ensure that any interpretation has also received the concurrence of
a balance of interests. For this reason, Accellera and the members of its Technical Committee and Working
Groups are not able to provide an instant response to interpretation requests except in those cases where the
matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of
membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Comments on standards and requests
for interpretations should be addressed to:

 Accellera Systems Initiative
 8698 Elk Grove Blvd. Suite 1, #114
 Elk Grove, CA 95624
 USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. Accellera shall not be responsible for identifying patents

ii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

for which a license may be required by an Accellera Standard or for conducting inquiries into the legal validity
or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks
to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee, if any, is paid to Accellera.
Permission to photocopy portions of any individual standard for educational classroom use can also be obtained
from Accellera. To arrange for authorization please contact Lynn Garibaldi, Executive Director, Accellera
Systems Initiative, 8698 Elk Grove Blvd. Suite 1, #114, Elk Grove, CA 95624, phone (916) 760-1056, e-mail
lynn@accellera.org.

Suggestions for improvements to the Universal Verification Methodology (UVM) Language Reference Manual
for SystemC (UVM-SystemC) are welcome. They can be sent to the Accellera SystemC Verification discussion
forum:

 forums.accellera.org/forum/38-systemc-verification-uvm-systemc-scv

The current Accellera SystemC Verification Working Group web page is:

 accellera.org/activities/working-groups/systemc-verification

iii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

mailto:lynn@accellera.org
http://forums.accellera.org/forum/38-systemc-verification-uvm-systemc-scv
https://accellera.org/activities/working-groups/systemc-verification

Contributors

The development of the Universal Verification Methodology for SystemC (UVM-SystemC) Langauge
Reference Manual was sponsored by the Accellera Systems Initiative and was created under the leadership
of the following people:

Stephan Gerth, Bosch-Sensortec (Chair)
Bas Arts, NXP Semiconductors (Vice-chair)

Thilo Vörtler, COSEDA Technologies GmbH (Technical Editor)
Martin Barnasconi, NXP Semiconductors (Technical Editor)

Acknowledgements

The creation of this standard has been supported by the European Commission as part of the Seventh
Framework Programme (FP7) for Research and Technological Development in the project ‘Verification for
heterogeneous Reliable Design and Integration’ (VERDI). The research leading to this result has received
funding from the European Commission under Grand agreement ID 287562.

More information on the Seventh Framework Programme (FP7) and VERDI project can be found here:

https://cordis.europa.eu/project/id/287562

The partners in the VERDI consortium wish to thank Cadence Design Systems Inc. for the initial contribution
of the UVM-SC library reference and documentation (UVM version 1.0, June 2011). This document contains
portions of this work, and has been extended to make it compatible with the UVM 1.2 standard.

iv
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

https://cordis.europa.eu/project/id/287562

Contents

1. Introduction... 1

2. Terminology.. 2

2.1 Shall, should, may, can... 2
2.2 Implementation, application.. 2
2.3 Call, called from, derived from...2
2.4 Implementation-defined... 2

3. Overview... 3

3.1 Namespace... 3
3.2 Header files..3
3.3 Global functions.. 3
3.4 Base classes... 3
3.5 Policy classes...3
3.6 Registry and factory classes..4
3.7 Component hierarchy classes.. 4
3.8 Sequencer classes.. 5
3.9 Sequence classes..5
3.10 Configuration and resource classes...5
3.11 Phasing and synchronization classes...5
3.12 Reporting classes... 6
3.13 Macros..6
3.14 TLM classes...7
3.15 Register abstraction classes...7
3.16 Existing SystemC functionality used in UVM-SystemC..7
3.17 Methodology for hierarchy construction...8

4. Base classes.. 10

4.1 uvm_void... 10
4.1.1 Class definition...10

4.2 uvm_object...10
4.2.1 Class definition...10
4.2.2 Constructors.. 11
4.2.3 Identification...11
4.2.4 Creation...12
4.2.5 Printing..13
4.2.6 Recording..14
4.2.7 Copying...14
4.2.8 Comparing.. 15

v
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

4.2.9 Packing..15
4.2.10 Unpacking...16
4.2.11 Object macros...17

4.3 uvm_root.. 18
4.3.1 Class definition...18
4.3.2 Simulation control.. 18
4.3.3 Topology... 19
4.3.4 Global variable... 20

4.4 uvm_port_base... 21
4.4.1 Class definition...21
4.4.2 Template parameter IF... 21
4.4.3 Constructor..21
4.4.4 Member functions...21

4.5 uvm_export_base§..22
4.5.1 Class definition...22
4.5.2 Template parameter IF... 23
4.5.3 Constructor..23
4.5.4 Member functions...23

4.6 uvm_component_name§...24
4.6.1 Class definition...24
4.6.2 Constraints on usage.. 24
4.6.3 Constructor..24
4.6.4 Destructor..25
4.6.5 operator const char*... 25

5. Policy classes.. 26

5.1 uvm_packer..26
5.1.1 Class definition...26
5.1.2 Constraints on usage.. 27
5.1.3 Packing..27
5.1.4 Unpacking...28
5.1.5 operator<<, operator>>.. 30
5.1.6 Data members (variables).. 30

5.2 uvm_printer..31
5.2.1 Class definition...31
5.2.2 Constraints on usage.. 32
5.2.3 Printing types..32
5.2.4 Printer subtyping.. 34
5.2.5 Data members...36

5.3 uvm_table_printer.. 36
5.3.1 Class definition ... 36
5.3.2 Constructor..36

vi
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

5.3.3 emit... 36
5.4 uvm_tree_printer..36

5.4.1 Class definition...36
5.4.2 Constructor..37
5.4.3 emit... 37

5.5 uvm_line_printer..37
5.5.1 Class definition ... 37
5.5.2 Constructor..37
5.5.3 emit... 37

5.6 uvm_comparer... 37
5.6.1 Class definition...38
5.6.2 Constraints on usage.. 38
5.6.3 Member functions...38
5.6.4 Comparer settings...40

5.7 Default policy objects..42
5.7.1 uvm_default_table_printer..42
5.7.2 uvm_default_tree_printer..42
5.7.3 uvm_default_line_printer..42
5.7.4 uvm_default_printer..43
5.7.5 uvm_default_packer..43
5.7.6 uvm_default_comparer... 43
5.7.7 uvm_default_recorder...43

6. Registry and factory classes... 44

6.1 uvm_object_wrapper..44
6.1.1 Class definition...44
6.1.2 Member functions...44

6.2 uvm_object_registry...45
6.2.1 Class definition...45
6.2.2 Template parameter T.. 45
6.2.3 Member functions...46

6.3 uvm_component_registry...47
6.3.1 Class definition...47
6.3.2 Template parameter T.. 48
6.3.3 Member functions...48

6.4 uvm_factory... 49
6.4.1 Class definition...49
6.4.2 Access and registration.. 50
6.4.3 Type and instance overrides...51
6.4.4 Creation...52
6.4.5 Debug..54

6.5 uvm_default_factory.. 55

vii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

6.5.1 Class definition...55
6.5.2 Registration...56
6.5.3 Type and instance overrides...56
6.5.4 Creation...57
6.5.5 Debug..57

7. Component hierarchy classes... 59

7.1 uvm_component...59
7.1.1 Class definition ... 59
7.1.2 Construction interface.. 61
7.1.3 Hierarchy interface... 61
7.1.4 Phasing interface.. 63
7.1.5 Process control interface.. 70
7.1.6 Configuration interface...70
7.1.7 Objection interface... 71
7.1.8 Factory interface...72
7.1.9 Hierarchical reporting interface... 74
7.1.10 Macros.. 76

7.2 uvm_driver...76
7.2.1 Class definition...76
7.2.2 Template parameters...76
7.2.3 Ports.. 77
7.2.4 Member functions...77

7.3 uvm_monitor..77
7.3.1 Class definition...77
7.3.2 Member functions...78

7.4 uvm_agent..78
7.4.1 Class definition ... 78
7.4.2 Member functions...78

7.5 uvm_env...79
7.5.1 Class definition...79
7.5.2 Member functions...79

7.6 uvm_test...80
7.6.1 Class definition...80
7.6.2 Member functions...80

7.7 uvm_scoreboard... 80
7.7.1 Class definition...80
7.7.2 Member functions...81

7.8 uvm_subscriber.. 81
7.8.1 Class definition...81
7.8.2 Template parameter T.. 81
7.8.3 Export..81

viii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

7.8.4 Member functions...82

8. Sequencer classes..83

8.1 uvm_sequencer_base... 83
8.1.1 Class definition...83
8.1.2 Constructor..84
8.1.3 Member functions...84

8.2 uvm_sequencer_param_base... 87
8.2.1 Class definition...87
8.2.2 Template parameters...88
8.2.3 Constructor..88
8.2.4 Requests.. 88

8.3 uvm_sequencer...89
8.3.1 Class definition...89
8.3.2 Template parameters...89
8.3.3 Constructor..89
8.3.4 Exports.. 89
8.3.5 Sequencer interface.. 89
8.3.6 Macros.. 90

9. Sequence classes... 92

9.1 uvm_transaction... 92
9.1.1 Class definition...92
9.1.2 Constructors.. 92
9.1.3 Constraints on usage.. 92
9.1.4 Member functions...93

9.2 uvm_sequence_item...93
9.2.1 Class definition...93
9.2.2 Constructors.. 94
9.2.3 Member functions...94

9.3 uvm_sequence_base...96
9.3.1 Class definition ... 96
9.3.2 Constructor..97
9.3.3 Sequence state.. 97
9.3.4 Sequence execution.. 97
9.3.5 Run-time phasing... 99
9.3.6 Sequence control.. 100
9.3.7 Sequence item execution..102
9.3.8 Response interface..103

9.4 uvm_sequence..105
9.4.1 Class definition ... 105
9.4.2 Template parameters...105

ix
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

9.4.3 Constructor..105
9.4.4 Member functions...105

10. Configuration and resource classes.. 107

10.1 uvm_config_db.. 107
10.1.1 Class definition...107
10.1.2 Template parameter T.. 108
10.1.3 Constraints on usage.. 108
10.1.4 Member functions...108

10.2 uvm_resource_db... 109
10.2.1 Class definition...109
10.2.2 Template parameter T.. 110
10.2.3 Constraints on usage.. 110
10.2.4 Member functions...110

10.3 uvm_resource_db_options... 112
10.3.1 Class definition...112
10.3.2 Member functions...112

10.4 uvm_resource_options... 113
10.4.1 Class definition ... 113
10.4.2 Member functions...113

10.5 uvm_resource_base..113
10.5.1 Class definition...113
10.5.2 Constructor..114
10.5.3 Resource database interface... 114
10.5.4 Read-only interface.. 114
10.5.5 Notification... 115
10.5.6 Scope interface... 115
10.5.7 Priority.. 115
10.5.8 Utility functions..116
10.5.9 Audit trail... 116
10.5.10 Data members...116

10.6 uvm_resource_pool..117
10.6.1 Class definition ... 117
10.6.2 get..118
10.6.3 spell_check..118
10.6.4 Set interface..118
10.6.5 Lookup.. 119
10.6.6 Priority interface...120
10.6.7 Debug..121

10.7 uvm_resource... 121
10.7.1 Class definition...121
10.7.2 Template parameter T.. 122

x
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

10.7.3 Type interface... 122
10.7.4 Set/Get interface... 122
10.7.5 Read/Write interface...123
10.7.6 Priority interface...123

10.8 uvm_resource_types...124
10.8.1 Class definition...124
10.8.2 Type definitions (typedefs)...124

11. Phasing and synchronization classes..125

11.1 uvm_phase... 125
11.1.1 Class definition ... 125
11.1.2 Construction..126
11.1.3 State.. 126
11.1.4 Callbacks...127
11.1.5 Schedule..128
11.1.6 Synchronization.. 129
11.1.7 Jumping...130

11.2 uvm_domain...130
11.2.1 Class definition...130
11.2.2 Constructor..131
11.2.3 Member functions...131

11.3 uvm_bottomup_phase.. 132
11.3.1 Class definition...132
11.3.2 Constructor..132
11.3.3 Member functions...132

11.4 uvm_topdown_phase... 132
11.4.1 Class definition...133
11.4.2 Constructor..133
11.4.3 Member functions...133

11.5 uvm_process_phase° (uvm_task_phase†)..133
11.5.1 Class definition...134
11.5.2 Member functions...134

11.6 uvm_objection..134
11.6.1 Class definition...134
11.6.2 Constructors.. 135
11.6.3 Objection control..135
11.6.4 Callback hooks... 137
11.6.5 Objections status...138

11.7 uvm_callback... 138
11.7.1 Class definition...139
11.7.2 Constructor .. 139
11.7.3 Member functions...139

xi
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

11.8 uvm_callback_iter..140
11.8.1 Class definition...140
11.8.2 Template parameter T.. 140
11.8.3 Template parameter CB..140
11.8.4 Constructor .. 140
11.8.5 Member functions...140

11.9 uvm_callbacks..141
11.9.1 Class definition...141
11.9.2 Template parameter T.. 142
11.9.3 Template parameter CB..142
11.9.4 Constructor..142
11.9.5 Add/delete interface..142
11.9.6 Iterator interfaces..143
11.9.7 Debug..144

12. Reporting classes.. 145

12.1 uvm_report_message... 145
12.1.1 Class definition...145
12.1.2 Constructor..146
12.1.3 Infrastructure references...146
12.1.4 Message fields.. 147
12.1.5 Message element APIs... 150

12.2 uvm_report_object... 151
12.2.1 Class definition...151
12.2.2 Constructors.. 152
12.2.3 Reporting.. 153
12.2.4 Verbosity configuration.. 154
12.2.5 Action configuration...155
12.2.6 File configuration... 155
12.2.7 Override configuration... 156
12.2.8 Report handler configuration... 157

12.3 uvm_report_handler... 157
12.3.1 Class definition...157
12.3.2 Constructor..158
12.3.3 Member functions...158
12.3.4 get_verbosity_level...158
12.3.5 get_action..158
12.3.6 get_file_handle..158
12.3.7 report...159
12.3.8 format_action.. 159

12.4 uvm_report_server... 159
12.4.1 Class definition...159

xii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

12.4.2 Member functions...160
12.5 uvm_default_report_server.. 162

12.5.1 Class definition...162
12.5.2 Constructor..163
12.5.3 Quit count... 163
12.5.4 Severity count...164
12.5.5 ID count..164
12.5.6 Message processing..165

12.6 uvm_report_catcher... 166
12.6.1 Class definition...166
12.6.2 Constructor..167
12.6.3 Current message state...167
12.6.4 Change message state...168
12.6.5 Debug..169
12.6.6 Callback interface...169
12.6.7 Reporting.. 170

13. Macros...172

13.1 Component and object registration macros...172
13.1.1 Macro definitions... 172
13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS................................172
13.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS........... 172

13.2 Reporting macros...173
13.2.1 Macro definitions... 173
13.2.2 UVM_INFO..173
13.2.3 UVM_WARNING.. 173
13.2.4 UVM_ERROR..174
13.2.5 UVM_FATAL... 174

13.3 Sequence execution macros...174
13.3.1 Macro definitions... 174
13.3.2 UVM_DO... 174
13.3.3 UVM_DO_PRI... 175
13.3.4 UVM_DO_ON..175
13.3.5 UVM_DO_ON_PRI... 175
13.3.6 UVM_CREATE.. 175
13.3.7 UVM_CREATE_ON.. 175
13.3.8 UVM_DECLARE_P_SEQUENCER...175

13.4 Callback macros.. 176
13.4.1 Macro definitions... 176
13.4.2 UVM_REGISTER_CB...176
13.4.3 UVM_DO_CALLBACKS..176

14. TLM classes..177

xiii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

14.1 uvm_blocking_put_port... 177
14.1.1 Class definition...177
14.1.2 Template parameter T.. 177
14.1.3 Constructor..178
14.1.4 Member functions...178

14.2 uvm_blocking_get_port... 178
14.2.1 Class definition...178
14.2.2 Template parameter T.. 178
14.2.3 Constructor..179
14.2.4 Member functions...179

14.3 uvm_blocking_peek_port...179
14.3.1 Class definition...179
14.3.2 Template parameter T.. 179
14.3.3 Constructor..180
14.3.4 Member functions...180

14.4 uvm_blocking_get_peek_port..180
14.4.1 Class definition...180
14.4.2 Template parameter T.. 181
14.4.3 Constructor..181
14.4.4 Member functions...181

14.5 uvm_nonblocking_put_port... 181
14.5.1 Class definition...182
14.5.2 Template parameter T.. 182
14.5.3 Constructor..182
14.5.4 Member functions...182

14.6 uvm_nonblocking_get_port... 183
14.6.1 Class definition...183
14.6.2 Template parameter T.. 183
14.6.3 Constructor..183
14.6.4 Member functions...183

14.7 uvm_nonblocking_peek_port...184
14.7.1 Class definition...184
14.7.2 Template parameter T.. 184
14.7.3 Constructor..184
14.7.4 Member functions...184

14.8 uvm_nonblocking_get_peek_port..185
14.8.1 Class definition...185
14.8.2 Template parameter T.. 185
14.8.3 Constructor..185
14.8.4 Member functions...185

14.9 uvm_analysis_port... 186
14.9.1 Class definition...186
14.9.2 Template parameter T.. 187

xiv
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

14.9.3 Constructor..187
14.9.4 Member functions...187

14.10 uvm_analysis_export... 188
14.10.1 Class definition...188
14.10.2 Template parameter T.. 188
14.10.3 Constructor..188
14.10.4 Member functions...188

14.11 uvm_analysis_imp... 189
14.11.1 Class definition...189
14.11.2 Template parameters...189
14.11.3 Constructors.. 189
14.11.4 Member functions...189

14.12 uvm_tlm_req_rsp_channel ... 190
14.12.1 Class definition...190
14.12.2 Template parameters...191
14.12.3 Ports and exports..191
14.12.4 Constructors.. 193

14.13 uvm_sqr_if_base.. 193
14.13.1 Class definition...193
14.13.2 Template parameters...193
14.13.3 Member functions...193

14.14 uvm_seq_item_pull_port... 195
14.14.1 Class definition...196
14.14.2 Template parameters...196
14.14.3 Constructor..196
14.14.4 Member functions...196

14.15 uvm_seq_item_pull_export..196
14.15.1 Class definition...196
14.15.2 Template parameters...197
14.15.3 Constructor..197
14.15.4 Member functions...197

14.16 uvm_seq_item_pull_imp..197
14.16.1 Class definition...197
14.16.2 Template parameters...197
14.16.3 Member functions...197

15. Register abstraction classes.. 198

15.1 uvm_reg_block...198
15.1.1 Class definition...198
15.1.2 Constructor..200
15.1.3 Initialization.. 201
15.1.4 Introspection... 202

xv
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

15.1.5 Coverage... 205
15.1.6 Access... 207
15.1.7 Backdoor...209
15.1.8 Data members (variables).. 211

15.2 uvm_reg_map...211
15.2.1 Class definition...211
15.2.2 Constructor..213
15.2.3 Initialization.. 213
15.2.4 Introspection... 215
15.2.5 Bus access...218
15.2.6 Backdoor...220

15.3 uvm_reg_file.. 220
15.3.1 Class definition...220
15.3.2 Constructor..221
15.3.3 Initialization.. 221
15.3.4 Introspection... 221
15.3.5 Backdoor...222

15.4 uvm_reg... 223
15.4.1 Class definition...223
15.4.2 Constructor..226
15.4.3 Initialization.. 226
15.4.4 Introspection... 227
15.4.5 Access... 229
15.4.6 Frontdoor.. 233
15.4.7 Backdoor...234
15.4.8 Coverage... 236
15.4.9 Callbacks...238

15.5 uvm_reg_field.. 239
15.5.1 Class definition...239
15.5.2 Constructor..241
15.5.3 Initialization.. 241
15.5.4 Introspection... 242
15.5.5 Access... 244
15.5.6 Callbacks...249

15.6 uvm_mem...250
15.6.1 Class definition...250
15.6.2 Constructor..253
15.6.3 Initialization.. 253
15.6.4 Introspection... 253
15.6.5 HDL access...257
15.6.6 Frontdoor.. 258
15.6.7 Backdoor...259
15.6.8 Callbacks...261

xvi
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

15.6.9 Coverage... 262
15.7 uvm_reg_indirect_data...263

15.7.1 Class definition...263
15.7.2 Constructor..264
15.7.3 Member functions...264

15.8 uvm_reg_fifo..264
15.8.1 Class definition...264
15.8.2 Constructor..265
15.8.3 Initialization.. 266
15.8.4 Introspection... 266
15.8.5 Access... 266
15.8.6 Special overrides.. 268
15.8.7 Data members...268

15.9 uvm_vreg... 268
15.9.1 Class definition...268
15.9.2 Constructor..270
15.9.3 Initialization.. 270
15.9.4 Introspection... 272
15.9.5 HDL access...274
15.9.6 Callbacks...276

15.10 uvm_vreg_cbs.. 277
15.10.1 Member functions...277

15.11 uvm_vreg_field.. 278
15.11.1 Class definition...278
15.11.2 Constructor..280
15.11.3 Initialization.. 280
15.11.4 Introspection... 280
15.11.5 HDL access...281
15.11.6 Callbacks...282

15.12 uvm_vreg_field_cbs...284
15.12.1 Class definition...284
15.12.2 Member functions...284

15.13 uvm_reg_cbs.. 285
15.13.1 Class definition...285
15.13.2 Member functions...286

15.14 uvm_mem_mam...289
15.14.1 Class definition...289
15.14.2 Constructor..289
15.14.3 Initialization.. 290
15.14.4 Memory management...290
15.14.5 Introspection... 291
15.14.6 Data members...291
15.14.7 Type definitions.. 292

xvii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

15.15 uvm_mem_region.. 292
15.15.1 Class definition...292
15.15.2 Member functions...293

15.16 Global declarations.. 296
15.16.1 Types...296
15.16.2 Enumerations.. 297

16. Register interaction with DUT... 300

16.1 uvm_reg_item.. 300
16.1.1 Class definition...300
16.1.2 Constructor..301
16.1.3 Member functions...301
16.1.4 Data members...301

16.2 uvm_reg_bus_op..303
16.2.1 Class definition...303
16.2.2 Data members...304

16.3 uvm_reg_adapter..305
16.3.1 Class definition...305
16.3.2 Constructor..305
16.3.3 Member functions...305
16.3.4 Data members...306

16.4 uvm_reg_tlm_adapter.. 306
16.4.1 Class definition...306
16.4.2 Constructor..307
16.4.3 Member functions...307

16.5 uvm_reg_predictor... 307
16.5.1 Class definition...307
16.5.2 Constructor..308
16.5.3 Ports.. 308
16.5.4 Member functions...308
16.5.5 Data members...309

16.6 uvm_reg_sequence...309
16.6.1 Class definition...309
16.6.2 Constructor..311
16.6.3 Sequence API... 311
16.6.4 Convenience Write/Read API.. 312
16.6.5 Data members...314

16.7 uvm_reg_frontdoor.. 314
16.7.1 Class definition...315
16.7.2 Constructor..315
16.7.3 Data members...315

17. Global functionality.. 316

xviii
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

17.1 Global functions.. 316
17.1.1 uvm_set_config_int§...316
17.1.2 uvm_set_config_string§.. 316
17.1.3 run_test..316

17.2 Global defines..317
17.2.1 UVM_MAX_STREAMBITS...317
17.2.2 UVM_PACKER_MAX_BYTES..317
17.2.3 UVM_DEFAULT_TIMEOUT..317

17.3 Global type definitions (typedefs)...317
17.3.1 uvm_bitstream_t... 317
17.3.2 uvm_integral_t.. 317
17.3.3 UVM_FILE...317
17.3.4 uvm_report_cb.. 317
17.3.5 uvm_config_int...317
17.3.6 uvm_config_string.. 317
17.3.7 uvm_config_object... 317
17.3.8 uvm_config_wrapper.. 318

17.4 Global enumeration... 318
17.4.1 uvm_action..318
17.4.2 uvm_severity...318
17.4.3 uvm_verbosity.. 318
17.4.4 uvm_active_passive_enum... 318
17.4.5 uvm_sequence_state_enum.. 319
17.4.6 uvm_phase_type... 319

17.5 uvm_coreservices_t..319
17.5.1 Class definition...319
17.5.2 Member functions...320

17.6 uvm_default_coreservices_t...321
17.6.1 Class definition...321
17.6.2 Member functions...321

Annex A (informative) Glossary...323

Index...326

xix
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

1. Introduction

UVM-SystemC is a SystemC library extension offering features compatible with the Universal Verification
Methodology (UVM). This library is built on top of the SystemC language standard and defines the
Application Programming Interface aligned with the UVM standard defined in IEEE Std. 1800.2-20171,2.
The UVM-SystemC library does not cover the entire UVM standard, nor the existing UVM implementation
in SystemVerilog. However, the UVM-SystemC library offers the essential ingredients to create verification
environments which are compliant with the UVM standard.

UVM-SystemC is released as reference implementation that works with any IEEE Std. 1666-20113 compliant
SystemC simulation environment. Note that UVM-SystemC uses certain specialized SystemC features
introduced since the revision in 2011, such as process control constructs, which are not implemented in
all SystemC simulators. The UVM-SystemC functionality can be used together with the Accellera Systems
Initiative SystemC reference implementation4.

UVM-SystemC uses existing SystemC functionality wherever suitable, and introduces new UVM classes on
top of the SystemC base classes to facilitate the creation of modular, configurable and reusable verification
environments. Certain UVM in SystemVerilog functionality is available as native SystemC language features,
and therefore UVM-SystemC uses the existing SystemC classes as foundations for the UVM extensions. Also
the transaction-level modeling (TLM) concepts natively exist in SystemC and IEEE Std. 1666-2011, so UVM-
SystemC uses the original SystemC TLM definitions and base classes.

Elements which are part of the UVM-SystemC library and language definition and which are not part of the
UVM-SystemVerilog standard are marked with the superscript section symbol §. Elements marked with the
superscript degree symbol ° are renamed in UVM-SystemC, in contrast to the UVM-SystemVerilog standard,
due to their incompatibility due to reserved keywords in C/C++ or an inappropriate name in the context of
SystemC base class of member function definitions. The reference to the original UVM-SystemVerilog name
is given in brackets and marked with the superscript dagger symbol †. Note that these original names are not
defined in UVM-SystemC.

1 The IEEE standards or products referred to in this standard are trademarks of The Institute of Electrical and Electronics Engineers, Inc.
2 IEEE Standard for Universal Verification Methodology Language Reference Manual, https://standards.ieee.org/

standard/1800_2-2017.html
3 IEEE Standard for Standard SystemC Language Reference Manual, https://standards.ieee.org/standard/1666-2011.html
4 Accellera Systems Initiative SystemC reference implementation version 2.3.0 or newer is required, https://accellera.org/downloads/

standards/systemc

1
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

https://standards.ieee.org/standard/1800_2-2017.html
https://standards.ieee.org/standard/1800_2-2017.html
https://standards.ieee.org/standard/1666-2011.html
https://accellera.org/downloads/standards/systemc
https://accellera.org/downloads/standards/systemc

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

2. Terminology

2.1 Shall, should, may, can

The word shall is used to indicate a mandatory requirement.

The word should is used to recommend a particular course of action, but it does not impose any obligation.

The word may is used to mean shall be permitted (in the sense of being legally allowed).

The word can is used to mean shall be able to (in the sense of being technically possible).

In some cases, word usage is qualified to indicate on whom the obligation falls, such as an application may
or an implementation shall.

2.2 Implementation, application

The word implementation is used to mean any specific implementation of the full UVM-SystemC class library
as defined in this standard, only the public interface of which need be exposed to the application.

The word application is used to mean a C++ program, written by an end user, that uses the UVM-SystemC
class library, that is, uses classes, functions, or macros defined in this standard.

2.3 Call, called from, derived from

The term call is taken to mean call directly or indirectly. Call indirectly means call an intermediate function
that in turn calls the function in question, where the chain of function calls may be extended indefinitely.

Similarly, called from means called from directly or indirectly.

Except where explicitly qualified, the term derived from is taken to mean derived directly or indirectly from.
Derived indirectly from means derived from one or more intermediate base classes.

2.4 Implementation-defined

The italicized term implementation-defined is used where part of a C++ definition is omitted from this standard.
In such cases, an implementation shall provide an appropriate definition that honors the semantics defined in
this standard.

2
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

3. Overview

3.1 Namespace

All UVM-SystemC classes and functions shall reside inside the namespace uvm.

3.2 Header files

An application shall include the C++ header file uvm or uvm.h to make use of the UVM-SystemC class library
functions. The header file named uvm shall only add the name uvm to the declarative region in which it is
included, whereas the header file named uvm.h shall add all of the names from the namespace uvm to the
declarative region in which it is included.

NOTE—It is recommended that an application includes the header file uvm rather than the header file
uvm.h. This means the namespace uvm has to be mentioned explicitly when using UVM-SystemC classes
and functions. Alternatively, an application may use the C++ using directive at the global and local scope to
gain access to these classes and functions.

3.3 Global functions

A minimal set of global functionality is defined offering generic UVM capabilities and convenience functions
for configuration and printing. The global functions, enums, type defintions, and classes uvm_coreservice_t
and uvm_default_coreservice_t are specified in Chapter 17.

3.4 Base classes

These classes define the base UVM class for all other UVM classes, and the base class for data objects:
— uvm_void
— uvm_object
— uvm_root
— uvm_port_base
— uvm_export_base§

— uvm_component_name§

The base classes are specified in Chapter 4.

3.5 Policy classes

These classes include policy objects for various operations based on class uvm_object:
— The class uvm_printer provides an interface for printing objects of type uvm_object in various

formats. Classes derived from class uvm_printer implement pre-defined printing formats or policies:
— The class uvm_table_printer prints the object in a tabular form.
— The class uvm_tree_printer prints the object in a tree form.

3
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— The class uvm_line_printer prints the information on a single line, but uses the same
object separators as the tree printer.

These printer classes have ‘knobs’ that an application may use to control what and how information is
printed. These knobs are contained in a separate knob class uvm_printer_knobs

— uvm_comparer: performs deep comparison of objects derived from uvm_object. An application may
configure what is compared and how miscompares are reported.

— uvm_packer: performs packing (serialization) and unpacking of properties.

The policy classes are specified in Chapter 5.

3.6 Registry and factory classes

The registry and factory classes include the uvm_factory and associated classes for object and component
registration. The class uvm_factory implements a factory pattern. A singleton factory instance is created for
a given simulation run. Class types are registered with the factory using the class uvm_object_wrapper and
its derivatives. The class uvm_factory supports type and instance overrides.

The registry and factory classes are:
— uvm_object_wrapper
— uvm_object_registry
— uvm_component_registry
— uvm_factory
— uvm_default_factory

The registry and factory classes are specified in Chapter 6.

3.7 Component hierarchy classes

These classes define the base class for hierarchical UVM components and the test environment. The class
uvm_component provides interfaces for:

— Hierarchy—Provides methods for searching and traversing the component hierarchy.
— Configuration—Provides methods for configuring component topology and other parameters before

and during component construction.
— Phasing—Defines a phased test flow that all components follow. Methods include the phase callbacks,

such as run_phase and report_phase, overridden by the derived classes. During simulation, these
callbacks are executed in precise order.

— Factory—Provides a convenience interface to the uvm_factory. The factory is used to create new
components and other objects based on type-wide and instance-specific configuration.

All structural component classes uvm_env, uvm_test, uvm_agent, uvm_driver, uvm_monitor,
uvm_subscriber and uvm_scoreboard are derived from the class uvm_component.

The UVM component classes are specified in Chapter 7.

4
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

3.8 Sequencer classes

The sequencer classes serve as an arbiter for controlling transaction flow from multiple stimulus generators.
More specifically, the sequencer controls the flow of transactions of type uvm_sequence_item generated by
one or more sequences based on type uvm_sequence. The sequencer classes are:

— uvm_sequencer_base
— uvm_sequencer_param_base
— uvm_sequencer

The sequencer classes are specified in Chapter 8.

3.9 Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsulated
as a sequence or sequence item. The following sequence classes are defined:

— uvm_transaction
— uvm_sequence_item
— uvm_sequence_base
— uvm_sequence

The sequence classes are specified in Chapter 9.

3.10 Configuration and resource classes

The configuration and resource classes provide access to the configuration and resource database. The
configuration database is used to store and retrieve both configuration time and run time properties. The
configuration and resource classes are:

— uvm_config_db: Configuration database, which acts as interface on top of the resource database.
— uvm_resource_db: Resource database.
— uvm_resource_options: Provides a namespace for managing options for the resources facility.
— uvm_resource_base: Provides a non-parameterized base class for resources.
— uvm_resource_pool: Provides the global resource database.
— uvm_resource: Defines the parameterized resource.

This configuration and resource classes are specified in Chapter 10.

3.11 Phasing and synchronization classes

The phasing classes define the order of execution of pre-defined callback function and processes, which run
either sequentially or concurrently. In addition, dedicated member functions for synchronization are available
to coordinate the execution of or status of these processes between all UVM components or objects.

The phasing and synchronization classes are:
— uvm_phase: The base class for defining a phase’s behavior, state, context.
— uvm_domain: Phasing schedule node representing an independent branch of the schedule.
— uvm_bottomup_phase: A phase implementation for bottom up function phases.

5
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— uvm_topdown_phase: A phase implementation for top-down function phases.
— uvm_process_phase° (uvm_task_phase†): A phase implementation for phases which are launched as

spawned process.
— uvm_objection: Mechanism to synchronize phases based on passing execution status information

between running processes.
— uvm_callbacks: The base class for implementing callbacks, which are typically used to modify or

augment component behavior without changing the component base class for user-defined callback
classes.

— uvm_callback_iter: A class for iterating over callback queues of a specific callback type.
— uvm_callback: The base class for user-defined callback classes.

The phasing and synchronization classes are specified in Chapter 11.

3.12 Reporting classes

The reporting classes provide a facility for issuing reports (messages) with consistent formatting and
configurable side effects, such as logging to a file or exiting simulation. An application can also filter out
reports based on their verbosity, identity, or severity.

The following reporting classes are defined:
— uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.
— uvm_report_handler: The class which acting as implementation for the member functions defined in

the class uvm_report_object.
— uvm_report_server and uvm_default_report_server: The class acting as global server that processes

all of the reports generated by the class uvm_report_handler.
— uvm_report_catcher: The class which captures and counts all reports issued by the class

uvm_report_server.

The reporting classes are specified in Chapter 12.

3.13 Macros

The UVM-SystemC macros make common code easier to write. It is not imperative to use the macros, but
in many cases the macros can save a substantial amount of user-written code. The macros defined in UVM-
SystemC are:

— Macros for component and object registration:
— UVM_OBJECT_UTILS
— UVM_OBJECT_PARAM_UTILS
— UVM_COMPONENT_UTILS
— UVM_COMPONENT_PARAM_UTILS

— Sequence execution macros:
— UVM_DO, UVM_DO_ON and UVM_DO_ON_PRI
— UVM_CREATE,UVM_CREATE_ON
— UVM_DECLARE_P_SEQUENCER

— Reporting macros:

6
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— UVM_INFO, UVM_ERROR, UVM_WARNING and UVM_FATAL
— Callback macros:

— UVM_REGISTER_CB and UVM_DO_CALLBACKS

Detailed information for the macros or the associated member functions are specified in Chapter 13.

3.14 TLM classes

The UVM TLM library defines several abstract, transaction-level interfaces and the ports and exports that
facilitate their use. Each TLM interface consists of one or more methods used to transport data, typically
whole transactions (objects) at a time. Component designs that use TLM ports and exports to communicate
are inherently more reusable, interoperable, and modular.

The following TLM-1 classes are defined:
— TLM-1 blocking ports uvm_blocking_put_port, uvm_blocking_get_port,

uvm_blocking_peek_port, and uvm_blocking_get_peek_port.
— TLM-1 non-blocking ports uvm_nonblocking_put_port, uvm_nonblocking_get_port,

uvm_nonblocking_peek_port, and uvm_nonblocking_get_peek_port.
— TLM analysis ports and exports uvm_analysis_port, uvm_analysis_export, and uvm_analysis_imp.
— The request-response channel class uvm_tlm_req_rsp_channel.
— The sequencer interface classes: uvm_sqr_if_base, uvm_seq_item_pull_port,

uvm_seq_item_pull_export, and uvm_seq_item_pull_imp.

The TLM classes are specified in Chapter 14.

NOTE—UVM-SystemC does not define the TLM-2.0 blocking and non-blocking transport interfaces, direct
memory interface (DMI), nor a debug transport interface. An application should use the SystemC TLM-2.0
interfaces instead.

3.15 Register abstraction classes

The register abstraction classes, when properly extended, abstract the read/write operations to registers and
memories in a DUT.

The register abstraction classes are specified in Chapter 15 and Chapter 16.

3.16 Existing SystemC functionality used in UVM-SystemC

Because SystemVerilog does not support multiple inheritance, UVM-SystemVerilog is constrained to have
only one base class, from which both data elements and hierarchical elements inherit. As SystemC is based on
C++, it supports multiple inheritance. As such, UVM-SystemC uses multiple inheritance where suitable.

In UVM-SystemVerilog, the class uvm_component inherits from class uvm_report_object. In UVM-
SystemC, class uvm_component applies multiple inheritance and derives from the SystemC class
sc_core::sc_module and from uvm_report_object. Note that the class uvm_object is not derived from class
sc_core::sc_object, but from class uvm_void.

The class sc_core::sc_module already offer the hierarchical features that uvm_component needs, namely
parent and children, and a full instance name. Therefore the parent of a component does not need to be explicitly

7
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

specified as a constructor argument; instead the class uvm_component_name keeps track of the component
hierarchy.

The class sc_core::sc_module has natural equivalents to some of the UVM pre-run phases, which can used
in a UVM-SystemC uvm_component. For example:

— The UVM-SystemC callback before_end_of_elaboration is mapped onto the UVM callback
build_phase. Note that UVM-SystemC also provides the callback build_phase as an alternative to
before_end_of_elaboration. It is recommended to use this UVM member function.

— The UVM-SystemC callback end_of_elaboration is mapped onto the UVM callback
end_of_elaboration_phase. UVM-SystemC also provides the callback end_of_elaboration_phase
with the argument of type uvm_phase as an alternative to the callback end_of_elaboration, which
does give access to the phase information. It is recommended to use this UVM member function.

— The UVM-SystemC callback start_of_simulation is mapped onto the UVM callback
start_of_simulation_phase. UVM-SystemC also provides the callback start_of_simulation_phase
with the argument of type uvm_phase as an alternative to the callback start_of_simulation, which
does give access to the phase information. It is recommended to use this UVM member function.

UVM-SystemC also defines the callback run_phase as a thread process of a uvm_component . This works
because sc_core::sc_module in SystemC already has the ability to own and spawn thread processes.

UVM-SystemVerilog defines the TLM-1 interfaces like put and get, as well as some predefined TLM-1
channels like tlm::tlm_fifo. These already natively exist in the SystemC standard. UVM-SystemC supports the
original SystemC TLM-1 definitions. The same holds for the analysis interface in UVM. UVM-SystemC offers
a compatibility and convenience layer on top of the SystemC TLM interface proper tlm::tlm_analysis_if and
analysis port tlm::tlm_analysis_port, defining elements such as uvm_analysis_port, uvm_analysis_export
and uvm_analysis_imp.

The SystemC fork-join constructs SC_FORK and SC_JOIN can be used as a pair to bracket a set of calls
to function sc_core::sc_spawn within a UVM component run_phase, enabling the creation of concurrent
processes.

3.17 Methodology for hierarchy construction

The UVM in SystemVerilog recommends the use of configurations by using the static member function set
of the uvm_config_db in the build phase, followed by hierarchy construction through the factory, in the same
phase.

In UVM-SystemVerilog, it is necessary to make the connections (port binding) in the connect phase, which
happens after hierarchy construction of components, ports and exports in the build phase. This enables
configuration of port/export construction using the configuration database uvm_config_db. In that case, if a
parent creates a child in the build phase, that child’s port/export does not exist at that point, and it has to wait
for the next phase to bind the child’s port/export.

Consistent with UVM in SystemVerilog, UVM-SystemC also recommends configurations using
uvm_config_db and hierarchy construction through the factory uvm_factory in the build phase. This implies
that child objects derived from class uvm_component should be declared as pointers inside the parent class,
and these children should be constructed in the UVM callback build_phase through the UVM factory, which
does not contradict the SystemC standard, as the SystemC standard allows construction activity in the callback
before_end_of_elaboration, which is equivalent to the UVM build phase.

In SystemC, the ports/exports are usually becoming members of a uvm_component and not pointers.
In that case, the ports/exports are automatically created and initialized in the constructor of the parent

8
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm_component. This implies that in UVM-SystemC the ports/export construction is not configurable
through uvm_config_db. Because the bulk of the UVM hierarchy construction occurs in the build phase, the
port/export bindings that depend on the entire hierarchy being constructed have to be done in a later phase.
Similar as in UVM-SystemVerilog, the connect phase is introduced in UVM-SystemC to perform the port
bindings using the sc_core::sc_port member function bind or operator(). The UVM binding mechanism using
the member function connect of the ports is made available for compatibility purposes.

9
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4. Base classes

4.1 uvm_void

The class uvm_void shall provide the base class for all UVM classes. It shall be an abstract class with no data
members or functions, to allow the creation of a generic container of objects.

An application may derive directly from this class and inherits none of the UVM functionality, but such classes
may be placed in uvm_void-typed containers along with other UVM objects.

4.1.1 Class definition

namespace uvm {
 class uvm_void {};
} // namespace uvm

4.2 uvm_object

The class uvm_object shall provide the base class for all UVM data and hierarchical classes. Its primary role
is to define a set of member functions for common operations such as create, copy, compare, print, and record.
Classes deriving from uvm_object shall implement the member functions such as create and get_type_name.

4.2.1 Class definition

namespace uvm {

 class uvm_object : public uvm_void
 {
 public:

 // Group: Construction
 uvm_object();
 explicit uvm_object(const std::string& name);

 // Group: Identification
 virtual void set_name(const std::string& name);
 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual int get_inst_id() const;
 static int get_inst_count();
 static const uvm_object_wrapper* get_type();
 virtual const uvm_object_wrapper* get_object_type() const;
 virtual const std::string get_type_name() const;

 // Group: Creation
 virtual uvm_object* create(const std::string& name = "");
 virtual uvm_object* clone();

 // Group: Printing
 void print(uvm_printer* printer = NULL) const;
 std::string sprint(uvm_printer* printer = NULL) const;
 virtual void do_print(const uvm_printer& printer) const;
 virtual std::string convert2string() const;

 // Group: Recording
 void record(uvm_recorder* recorder = NULL);
 virtual void do_record(const uvm_recorder& recorder);

 // Group: Copying
 void copy(const uvm_object& rhs);
 virtual void do_copy(const uvm_object& rhs);

 // Group: Comparing
 bool compare(const uvm_object& rhs,

10
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 const uvm_comparer* comparer = NULL) const;

 virtual bool do_compare(const uvm_object& rhs,
 const uvm_comparer* comparer = NULL) const;

 // Group: Packing
 int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);
 int pack_bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);
 int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);
 virtual void do_pack(uvm_packer& packer) const;

 // Group: Unpacking
 int unpack(const std::vector<bool>& v, uvm_packer* packer = NULL);
 int unpack_bytes(const std::vector<unsigned char>& v, uvm_packer* packer = NULL);
 int unpack_ints(const std::vector<unsigned int>& v, uvm_packer* packer = NULL);
 virtual void do_unpack(uvm_packer& packer);

 }; // class uvm_object

} // namespace uvm

4.2.2 Constructors

uvm_object();
explicit uvm_object(const std::string& name);

The constructor shall create a new uvm_object with the given instance name passed as argument. If no
argument is given, the default constructor shall call function sc_core::sc_gen_unique_name (“object”) to
generate a unique string name as instance name of this object.

4.2.3 Identification

4.2.3.1 set_name

virtual void set_name(const std::string& name);

The member function set_name shall set the instance name of this object passed as argument, overwriting any
previously given name. It shall be an error if the name is already in use for another object.

4.2.3.2 get_name

virtual const std::string get_name() const;

The member function get_name shall return the name of the object, as provided by the argument name via
the constructor or member function set_name.

4.2.3.3 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of this object. The default
implementation is the same as get_name, as objects of type uvm_object do not inherently possess hierarchy.

NOTE—Objects possessing hierarchy, such as objects of type uvm_component, override the default
implementation. Other objects might be associated with component hierarchy, but are not themselves
components. For example, sequence classes of type uvm_sequence are typically associated with a sequencer
class of type uvm_sequencer. In this case, it is useful to override get_full_name to return the sequencer’s

11
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

full name concatenated with the sequence’s name. This provides the sequence a full context, which is useful
when debugging.

4.2.3.4 get_inst_id

virtual int get_inst_id() const;

The member function get_inst_id shall return the object’s unique, numeric instance identifier.

4.2.3.5 get_inst_count

static int get_inst_count();

The member function get_inst_count shall return the current value of the instance counter, which represents
the total number of objects of type uvm_object that have been allocated in simulation. The instance counter
is used to form a unique numeric instance identifier.

4.2.3.6 get_type

static const uvm_object_wrapper* get_type();

The member function get_type shall return the type-proxy (wrapper) for this object. The uvm_factory’s
type-based override and creation member functions take arguments of uvm_object_wrapper. The default
implementation of this member function shall produce an error and return NULL.

4.2.3.7 get_object_type

virtual const uvm_object_wrapper* get_object_type() const;

The member function get_object_type shall the return the type-proxy (wrapper) for this object. The
uvm_factory’s type-based override and creation member functions take arguments of uvm_object_wrapper.
The default implementation of this member function does a factory lookup of the proxy using the return
value from get_type_name. If the type returned by get_type_name is not registered with the factory, then the
member function shall return NULL.

This member function behaves the same as the static member function get_type, but uses an already allocated
object to determine the type-proxy to access (instead of using the static object).

4.2.3.8 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object, which is typically the type
identifier enclosed in quotes. It is used for various debugging functions in the library, and it is used by the
factory for creating objects.

4.2.4 Creation

4.2.4.1 create

virtual uvm_object* create(const std::string& name = "");

12
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function create shall allocate a new object of the same type as this object and returns it by a base
handle of type uvm_object. Every class deriving from uvm_object, directly or indirectly, shall implement the
member function create.

4.2.4.2 clone

virtual uvm_object* clone();

The member function clone shall create and return a pointer to an exact copy of this object.

NOTE—As the member function clone is virtual, derived classes may override this implementation if desired.

4.2.5 Printing

4.2.5.1 print

void print(uvm_printer* printer = NULL) const;

The member function print shall deep-print this object’s properties in a format and manner governed by the
given argument printer. If the argument printer is not provided, the global uvm_default_printer shall be used
(see Section 5.7.4).

The member function print is not virtual and shall not be overloaded. To include custom information in the
print and sprint operations, derived classes shall override the member function do_print and can use the
provided printer policy class to format the output.

4.2.5.2 sprint

std::string sprint(uvm_printer* printer = NULL) const;

The member function sprint shall return the object’s properties as a string and in a format and manner governed
by the given argument printer. If the argument printer is not provided, the global uvm_default_printer shall
be used (see Section 5.7.4).

The member function sprint is not virtual and shall not be overloaded. To include additional fields in the print
and sprint operation, derived classes shall override the member function do_print and use the provided printer
policy class to format the output. The printer policy shall manage all string concatenations and provide the
string to sprint to return to the caller.

4.2.5.3 do_print

virtual void do_print(const uvm_printer& printer) const;

The member function do_print shall provide a context called by the member functions print and sprint that
allows an application to customize what gets printed. The argument printer is the policy object that governs
the format and content of the output. To ensure correct print and sprint operation, and to ensure a consistent
output format, the printer shall be used by all do_print implementations.

4.2.5.4 convert2string

virtual std::string convert2string() const;

13
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function convert2string shall provide a context which may be called directly by the application,
to provide object information in the form of a string. Unlike the member function sprint, there is no requirement
to use a uvm_printer policy object. As such, the format and content of the output is fully customizable, which
may be suitable for applications not requiring the consistent formatting offered by the print/sprint/do_print
API.

4.2.6 Recording

4.2.6.1 record

void record(uvm_recorder* recorder = NULL);

The member function record shall deep-records this object’s properties according to an optional recorder
policy. The member function is not virtual and shall not be overloaded. To include additional fields in the
record operation, derived classes should override the member function do_record.

The optional argument recorder specifies the recording policy, which governs how recording takes place. If a
recorder policy is not provided explicitly, then the global uvm_default_recorder policy is used (see Section
5.7.7).

NOTE—The recording mechanism is implementation-defined. The uvm_recorder policy provides a
standardized interface to a simulator’s recording capabilities.

4.2.6.2 do_record

virtual void do_record(const uvm_recorder& recorder);

The member function do_record shall provide a context called by the member function record. A derived
class should overload this member function to include its fields in a record operation.

The argument recorder is policy object for recording this object. A do_record implementation should call the
appropriate recorder member function for each of its fields.

NOTE—The actual recording mechanism is implementation defined, thereby insulating the application from
the implementation.

4.2.7 Copying

4.2.7.1 copy

void copy(const uvm_object& rhs);

The member function copy shall make a copy of the specified object passed as argument.

The member function is not virtual and shall not be overloaded in derived classes. To copy the fields of a
derived class, that class shall overload the member function do_copy.

4.2.7.2 do_copy

virtual void do_copy(const uvm_object& rhs);

14
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function do_copy shall provide a context called by the member function copy. A derived class
should overload this member function to include its fields in a copy operation.

4.2.8 Comparing

4.2.8.1 compare

bool compare(const uvm_object& rhs,
 const uvm_comparer* comparer = NULL) const;

The member function compare shall compare members of this data object with those of the object provided
in the rhs (right-hand side) argument. It shall return true on a match; otherwise it shall return false.

The optional argument comparer specifies the comparison policy. It allows an application to control some
aspects of the comparison operation. It also stores the results of the comparison, such as field-by-field
miscompare information and the total number of miscompares. If a comparer policy is not provided or set to
NULL, then the global uvm_default_comparer policy is used (see Section 5.7.6).

The member function is not virtual and shall not be overloaded in derived classes. To compare the fields of a
derived class, that class shall overload the member function do_compare.

4.2.8.2 do_compare

virtual bool do_compare(const uvm_object& rhs,
 const uvm_comparer* comparer = NULL) const;

The member function do_compare shall provide a context called by the member function compare. A derived
class should overload this member function to include its fields in a compare operation. The member function
shall return true if the comparison succeeds; otherwise it shall return false.

4.2.9 Packing

4.2.9.1 pack

int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);

The member function pack shall concatenate the object properties into a vector of bits. The member function
shall return the total number of bits packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer
policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the pack operation, derived classes shall overload the member function do_pack.

4.2.9.2 pack_bytes

int pack_bytes(std::vector<char>& bytestream, uvm_packer* packer = NULL);

The member function pack_bytes shall concatenate the object properties into a vector of bytes. The member
function shall return the total number of bytes packed into the given vector.

15
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer
policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the pack operation, derived classes shall overload the member function do_pack.

4.2.9.3 pack_ints

int pack_ints(std::vector<int>& intstream, uvm_packer* packer = NULL);

The member function pack_ints shall concatenate the object properties into a vector of integers. The member
function shall return the total number of integers packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer
policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the pack operation, derived classes shall overload the member function do_pack.

4.2.9.4 do_pack

oid do_pack(uvm_packer& packer) const;

The member function do_pack shall provide a context called by the member functions pack, pack_bytes and
pack_ints. A derived class should overload this member function to include its fields in a packing operation.

The argument packer is the policy object for packing and should be used to pack objects.

4.2.10 Unpacking

4.2.10.1 unpack

int unpack(const std::vector<bool>& bitstream, uvm_packer* packer = NULL);

The member function unpack shall extract the values from a vector of bits. The member function shall return
the total number of bits unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs both the pack and unpack operation.
If a packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see
Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the unpack operation, derived classes shall overload the member function do_unpack.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. This is assured if (a) the same packer policy is used to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior is undefined in
case a different packer policy or ordering is applied for packing and unpacking.

4.2.10.2 unpack_bytes

int unpack_bytes(const std::vector<char>& bytestream, uvm_packer* packer = NULL);

16
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function unpack_bytes shall extract the values from a vector of bytes. The member function
shall return the total number of bytes unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If
a packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see
Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the unpack operation, derived classes shall overload the member function do_unpack.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. This is assured if (a) the same packer policy is used to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior is undefined in
case a different packer policy or ordering is applied for packing and unpacking.

4.2.10.3 unpack_ints

int unpack_ints(const std::vector<int>& intstream, uvm_packer* packer = NULL);

The member function unpack_ints shall extract the values from a vector of integers. The member function
shall return the total number of integers unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If
a packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see
Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the unpack operation, derived classes shall overload the member function do_unpack.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. This is assured if (a) the same packer policy is used to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior is undefined in
case a different packer policy or ordering is applied for packing and unpacking.

4.2.10.4 do_unpack

>virtual void do_unpack(uvm_packer& packer) const;

The member function do_unpack shall provide a context called by the member functions unpack,
unpack_bytes and unpack_ints. A derived class should overload this member function to include its fields
in a unpacking operation. The member function shall return true if the unpacking succeeds; otherwise it shall
return false.

The argument packer is the policy object for unpacking and should be used to unpack objects.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. This is assured if (a) the same packer policy is used to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior is undefined in
case a different packer policy or ordering is applied for packing and unpacking.

4.2.11 Object macros

UVM-SystemC provides the following macros for a uvm_object:

17
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— utility macro UVM_OBJECT_UTILS(classname) is to be used inside the class definition that expands
to:

— The declaration of the member function get_type_name, which returns the type of a class as
string.

— The declaration of the member function get_type, which returns a factory proxy object for the
type.

— The declaration of the proxy class uvm_object_registry< classname> used by the factory.
— Template classes shall use the macro UVM_OBJECT_PARAM_UTILS, to guarantee correct

registration of one or more parameters passed to the class template. Note that template classes are not
evaluated at compile-time, and thus not registered with the factory. Due to this, name-based lookup with
the factory for template classes is not possible. Instead, an application shall use the member function
get_type for factory overrides.

4.3 uvm_root

The class uvm_root serves as the implicit top-level and phase controller for all UVM components. An
application shall not directly instantiate uvm_root. A UVM implementation shall create a single instance of
uvm_root that an application can access via the global variable uvm_top.

4.3.1 Class definition

namespace uvm {

 class uvm_root : public uvm_component
 {
 public:
 static uvm_root* get();

 // Group: Simulation control
 virtual void run_test(const std::string& test_name = "");
 virtual void die();
 void set_timeout(const sc_core::sc_time& timeout, bool overridable = true);
 void set_finish_on_completion(bool enable);
 bool get_finish_on_completion();

 // Group: Topology
 uvm_component* find(const std::string& comp_match);
 void find_all(const std::string& comp_match,
 std::vector<uvm_component*>& comps,
 uvm_component* comp = NULL);
 void print_topology(uvm_printer* printer = NULL);
 void enable_print_topology(bool enable = true);

 // Global variable
 const uvm_root* uvm_top;

 }; // class uvm_root
} // namespace uvm

4.3.2 Simulation control

4.3.2.1 run_test

virtual void run_test(const std::string& test_name = "");

The member function run_test shall register the UVM phasing mechanism. If the optional argument test_name
is provided, then the specified test component is created just prior to phasing, if and only if this component is
derived from class uvm_test. Otherwise it shall be an error.

18
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The phasing mechanism is used during test execution, where all components are called following a defined
set of registered phases. The member function run_test shall register both the common phases as well as the
UVM run-time phases. (See Chapter 11).

NOTE 1—Selection of the test via the command line interface is not yet available.

NOTE 2—The test execution is started using the SystemC function sc_core::sc_start. It is recommended not
to specify the simulation stop time, as the end-of-test is automatically managed by the phasing mechanism.

4.3.2.2 die

virtual void die();

The member function die shall be called by the report server if a report reaches the maximum quit count or has
a UVM_EXIT action associated with it, e.g., as with fatal errors. The member function shall call the member
function uvm_component::pre_abort on the entire UVM component hierarchy in a bottom-up fashion. It then
shall call uvm_report_server::report_summarize and terminate the simulation.

4.3.2.3 set_timeout

void set_timeout(const sc_core::sc_time& timeout, bool overridable = true);

The member function set_timeout shall define the timeout for the run phases. If not called, the default timeout
shall be set to UVM_DEFAULT_TIMEOUT (see Section 17.2.3).

4.3.2.4 set_finish_on_completion

void set_finish_on_completion(bool enable);

The member function set_finish_on_completion shall define how simulation is finalized. If the application
did not call this member function or if the argument enable is set to true, it shall terminate the simulation
after execution of the UVM phases. If the argument enable is set to false, the simulation shall be paused after
execution of the UVM phases.

NOTE—An implementation may call the function sc_core::sc_stop to terminate the simulation. An
implementation may call the function sc_core::sc_pause to pause the simulation.

4.3.2.5 get_finish_on_completion

bool get_finish_on_completion();

The member function get_finish_on_completion shall return true if the application has not called member
function set_finish_on_completion or if the member function was called with the argument enable as true;
otherwise it shall return false. (See also Section 4.3.2.4.)

4.3.3 Topology

4.3.3.1 find

uvm_component* find(const std::string& comp_match);

19
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function find shall return a component handle matching the given string comp_match. The string
may contain the wildcards ‘*’ and ‘?’. Strings beginning with character ‘.’ are absolute path names.

4.3.3.2 find_all

void find_all(const std::string& comp_match,
 std::vector<uvm_component*>& comps,
 uvm_component* comp = NULL);

The member function find_all shall return a vector of component handles matching the given string
comp_match. The string may contain the wildcards ‘*’ and ‘?’. Strings beginning with character ‘.’ are absolute
path names. If the optional component argument comp is provided, then the search begins from that component
down; otherwise it searches all components.

4.3.3.3 print_topology

void print_topology(uvm_printer* printer = NULL);

The member function print_topology shall print the verification environment’s component topology. The
argument printer shall be an object of class uvm_printer that controls the format of the topology printout; a
NULL printer prints with the default output.

4.3.3.4 enable_print_topology

void enable_print_topology(bool enable = true);

The member function enable_print_topology shall print the entire testbench topology just after completion
of the end_of_elaboration phase, if enabled. By default, the testbench topology is not printed, unless enabled
by the application by calling this member function.

4.3.4 Global variable

4.3.4.1 uvm_top

const uvm_root* uvm_top;

The data member uvm_top is a handle to the top-level (root) component that governs phase execution and
provides the component search interface. By default, this handle is provided by the uvm_root singleton.

The uvm_top instance of uvm_root plays several key roles in the UVM:
— Implicit top-level: The uvm_top serves as an implicit top-level component. Any UVM component

which is not instantiated in another UVM component (e.g. when instantiated in a sc_core::sc_module
or in sc_main) becomes a child of uvm_top. Thus, all UVM components in simulation are descendants
of uvm_top.

— Phase control: uvm_top manages the phasing for all components.
— Search: An application may use uvm_top to search for components based on their hierarchical name.

See member functions find (Section 4.3.3.1) and find_all (Section 4.3.3.2).
— Report configuration: An application may use uvm_top to globally configure report verbosity, log

files, and actions. For example, uvm_top.set_report_verbosity_level_hier(UVM_FULL) would set
full verbosity for all components in simulation.

20
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— Global reporter: Because uvm_top is globally accessible, the UVM reporting mechanism is accessible
from anywhere outside uvm_component, such as in modules and sequences. See uvm_report_error,
uvm_report_warning, and other global methods.

The uvm_top instance checks during the end_of_elaboration_phase if any errors have been generated so
far. If errors are found a UVM_FATAL error is generated as result so that the simulation shall not continue
to the start_of_simulation_phase.

4.4 uvm_port_base

The class uvm_port_base shall provide methods to bind ports to interfaces or to other ports, and to forward
interface method calls to the channel to which the port is bound, according to the same mechanism as defined
in SystemC. Therefore this class shall be derived from the class sc_core::sc_port.

4.4.1 Class definition

namespace uvm {

 template <class IF>
 class uvm_port_base : public sc_core::sc_port<IF>
 {
 public:
 uvm_port_base();
 explicit uvm_port_base(const std::string& name);

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_component* get_parent() const;
 virtual const std::string get_type_name() const;

 virtual void connect(IF&);
 virtual void connect(uvm_port_base<IF>&);

 // class uvm_port_base

} // namespace uvm

4.4.2 Template parameter IF

The template parameter IF shall specify the name of the interface type used for the port. The port can only be
bound to a channel which is derived from the same type, or to another port which is derived from this type.

4.4.3 Constructor

uvm_port_base();
explicit uvm_port_base(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name, if passed as an argument.

4.4.4 Member functions

4.4.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the leaf name of this port.

21
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4.4.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of this port.

4.4.4.3 get_parent

virtual uvm_component* get_parent() const;

The member function get_parent shall return the handle to this port’s parent, or NULL if it has no parent.

4.4.4.4 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name to this port. Derived port classes shall
implement this member function to return the concrete type.

4.4.4.5 connect

virtual void connect(IF&);
virtual void connect(uvm_port_base<IF>&);

The member function connect shall bind this port to the interface given as argument.

NOTE—The member function connect implements the same functionality as the SystemC member function
bind.

4.5 uvm_export_base§

The class uvm_export_base§ shall provide methods to bind exports to interfaces or to other exports, and to
forward interface method calls to the channel to which the export is bound, according to the same mechanism
as defined in SystemC. Therefore this class shall be derived from the class sc_core::sc_export.

4.5.1 Class definition

namespace uvm {

 template <class IF>
 class uvm_export_base§ : public sc_core::sc_export<IF>
 {
 public:
 uvm_export_base();
 explicit uvm_export_base(const std::string& name);

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_component* get_parent() const;
 virtual const std::string get_type_name() const;

 virtual void connect(IF&);
 virtual void connect(uvm_export_base<IF>&);

 // class uvm_export_base

} // namespace uvm

22
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4.5.2 Template parameter IF

The template parameter IF shall specify the name of the interface type used for the export. The export can only
be bound to a channel which is derived from the same type, or to another export which is derived from this type.

4.5.3 Constructor

uvm_export_base();
explicit uvm_export_base(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name, if passed as an argument.

4.5.4 Member functions

4.5.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the leaf name of this export.

4.5.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of this export.

4.5.4.3 get_parent

virtual uvm_component* get_parent() const;

The member function get_parent shall return the handle to this export’s parent, or NULL if it has no parent.

4.5.4.4 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name to this export. Derived export classes shall
implement this member function to return the concrete type.

4.5.4.5 connect

virtual void connect(IF&);
virtual void connect(uvm_export_base<IF>&);

The member function connect shall bind this export to the interface given as argument.

NOTE—The member function connect implements the same functionality as the SystemC member function
bind.

23
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4.6 uvm_component_name§

The class uvm_component_name§ is shall provide the mechanism for building the hierarchical names of
component instances and component hierarchy during elaboration.

An implementation shall maintain the UVM component hierarchy, that is, it shall build a list of hierarchical
component names, where each component instance is named as if it were a child of another component (its
parent). The mechanism to implement such component hierarchy is implementation-defined.

NOTE 1—The hierarchical name of an instance in the component hierarchy is returned from member function
get_full_name of class uvm_component, which is the base class of all component instances.

NOTE 2—An object of type uvm_object may have a hierarchical name and may have a parent in the
component hierarchy, but such object is not part of the component hierarchy.

4.6.1 Class definition

namespace uvm {

 class uvm_component_name§

 {
 public:
 uvm_component_name(const char* name);
 uvm_component_name(const uvm_component_name& name);
 ~uvm_component_name();
 operator const char*() const;

 private:
 // Disabled
 uvm_component_name();
 uvm_component_name& operator= (const uvm_component_name& name);
 }; // class uvm_component_name

} // namespace uvm

4.6.2 Constraints on usage

The class uvm_component_name shall only be used as argument in a constructor of a class derived from class
uvm_component. Such constructor shall only contain this argument of type uvm_component_name.

4.6.3 Constructor

uvm_component_name(const char* name);

The constructor uvm_component_name(const char* name) shall store the name in the component hierarchy.
The constructor argument name shall be used as the string name for that component being instantiated within
the component hierarchy.

NOTE—An application shall define for each class derived directly or indirectly from class uvm_component
a constructor with a single argument of type uvm_component_name, where the constructor
uvm_component_name(const char*) is called as an implicit conversion.

uvm_component_name(const uvm_componet_name& name);

The constructor uvm_component_name(const uvm_component_name& name) shall copy the constructor
argument but shall not modify the component hierarchy.

24
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

NOTE—When an application derives a class directly or indirectly from class uvm_component, the derived
class constructor calls the base class constructor with an argument of class uvm_component_name and thus
this copy constructor is called.

4.6.4 Destructor

~uvm_component_name();

The destructor shall remove the object from the component hierarchy if, and only if, the object being destroyed
was constructed by using the constructor signature uvm_component_name(const char* name).

4.6.5 operator const char*

operator const char*() const;

This conversion function shall return the string name (not the hierarchical name) associated with the
uvm_component_name.

25
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5. Policy classes

The UVM policy classes provide specific tasks for printing, comparing, recording, packing, and unpacking of
objects derived from class uvm_object. They are implemented separately from class uvm_object so that an
application can plug in different ways to print, compare, etc. without modifying the object class being operated
on. The user can simply apply a different printer or compare “policy” to change how an object is printed or
compared.

Each policy class includes several user-configurable parameters that control the operation. An application may
also customize operations by deriving new policy subtypes from these base types. For example, the UVM
provides four different printer policy classes derived from the policy base class uvm_printer, each of which
print objects in a different format.

The following policy classes are defined:
— uvm_packer
— uvm_printer, uvm_table_printer, uvm_tree_printer, uvm_line_printer and uvm_printer_knobs.
— uvm_recorder
— uvm_comparer

5.1 uvm_packer

The class uvm_packer provides a policy object for packing and unpacking objects of type uvm_object. The
policies determine how packing and unpacking should be done. Packing an object causes the object to be
placed into a packed array of type byte or int. Unpacking an object causes the object to be filled from the pack
array. The logic values X and Z are lost on packing. The maximum size of the packed array is defined by
UVM_PACKER_MAX_BYTES (see Section 17.2.2).

5.1.1 Class definition

namespace uvm {

 class uvm_packer
 {
 public:

 // Group: Packing
 virtual void pack_field(const uvm_bitstream_t& value, int size);
 virtual void pack_field_int(const uvm_integral_t& value, int size);
 virtual void pack_string(const std::string& value);
 virtual void pack_time(const sc_core::sc_time& value);
 virtual void pack_real(double value);
 virtual void pack_real(float value);
 virtual void pack_object(const uvm_object& value);
 virtual uvm_packer& operator<< (bool value);
 virtual uvm_packer& operator<< (double& value);
 virtual uvm_packer& operator<< (float& value);
 virtual uvm_packer& operator<< (char value);
 virtual uvm_packer& operator<< (unsigned char value);
 virtual uvm_packer& operator<< (short value);
 virtual uvm_packer& operator<< (unsigned short value);
 virtual uvm_packer& operator<< (int value);
 virtual uvm_packer& operator<< (unsigned int value);
 virtual uvm_packer& operator<< (long value);
 virtual uvm_packer& operator<< (unsigned long value);
 virtual uvm_packer& operator<< (long long value);
 virtual uvm_packer& operator<< (unsigned long long value);
 virtual uvm_packer& operator<< (const std::string& value);
 virtual uvm_packer& operator<< (const char* value);
 virtual uvm_packer& operator<< (const uvm_object& value);
 virtual uvm_packer& operator<< (const sc_dt::sc_logic& value);
 virtual uvm_packer& operator<< (const sc_dt::sc_bv_base& value);

26
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual uvm_packer& operator<< (const sc_dt::sc_lv_base& value);
 virtual uvm_packer& operator<< (const sc_dt::sc_int_base& value);
 virtual uvm_packer& operator<< (const sc_dt::sc_uint_base& value);
 virtual uvm_packer& operator<< (const sc_dt::sc_signed& value);
 virtual uvm_packer& operator<< (const sc_dt::sc_unsigned& value);

 template <class T>
 uvm_packer& operator<< (const std::vector<T>& value);

 // Group: Unpacking
 virtual bool is_null();
 virtual uvm_integral_t unpack_field_int(int size);
 virtual uvm_bitstream_t unpack_field(int size);
 virtual std::string unpack_string(int num_chars = -1);
 virtual sc_core::sc_time unpack_time();
 virtual double unpack_real();
 virtual float unpack_real();
 virtual void unpack_object(uvm_object& value);
 virtual unsigned int get_packed_size() const;

 virtual uvm_packer& operator>> (bool& value);
 virtual uvm_packer& operator>> (double& value);
 virtual uvm_packer& operator>> (float& value);
 virtual uvm_packer& operator>> (char& value);
 virtual uvm_packer& operator>> (unsigned char& value);
 virtual uvm_packer& operator>> (short& value);
 virtual uvm_packer& operator>> (unsigned short& value);
 virtual uvm_packer& operator>> (int& value);
 virtual uvm_packer& operator>> (unsigned int& value);
 virtual uvm_packer& operator>> (long& value);
 virtual uvm_packer& operator>> (unsigned long& value);
 virtual uvm_packer& operator>> (long long& value);
 virtual uvm_packer& operator>> (unsigned long long& value);
 virtual uvm_packer& operator>> (std::string& value);
 virtual uvm_packer& operator>> (uvm_object& value);
 virtual uvm_packer& operator>> (sc_dt::sc_logic& value);
 virtual uvm_packer& operator>> (sc_dt::sc_bv_base& value);
 virtual uvm_packer& operator>> (sc_dt::sc_lv_base& value);
 virtual uvm_packer& operator>> (sc_dt::sc_int_base& value);
 virtual uvm_packer& operator>> (sc_dt::sc_uint_base& value);
 virtual uvm_packer& operator>> (sc_dt::sc_signed& value);
 virtual uvm_packer& operator>> (sc_dt::sc_unsigned& value);

 template <class T>
 virtual uvm_packer& operator>> (std::vector<T>& value);

 // Data members (variables)
 bool physical;
 bool abstract;
 bool use_metadata;
 bool big_endian;

 private:
 // Disabled
 uvm_packer();

 }; // class uvm_packer

} // namespace uvm

5.1.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_packer.

5.1.3 Packing

5.1.3.1 pack_field

virtual void pack_field(const uvm_bitstream_t& value, int size);

27
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function pack_field shall pack an integral value (less than or equal to
UVM_MAX_STREAMBITS) into the packed array. The argument size is the number of bits of value to pack.

5.1.3.2 pack_field_int

virtual void pack_field_int(const uvm_integral_t& value, int size);

The member function pack_field_int shall pack the integral value (less than or equal to 64 bits) into the packed
array. The argument size is the number of bits of value to pack.

NOTE—This member function is the optimized version of pack_field is useful for sizes up to 64 bits.

5.1.3.3 pack_string

virtual void pack_string(const std::string& value);

The member function pack_string shall pack a string value into the packed array. When the variable metadata
is set, the packed string is terminated by a NULL character to mark the end of the string.

5.1.3.4 pack_time

virtual void pack_time(const sc_core::sc_time& value);

The member function pack_time shall pack a time value as 64 bits into the packed array.

5.1.3.5 pack_real

virtual void pack_real(double value);
virtual void pack_real(float value);

The member function pack_real shall pack a real value as binary vector into the packed array. When the
argument is a double precision floating point value of type double, a 64 bit binary vector shall be used. When
the argument is a single precision floating point value of type float, a 32 bit binary vector shall be used. The
convertion of the floating point representation to binary vector shall be according to IEEE Std. 754-20195.

5.1.3.6 pack_object

virtual void pack_object(const uvm_object& value);

The member function pack_object shall pack an object value into the packed array. A 4-bit header is inserted
ahead of the string to indicate the number of bits that was packed. If a NULL object was packed, then this
header shall be 0.

5.1.4 Unpacking

5.1.4.1 is_null

virtual bool is_null();

5 IEEE Standard for Floating-Point Arithmetic, https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html

28
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function is_null shall be used during unpack operations to peek at the next 4-bit chunk of the
pack data and determine if it is zero. If the next four bits are all zero, then the return value is a true; otherwise
it returns false.

NOTE—This member function is useful when unpacking objects, to decide whether a new object needs to
be allocated or not.

5.1.4.2 unpack_field_int

virtual uvm_integral_t unpack_field_int(int size);

The member function unpack_field_int shall unpack bits from the packed array and returns the bit-stream
that was unpacked. The argument size the number of bits to unpack; the maximum is 64 bits.

NOTE—This member function is a more efficient variant than unpack_field when unpacking into smaller
vectors.

5.1.4.3 unpack_field

virtual uvm_bitstream_t unpack_field(int size);

The member function unpack_field shall unpack bits from the packed array and returns the bit-stream
that was unpacked. The argument size is the number of bits to unpack; the maximum is defined by
UVM_MAX_STREAMBITS.

5.1.4.4 unpack_string

virtual std::string unpack_string(int num_chars = -1);

The member function unpack_string shall unpack a string. The argument num_chars specifies the number of
bytes that are unpacked into a string. If num_chars is -1, then unpacking stops on at the first NULL character
that is encountered.

5.1.4.5 unpack_time

virtual sc_core::sc_time unpack_time();

The member function unpack_time shall unpack the next 64 bits of the packed array and places them into
a time variable.

5.1.4.6 unpack_real

virtual double unpack_real();
virtual float unpack_real();

The member function unpack_real shall unpack the next 64 bits of the packed array and places them into a real
variable. The 64 bits of packed data shall be converted to double precision floating point notation according
to IEEE Std. 754-2019.

5.1.4.7 unpack_object

virtual void unpack_object(uvm_object& value);

29
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function unpack_object shall unpack an object and stores the result into value. Argument value
shall be an allocated object that has enough space for the data being unpacked. The first four bits of packed
data are used to determine if a null object was packed into the array. The member function is_null can be used
to peek at the next four bits in the pack array before calling this member function.

5.1.4.8 get_packed_size

virtual unsigned int get_packed_size() const;

The member function get_packed_size returns the number of bits that were packed.

5.1.5 operator<<, operator>>

The class uvm_packer defines operator<< for packing, and operator >> for unpacking basic C++ types,
SystemC types, the type uvm_object, and std::vector types. The supported data types are:

— Basic C++ types: bool, double, float, char, unsigned char, short, unsigned short, int, unsigned int, long,
unsigned long, long long, and unsigned long long.

— SystemC types: sc_dt::sc_logic, sc_dt::sc_bv, sc_dt::sc_lv, sc_dt::sc_int, sc_dt::sc_uint,
sc_dt::sc_signed, and sc_dt::sc_unsigned.

— String of type std::string and const char*
When packing, an additional NULL byte is packed after the string is packed when use_metadata is
set to true (see Section 5.1.6.3).

— Any type that derives from class uvm_object
— Vector types: std::vector<T>, where T is one of the supported data types listed above, and has an

operator<< defined for it:
When packing, additional 32 bits are packed indicating the size of the vector, prior to packing individual
elements.

An application may use operator<< or operator>> for the implementation of the member function do_pack
and do_unpack as part of an application-specific object definition derived from class uvm_object.

5.1.6 Data members (variables)

5.1.6.1 physical

bool physical;

The data member physical shall provides a filtering mechanism for fields. The abstract and physical settings
allow an object to distinguish between two different classes of fields. An application may, in the member
functions uvm_object::do_pack and uvm_object::do_unpack, test the setting of this field, to use it as a filter.
By default, the data member physical is set to true in the constructor of uvm_packer.

5.1.6.2 abstract

bool abstract;

The data member abstract shall provides a filtering mechanism for fields. The abstract and physical settings
allow an object to distinguish between two different classes of fields. An application may, in the member

30
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

functions uvm_object::do_pack and uvm_object::do_unpack, test the setting of this field, to use it as a filter.
By default, the data member abstract is set to false in the constructor of uvm_packer.

5.1.6.3 use_metadata

bool use_metadata;

The data member use_metadata shall indicate whether to encode metadata when packing dynamic data, or to
decode metadata when unpacking. Implementations of uvm_object::do_pack and uvm_object::do_unpack
should regard this bit when performing their respective operation. When set to true, metadata should be encoded
as follows:

— For strings, pack an additional NULL byte after the string is packed.
— For objects, pack 4 bits prior to packing the object itself. Use 0b0000 to indicate the object being packed

is null, otherwise pack 0b0001 (the remaining 3 bits are reserved).
— For queues, dynamic arrays, and associative arrays, pack 32 bits indicating the size of the array prior

to to packing individual elements.

By default, use_metadata is set to false.

5.1.6.4 big_endian

bool big_endian;

The data member big_endian shall determine the order that integral data is packed (using the member functions
pack_field, pack_field_int, pack_time, or pack_real) and how the data is unpacked from the pack array
(using the member functions unpack_field, unpack_field_int, unpack_time, or unpack_real). By default,
the data member is set to true in the constructor of uvm_packer. When the data member is set, data is associated
msb to lsb; otherwise, it is associated lsb to msb.

5.2 uvm_printer

The class uvm_printer shall provide the basic printer functionality, which shall be overloaded by derived
classes to support various pre-defined printing formats.

5.2.1 Class definition

namespace uvm {

 class uvm_printer
 {
 public:
 // Group: Printing types
 virtual void print_field(const std::string& name,
 const uvm_bitstream_t& value,
 int size = -1,
 uvm_radix_enum radix = UVM_NORADIX,
 const char* scope_separator = ".",
 const std::string& type_name = "") const;

 virtual void print_field_int(const std::string& name,
 const uvm_integral_t& value,
 int size = -1,
 uvm_radix_enum radix = UVM_NORADIX,
 const char* scope_separator = ".",
 const std::string& type_name = "") const;

 virtual void print_real(const std::string& name,
 double value,

31
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 const char* scope_separator = ".") const;

 virtual void print_real(const std::string& name,
 float value,
 const char* scope_separator = ".") const;

 virtual void print_object(const std::string& name,
 uvm_object* value,
 const char* scope_separator = ".") const;

 virtual void print_object_header(const std::string& name,
 uvm_object* value,
 const char* scope_separator = ".") const;

 virtual void print_string(const std::string& name,
 const std::string& value,
 const char* scope_separator = ".") const;

 virtual void print_time(const std::string& name,
 const sc_core::sc_time& value,
 const char* scope_separator = ".") const;

 virtual void print_generic(const std::string& name,
 const std::string& type_name,
 int size,
 const std::string& value,
 const char* scope_separator = ".") const;

 // Group: Printer subtyping
 virtual std::string emit();
 virtual std::string format_row(const uvm_printer_row_info& row);
 virtual std::string format_header();
 virtual std::string format_footer();

 std::string adjust_name(const std::string& id,
 const char* scope_separator = ".") const;

 virtual void print_array_header(const std::string& name,
 int size,
 const std::string& arraytype = "array",
 const char* scope_separator = ".") const;

 void print_array_range(int min, int max) const;
 void print_array_footer(int size = 0) const;

 // Data members
 uvm_printer_knobs knobs;

 protected:
 // Disabled
 uvm_printer();

 }; // class uvm_printer

} // namespace uvm

5.2.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_printer.

5.2.3 Printing types

5.2.3.1 print_field

virtual void print_field(const std::string& name,
 const uvm_bitstream_t& value,
 int size = -1,
 uvm_radix_enum radix = UVM_NORADIX,
 const char* scope_separator = ".",
 const std::string& type_name = "");

32
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function print_field shall print a field of type uvm_bitstream_t. The argument name defines the
name of the field. The argument value contains the value of the field. The argument size defines the number of
bits of the field. The argument radix defined radix to use for printing. The printer knob for radix is used if no
radix is specified. The argument scope_separator is used to find the leaf name since many printers only print
the leaf name of a field. Typical values for the separator are a “.” (dot) or “[” (open bracket).

5.2.3.2 print_field_int

virtual void print_field_int(const std::string& name,
 const uvm_integral_t& value,
 int size = -1,
 uvm_radix_enum radix = UVM_NORADIX,
 const char* scope_separator = ".",
 const std::string& type_name = "");

The member function print_field_int shall print an integer field. The argument name defines the name of the
field. The argument value contains the value of the field. The argument size defines the number of bits of the
field. The argument radix defined radix to use for printing. The printer knob for radix is used if no radix is
specified. The argument scope_separator is used to find the leaf name since many printers only print the leaf
name of a field. Typical values for the separator are a “.” (dot) or “[” (open bracket).

5.2.3.3 print_real

virtual void print_real(const std::string& name,
 double value,
 const char* scope_separator = ".");

The member function print_real shall print a real (double) field. The argument name defines the name of the
field. The argument value contains the value of the field. The argument scope_separator is used to find the
leaf name since many printers only print the leaf name of a field.

5.2.3.4 print_double

virtual void print_double(const std::string& name,
 double value,
 const char* scope_separator = ".");

The member function print_double shall print a real (double) field. The argument name defines the name of
the field. The argument value contains the value of the field. The argument scope_separator is used to find the
leaf name since many printers only print the leaf name of a field.

NOTE—This member function has been introduced to be more compatible with C++/SystemC coding styles
and types. The member function has identical functionality to print_real.

5.2.3.5 print_object

virtual void print_object(const std::string& name,
 const uvm_object& value,
 const char* scope_separator = ".") const;

The member function print_object shall print an object. The argument name defines the name of the object.
The argument value contains the reference to the object. The argument scope_separator is used to find the leaf
name since many printers only print the leaf name of the object.

Whether the object is recursed depends on a variety of knobs, such as the depth knob; if the current depth
is at or below the depth setting, then the object is not recursed. By default, the children of objects of type

33
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm_component are printed. To disable automatic printing of these objects, an application can set the member
function uvm_component::print_enabled to false for the specific children to be excluded from printing.

5.2.3.6 print_object_header

virtual void print_object_header(const std::string& name,
 const uvm_object& value,
 const char* scope_separator = ".") const;

The member function print_object_header shall print an object header. The argument name defines the name
of the object. The argument value contains the reference to the object. The argument scope_separator is used
to find the leaf name since many printers only print the leaf name of a field.

5.2.3.7 print_string

virtual void print_string(const std::string& name,
 const std::string& value,
 const char* scope_separator = ".");

The member function print_string shall print a string field. The argument name defines the name of the field.
The argument value contains the value of the field. The argument scope_separator is used to find the leaf name
since many printers only print the leaf name of a field.

5.2.3.8 print_time

virtual void print_time(const std::string& name,
 const sc_core::sc_time& value,
 const char* scope_separator = ".");

The member function print_time shall print the time. The argument name defines the name of the field. The
argument value contains the value of the field. The argument scope_separator is used to find the leaf name
since many printers only print the leaf name of a field.

5.2.3.9 print_generic

virtual void print_generic(const std::string& name,
 const std::string& type_name,
 int size,
 const std::string& value,
 const char* scope_separator = ".");

The member function print_generic shall print a field using the arguments name, type_name, size, and value.
The argument scope_separator is used to find the leaf name since many printers only print the leaf name of
a field.

5.2.4 Printer subtyping

5.2.4.1 emit

virtual std::string emit();

The member emit shall return a string representing the contents of an object in a format defined by an extension
of this object.

34
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.2.4.2 format_row

virtual std::string format_row(const uvm_printer_row_info& row);

The member format_row shall offer a hook for producing custom output of a single field (row).

5.2.4.3 format_header

virtual std::string format_header();

The member function format_header shall offer a hook to override the base header with a custom header.

5.2.4.4 format_footer

virtual std::string format_footer();

The member format_footer shall offer a hook to override the base footer with a custom footer.

5.2.4.5 adjust_name

std::string adjust_name(const std::string& id,
 const char* scope_separator = ".") const;

The member function adjust_name shall print a field’s name, or id , which is the full instance name. The
intent of the separator is to mark where the leaf name starts if the printer is configured to print only the leaf
name of the identifier.

5.2.4.6 print_array_header

virtual void print_array_header(const std::string& name,
 int size,
 const std::string& arraytype = "array",
 const char* scope_separator = ".") const;

The member function print_array_header shall print the header of an array. This member function shall be
called before each individual element is printed. The member function print_array_footer shall be called to
mark the completion of array printing.

5.2.4.7 print_array_range

void print_array_range(int min, int max) const;

The member function print_array_range shall print a range using ellipses for values. This
member function is used when honoring the array knobs for partial printing of large
arrays, uvm_printer_knobs::begin_elements and uvm_printer_knobs::end_elements. This member
function should be called after uvm_printer_knobs::begin_elements have been printed and before
uvm_printer_knobs::end_elements have been printed.

5.2.4.8 print_array_footer

void print_array_footer(int size = 0) const;

35
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function print_array_footer shall print the footer of an array. This member function marks the
end of an array print. Generally, there is no output associated with the array footer, but this member function
lets the printer know that the array printing is complete.

5.2.5 Data members

5.2.5.1 knobs

uvm_printer_knobs knobs;

The data member knobs shall provide access to the variety of knobs associated with a specific printer instance.

5.3 uvm_table_printer

The class uvm_table_printer shall provide a pre-defined printing output in a tabular format.

5.3.1 Class definition

namespace uvm {

 class uvm_table_printer : public uvm_printer
 {
 public:
 // Constructor
 uvm_table_printer();

 // Member function
 virtual std::string emit();

 }; // class uvm_table_printer

} // namespace uvm

5.3.2 Constructor

uvm_table_printer();

The constructor shall create a new instance of type uvm_table_printer.

5.3.3 emit

The member function emit shall format the collected information for printing into a table format.

5.4 uvm_tree_printer

The class uvm_tree_printer shall provide a pre-defined printing output in a tree format.

5.4.1 Class definition

namespace uvm {

 class uvm_tree_printer : public uvm_printer
 {
 public:
 // Constructor
 uvm_tree_printer();

36
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 // Member function
 virtual std::string emit();

 }; // class uvm_tree_printer

} // namespace uvm

5.4.2 Constructor

uvm_tree_printer();

The constructor shall create a new instance of type uvm_tree_printer.

5.4.3 emit

The member function emit shall format the collected information for printing into a hierarchical tree format.

5.5 uvm_line_printer

The class uvm_line_printer shall provide a pre-defined printing output in a line format.

5.5.1 Class definition

namespace uvm {

 class uvm_line_printer : public uvm_printer
 {
 public:
 // Constructor

 uvm_line_printer();

 // Member function
 virtual std::string emit();

 }; // class uvm_line_printer

} // namespace uvm

5.5.2 Constructor

uvm_line_printer();

The constructor shall create a new instance of type uvm_line_printer.

5.5.3 emit

The member function emit shall format the collected information for printing into a line format, which contains
no line-feeds and indentation.

5.6 uvm_comparer

The class uvm_comparer shall provide a policy object for doing comparisons. The policies determine how
miscompares are treated and counted. Results of a comparison are stored in the comparer object. The member
functions uvm_object::compare and uvm_object::do_compare are passed a uvm_comparer policy object.

37
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.1 Class definition

namespace uvm {

 class uvm_comparer
 {
 public:
 // Member functions
 virtual bool compare_field(const std::string& name,
 const uvm_bitstream_t& lhs,
 const uvm_bitstream_t& rhs,
 int size,
 uvm_radix_enum radix = UVM_NORADIX) const;

 virtual bool compare_field_int(const std::string& name,
 const uvm_integral_t& lhs,
 const uvm_integral_t& rhs,
 int size,
 uvm_radix_enum radix = UVM_NORADIX) const;

 virtual bool compare_field_real(const std::string& name,
 double lhs,
 double rhs) const;

 virtual bool compare_field_real(const std::string& name,
 float lhs,
 float rhs) const;

 virtual bool compare_object(const std::string& name,
 const uvm_object& lhs,
 const uvm_object& rhs) const;

 virtual bool compare_string(const std::string& name,
 const std::string& lhs,
 const std::string& rhs) const;

 void print_msg(const std::string& msg) const;

 // Group: Comparer settings
 void set_policy(uvm_recursion_policy_enum policy = UVM_DEFAULT_POLICY);
 uvm_recursion_policy_enum get_policy() const;
 void set_max_messages(unsigned int num = 1);
 unsigned int get_max_messages() const;
 void set_verbosity(unsigned int verbosity = UVM_LOW);
 unsigned int get_verbosity() const;
 void set_severity(uvm_severity sev = UVM_INFO);
 uvm_severity get_severity () const;
 void set_miscompare_string(const std::string& miscompares = "");
 std::string get_miscompare_string() const;
 void set_field_attribute(uvm_field_enum attr = UVM_PHYSICAL);
 uvm_field_enum get_field_attribute() const;
 void compare_type(bool enable = true);
 unsigned int get_result() const;

 private:
 // Disabled
 uvm_comparer();

 }; // class uvm_comparer

} // namespace uvm

5.6.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_comparer.

5.6.3 Member functions

38
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.3.1 compare_field

virtual bool compare_field(const std::string& name,
 const uvm_bitstream_t& lhs,
 const uvm_bitstream_t& rhs,
 int size,
 uvm_radix_enum radix = UVM_NORADIX) const;

The member function compare_field shall compare two integral values. The argument name is used for
purposes of storing and printing a miscompare. The left-hand-side lhs and right-hand-side rhs objects are the
two objects used for comparison. The argument size indicates the number of bits to compare. size shall be
less than or equal to UVM_MAX_STREAMBITS. The argument radix is used for reporting purposes, the
default radix is hex.

5.6.3.2 compare_field_int

virtual bool compare_field_int(const std::string& name,
 const uvm_integral_t& lhs,
 const uvm_integral_t& rhs,
 int size,
 uvm_radix_enum radix = UVM_NORADIX) const;

The member function compare_field_int shall compare two integral values. This member function is same as
compare_field except that the arguments are small integers, less than or equal to 64 bits. It is automatically
called by compare_field if the operand size is less than or equal to 64.

The argument name is used for purposes of storing and printing a miscompare. The left-hand-side lhs and
right-hand-side rhs objects are the two objects used for comparison. The argument size indicates the number
of bits to compare. size shall be less than or equal to 64. The argument radix is used for reporting purposes,
the default radix is hex.

5.6.3.3 compare_field_real

virtual bool compare_field_real(const std::string& name,
 double lhs,
 double rhs) const;

virtual bool compare_field_real(const std::string& name,
 float lhs,
 float rhs) const;

The member function compare_field_real shall compare two real numbers, represented by type double or
float, respetively. The left-hand-side lhs and right-hand-side rhs arguments are used for comparison.

5.6.3.4 compare_object

virtual bool compare_object(const std::string& name,
 const uvm_object& lhs,
 const uvm_object& rhs) const;

The member function compare_object shall compare two class objects using the data member policy to
determine whether the comparison should be deep, shallow, or reference. The argument name is used for
purposes of storing and printing a miscompare. The lhs and rhs objects are the two objects used for comparison.
The data member check_type determines whether or not to verify the object types match (the return from
lhs.get_type_name() matches rhs.get_type_name()).

39
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.3.5 compare_string

virtual bool compare_string(const std::string& name,
 const std::string& lhs,
 const std::string& rhs) const;

The member function compare_string shall compare two two string variables. The argument name is used for
purposes of storing and printing a miscompare. The lhs and rhs objects are the two objects used for comparison.

5.6.3.6 print_msg

void print_msg(const std::string& msg) const;

The member function print_msg shall cause the error count to be incremented and the message passed as
argument to be appended to the miscompares string (a newline is used to separate messages). If the message
count is less than the data member show_max setting, then the message is printed to standard-out using the
current verbosity (see Section 5.6.4.5) and severity (see Section 5.6.4.7) settings.

5.6.4 Comparer settings

5.6.4.1 set_policy

void set_policy(uvm_recursion_policy_enum policy = UVM_DEFAULT_POLICY);

The member function set_policy shall set the comparison policy. The following arguments are
valid: UVM_DEEP, UVM_REFERENCE, or UVM_SHALLOW. The default policy shall be set to
UVM_DEFAULT_POLICY.

5.6.4.2 get_policy

uvm_recursion_policy_enum get_policy() const;

The member function get_policy shall return the comparison policy.

5.6.4.3 set_max_messages

void set_max_messages(unsigned int num = 1);

The member function set_max_messages sets the maximum number of messages to send to the printer for
miscompares of an object. The default number of messages shall be set to one.

5.6.4.4 get_max_messages

unsigned int get_max_messages() const;

The member function get_max_messages shall return the maximum number of messages to send to the printer
for miscompares of an object.

5.6.4.5 set_verbosity

void set_verbosity(unsigned int verbosity = UVM_LOW);

40
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_verbosity shall set the verbosity for printed messages. The verbosity setting is used
by the messaging mechanism to determine whether messages should be suppressed or shown. The default
verbosity shall be set to UVM_LOW.

5.6.4.6 get_verbosity

unsigned int get_verbosity() const;

The member function get_verbosity shall return the verbosity for printed messages.

5.6.4.7 set_severity

void set_severity(uvm_severity sev = UVM_INFO);

The member function set_severity shall set the severity for printed messages. The severity setting is used by
the messaging mechanism for printing and filtering messages. The default severity shall be set to UVM_INFO.

5.6.4.8 get_severity

uvm_severity get_severity() const;

The member function get_severity shall return the severity for printed messages.

5.6.4.9 set_miscompare_string

void set_miscompare_string(const std::string& miscompares = "");

The member function set_miscompare_string shall set the miscompare string. This string is reset to an empty
string when a comparison is started. The string holds the last set of miscompares that occurred during a
comparison. The default miscompare string shall be empty.

5.6.4.10 get_miscompare_string

std::string get_miscompare_string() const;

The member function get_miscompare_string shall return the last set of miscompares that occurred during
a comparison.

5.6.4.11 set_field_attribute

void set_field_attribute(uvm_field_enum attr = UVM_PHYSICAL);

The member function set_field_attribute shall set the field attribute to UVM_PHYSICAL or
UVM_ABSTRACT. The physical and abstract settings allow an object to distinguish between these two
different classes of fields.

NOTE—An application can use the callback uvm_object::do_compare to check the field attribute if it wants
to use it as a filter.

41
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.4.12 get_field_attribute

uvm_field_enum get_field_attribute() const;

The member function get_field_attribute shall return the field attribute being UVM_PHYSICAL or
UVM_ABSTRACT.

5.6.4.13 compare_type

void compare_type(bool enable = true);

The member function compare_type shall determine whether the type, given by
uvm_object::get_type_name, is used to verify that the types of two objects are the same. If enabled, the
member function compare_object is called. By default, type checking shall be enabled.

NOTE—In some cases an application may disable type checking, when the two operands are related by
inheritance but are of different types.

5.6.4.14 get_result

unsigned int get_result() const;

The member function get_result shall return the number of miscompares for a given compare operation. An
application can use the result to determine the number of miscompares that were found.

5.7 Default policy objects

5.7.1 uvm_default_table_printer

extern uvm_table_printer* uvm_default_table_printer;

The global object uvm_default_table_printer shall define a handle to an object of type uvm_table_printer,
which can be used with uvm_object::do_print to get tabular style printing.

5.7.2 uvm_default_tree_printer

extern uvm_tree_printer* uvm_default_tree_printer;

The global object uvm_default_tree_printer shall define a handle to an object of type uvm_tree_printer,
which can be used with uvm_object::do_print to get a multi-line tree style printing.

5.7.3 uvm_default_line_printer

extern uvm_line_printer* uvm_default_line_printer;

The global object uvm_default_line_printer shall define a handle to an object of type uvm_line_printer,
which can be used with uvm_object::do_print to get a single-line style printing.

42
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.7.4 uvm_default_printer

extern uvm_printer* uvm_default_printer;

The global object uvm_default_printer shall define the default printer policy, which shall be set to
uvm_default_table_printer. An application can redefine the default printer, by setting it to any legal
uvm_printer derived type, including the global line, tree, and table printers in the previous sections.

5.7.5 uvm_default_packer

extern uvm_printer* uvm_default_packer;

The global object uvm_default_packer shall define the default packer policy. It shall be used when calls to
uvm_object::pack and uvm_object::unpack do not specify a packer policy.

5.7.6 uvm_default_comparer

extern uvm_comparer* uvm_default_comparer;

The global object uvm_default_comparer shall define the default comparer policy. It shall be used when calls
to uvm_object::compare do not specify a comparer policy.

5.7.7 uvm_default_recorder

extern uvm_recorder* uvm_default_recorder;

The global object uvm_default_recorder shall define the default recorder policy. It shall be used when calls
to uvm_object::record do not specify a recorder policy.

43
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6. Registry and factory classes

The registry and factory classes offer the interface to register and use UVM objects and components via the
factory.

The following classes are defined:
— uvm_object_wrapper
— uvm_object_registry
— uvm_component_registry
— uvm_factory
— uvm_default_factory

The class uvm_object_wrapper forms the base class for the registry classes uvm_object_registry and
uvm_component_registry, which act as lightweight proxies for UVM objects and components, respectively.

UVM object and component types are registered with the factory via typedef or macro invocation. When the
application requests a new object or component from the factory, the factory determines what type of object to
create based on its configuration, and asks that type’s proxy to create an instance of the type, which is returned
to the application.

6.1 uvm_object_wrapper

The class uvm_object_wrapper shall provide an abstract interface for creating object and component proxies.
Instances of these lightweight proxies, representing every object or component derived from uvm_object or
uvm_component respectively in the test environment, are registered with the uvm_factory. When the factory
is called upon to create an object or component, it shall find and delegate the request to the appropriate proxy.

6.1.1 Class definition

namespace uvm {

 class uvm_object_wrapper
 {
 public:
 virtual uvm_object* create_object(const std::string& name = "");
 virtual uvm_component* create_component(const std::string& name,
 uvm_component* parent);
 virtual const std::string get_type_name() const = 0;
 };

} // namespace uvm

6.1.2 Member functions

6.1.2.1 create_object

virtual uvm_object* create_object(const std::string& name = "");

The member function create_object shall create a new object with the optional name passed as argument.
An object proxy (e.g., uvm_object_registry<T>) implements this member function to create an object of a
specific type, T (see Section 6.2).

44
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.1.2.2 create_component

virtual uvm_component* create_component(const std::string& name,
 uvm_component* parent);

The member function create_component shall create a new component, by passing to its constructor the
given name and parent. The component proxy (e.g. uvm_component_registry<T>) implements this member
function to create a component of a specific type, T (see Section 6.3).

6.1.2.3 get_type_name

virtual const std::string get_type_name() const = 0;

The implementation of the pure virtual member function get_type_name shall return the type name of the
object created by create_component or create_object. The factory uses this name when matching against the
requested type in name-based lookups.

6.2 uvm_object_registry

The class uvm_object_registry shall provide a lightweight proxy for a uvm_object of type T. The proxy
enables efficient registration with the uvm_factory. Without it, registration would require an instance of the
object itself.

The macros UVM_OBJECT_UTILS or UVM_OBJECT_PARAM_UTILS shall create the appropriate
class uvm_object_registry necessary to register that particular object with the factory.

6.2.1 Class definition

namespace uvm {

 template <typename T = uvm_object>
 class uvm_object_registry<T> : public uvm_object_wrapper
 {
 public:
 virtual uvm_object* create_object(const std::string& name = "");
 virtual const std::string get_type_name() const;
 static uvm_object_registry<T>* get();

 static T* create(const std::string& name = "",
 uvm_component* parent = NULL,
 const std::string& contxt = "");

 static void destroy§(T* obj);

 static void set_type_override(uvm_object_wrapper* override_type,
 bool replace = true);

 static void set_inst_override(uvm_object_wrapper* override_type,
 const std::string& inst_path,
 uvm_component* parent = NULL);
 }; // class uvm_object_registry

} // namespace uvm

6.2.2 Template parameter T

The template parameter T specifies the object type of the objects being registered. The object type shall be a
derivative of class uvm_object.

45
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.2.3 Member functions

6.2.3.1 create_object

virtual uvm_object* create_object(const std::string& name = "");

The member function create_object shall create an object of type T and returns it as a handle to a uvm_object.
This is an overload of the member function in uvm_object_wrapper. It is called by the factory after
determining the type of object to create. An application shall not call this member function directly. Instead,
an application shall call the static member function create.

6.2.3.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object. This member function
overloads the member function in uvm_object_wrapper.

6.2.3.3 get

static uvm_object_registry<T>* get();

The member function get shall return the singleton instance of this type. Type-based factory operation depends
on there being a single proxy instance for each registered type.

6.2.3.4 create

static T* create(const std::string& name = "",
 uvm_component* parent = NULL,
 const std::string& contxt = "");

The member function create shall return a new instance of the object type, T, represented by this proxy, subject
to any factory overrides based on the context provided by the parent’s full name. The new instance shall have
the given leaf name name, if provided as argument. The argument contxt, if supplied, supersedes the parent’s
context.

6.2.3.5 destroy§

static void destroy§(T* obj);

The member function destroy shall remove the object given as argument from the UVM object registry and
deallocates its memory location. A warning shall be generated if the object does not exist in the registry.

NOTE—An application should always call the static member function destroy when using the static member
function create to avoid memory leakage.

6.2.3.6 set_type_override

static void set_type_override(uvm_object_wrapper* override_type,
 bool replace = true);

46
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_type_override shall configure the factory to create an object of the type represented
by override_type whenever a request is made to create an object of the type represented by this proxy, provided
no instance override applies. The original type, T, is typically a super class of the override type.

When argument replace is set to true, a previous override on original_type is replaced, otherwise a previous
override, if any, remains intact.

6.2.3.7 set_inst_override

static void set_inst_override(uvm_object_wrapper* override_type,
 const std::string& inst_path,
 uvm_component* parent = NULL);

The member function set_inst_override shall configure the factory to create an object of the type represented
by argument override_type whenever a request is made to create an object of the type represented by this proxy,
with matching instance paths. The original type, T, is typically a super class of the override type.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If argument parent is specified, argument
inst_path is interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path may
contain wildcards for matching against multiple contexts.

6.3 uvm_component_registry

The class uvm_component_registry shall provide a lightweight proxy for a uvm_component of type T. The
proxy enables efficient registration with the uvm_factory. Without it, registration would require an instance
of the component itself.

The macros UVM_COMPONENT_UTILS and UVM_COMPONENT_PARAM_UTILS shall create the
appropriate class uvm_component_registry necessary to register that particular component with the factory.

6.3.1 Class definition

namespace uvm {

 template <typename T = uvm_component>
 class uvm_component_registry : public uvm_object_wrapper
 {
 public:
 virtual uvm_component* create_component(const std::string& name,
 uvm_component* parent);

 virtual const std::string get_type_name() const;
 static uvm_component_registry<T>* get();

 static T* create(const std::string& name = "",
 uvm_component* parent = NULL,
 const std::string& contxt = "");

 static void destroy§(T* obj);

 static void set_type_override(uvm_object_wrapper* override_type,
 bool replace = true);

 static void set_inst_override(uvm_object_wrapper* override_type,
 const std::string& inst_path,
 uvm_component* parent = NULL);
 }; // class uvm_component_registry

} // namespace uvm

47
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.3.2 Template parameter T

The template parameter T specifies the object type of the components being registered. The object type shall
be a derivative of class uvm_component.

6.3.3 Member functions

6.3.3.1 create_component

virtual uvm_component* create_component(const std::string& name,
 uvm_component* parent);

The member function create_component shall create an object of type T having the provided name and
parent, and returns it as a handle to a uvm_component. This is an overload of the member function in
uvm_object_wrapper. It is called by the factory after determining the type of component to create. An
application shall not call this member function directly. Instead, an application shall call the static member
function create.

6.3.3.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the component. This member function
overloads the member function in uvm_object_wrapper.

6.3.3.3 get

static uvm_component_registry<T>* get();

The member function get shall return the singleton instance of this type. Type-based factory operation depends
on there being a single proxy instance for each registered type.

6.3.3.4 create

static T* create(const std::string& name = "",
 uvm_component* parent = NULL,
 const std::string& contxt = "");

The member function create shall return a new instance of the component type, T, represented by this proxy,
subject to any factory overrides based on the context provided by the parent’s full name. The new instance
shall have the given leaf name name, if provided as argument. The argument contxt, if supplied, supersedes
the parent’s context.

6.3.3.5 destroy§

static void destroy§(T* obj);

The member function destroy shall remove the object given as argument from the UVM component registry
and deallocates its memory location. A warning shall be generated if the component does not exist in the
registry.

NOTE—An application should always call the static member function destroy when using the static member
function create to avoid memory leakage.

48
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.3.3.6 set_type_override

static void set_type_override(uvm_object_wrapper* override_type,
 bool replace = true);

The member function set_type_override shall configure the factory to create a component of the type
represented by argument override_type whenever a request is made to create a component of the type
represented by this proxy, provided no instance override applies. The override type shall be derived from the
original type, T.

When argument replace is set to true, a previous override on original_type is replaced, otherwise a previous
override, if any, remains intact.

6.3.3.7 set_inst_override

static void set_inst_override(uvm_object_wrapper* override_type,
 const std::string& inst_path,
 uvm_component* parent = NULL);

The member function set_inst_override shall configure the factory to create a component of the type
represented by argument override_type whenever a request is made to create a component of the type
represented by this proxy, with matching instance paths. The override type shall be derived from the original
type, T.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If argument parent is specified, argument
inst_path is interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path may
contain wildcards for matching against multiple contexts.

6.4 uvm_factory

The class uvm_factory implements a factory pattern. A singleton factory instance is created for a given
simulation run. Object and component types are registered with the factory using proxies to the actual objects
and components being created. The classes uvm_object_registry<T> and uvm_component_registry<T> are
used to proxy objects of type uvm_object and uvm_component respectively. These registry classes both use
the uvm_object_wrapper as abstract base class.

6.4.1 Class definition

namespace uvm {

 class uvm_factory {
 public:

 // Group: Access and registration

 static uvm_factory* get();

 void do_register°(uvm_object_wrapper* obj) = 0;

 // Group: Type & instance overrides

 virtual void set_inst_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 const std::string& full_inst_path) = 0;

 virtual void set_inst_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 const std::string& full_inst_path) = 0;

49
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void set_type_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 bool replace = true) = 0;

 virtual void set_type_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 bool replace = true) = 0;

 // Group: Creation

 virtual uvm_object* create_object_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "") = 0;

 virtual uvm_object* create_object_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "") = 0;

 virtual uvm_component* create_component_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL) = 0;

 virtual uvm_component* create_component_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL) = 0;

 // Group: Debug

 virtual void debug_create_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "") = 0;

 virtual void debug_create_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "") = 0;

 virtual uvm_object_wrapper* find_override_by_type(uvm_object_wrapper* requested_type,
 const std::string& full_inst_path) = 0;

 virtual uvm_object_wrapper* find_override_by_name(const std::string& requested_type_name,
 const std::string& full_inst_path) = 0;

 virtual void print(int all_types = 1) = 0;

 }; // class uvm_factory

} // namespace uvm

6.4.2 Access and registration

6.4.2.1 get

static uvm_factory* get();

The member function get shall return thisuvm_factory.

6.4.2.2 do_register° (register†)

virtual void do_register°(uvm_object_wrapper* obj) = 0;

The member function do_register° shall register the given proxy object, obj, with the factory. The proxy object
is a lightweight substitute for the component or object it represents. When the factory needs to create an object
of a given type, it calls the proxy’s member function create_object or create_component to do so.

50
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

When doing name-based operations, the factory calls the proxy’s member function get_type_name to
match against the argument requested_type_name in subsequent calls to create_component_by_name and
create_object_by_name. If the proxy object’s member function get_type_name returns the empty string,
name-based lookup is effectively disabled.

NOTE—An application needs to invoke the macros UVM_OBJECT_UTILS,
UVM_OBJECT_PARAM_UTILS, UVM_COMPONENT_UTILS, or
UVM_COMPONENT_PARAM_UTILS to register a particular object or component respectively with the
factory.

6.4.3 Type and instance overrides

6.4.3.1 set_inst_override_by_type

virtual void set_inst_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 const std::string& full_inst_path) = 0;

The member function set_inst_override_by_type shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type using a context that matches
full_inst_path. The override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

The argument full_inst_path is matched against the concatenation of parent instance path and name (
parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards
(‘*’ and ‘?’) such that a single instance override can be applied in multiple contexts. An argument full_inst_path
of ‘*’ is effectively a type override, as it matches all contexts.

When the factory processes instance overrides, the instance queue is processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides.

6.4.3.2 set_inst_override_by_name

virtual void set_inst_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 const std::string& full_inst_path) = 0;

The member function set_inst_override_by_name shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type using a context that matches
full_inst_path. The original type is typically a super class of the override type.

The original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Future calls to any of the member functions create_object_by_type, create_object_by_name,
create_component_by_type or create_component_by_name with the same string and matching instance
path shall produce the type represented by override_type_name, which shall be preregistered with the factory.

The argument full_inst_path is matched against the concatenation of parent instance path and name (
parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards
(‘*’ and ‘?’) such that a single instance override can be applied in multiple contexts. An argument full_inst_path
of ‘*’ is effectively a type override, as it matches all contexts.

51
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

When the factory processes instance overrides, the instance queue is processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides.

6.4.3.3 set_type_override_by_type

virtual void set_type_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 bool replace = true) = 0;

The member function set_type_override_by_type shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type, provided no instance override
applies. The override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

When argument replace is set to true, a previous override on original_type is replaced, otherwise a previous
override, if any, remains intact.

6.4.3.4 set_type_override_by_name

virtual void set_type_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 bool replace = true) = 0;

The member function set_type_override_by_name shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type, provided no instance override
applies. The override type shall be derived from the original type, T.

The original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Future calls to any of the member functions create_object_by_type, create_object_by_name,
create_component_by_type or create_component_by_name with the same string and matching instance
path shall produce the type represented by override_type_name, which shall be preregistered with the factory.

When argument replace is set to true, a previous override on original_type_name is replaced, otherwise a
previous override, if any, remains intact.

6.4.4 Creation

6.4.4.1 create_object_by_type

virtual uvm_object* create_object_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "") = 0;

The member function create_object_by_type shall create and return an object of the requested type, which is
specified by argument requested_type. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to
search for an instance override. Newly created object shall have the given name, if provided.

6.4.4.2 create_object_by_name

virtual uvm_object* create_object_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",

52
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 const std::string& name = "") = 0;

The member function create_object_by_name shall create and return an object of the requested type, which is
specified by argument requested_type_name. The requested type shall be registered with the factory with that
name prior to the request. If the factory does not recognize the requested_type_name, an error is produced and
the member function shall return NULL. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to
search for an instance override. If no instance override is found, the factory then searches for a type override.
Newly created object shall have the given name, if provided.

NOTE—The convenience function create_object is available in the class uvm_component for the creation
of an object (see Section 7.1.8.2). Alternatively, an application can create an object by using the static member
function create via the uvm_object_registry, which is made available via the macro UVM_OBJECT_UTILS
or UVM_OBJECT_PARAM_UTILS.

6.4.4.3 create_component_by_type

virtual uvm_component* create_component_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL) = 0;

The member function create_component_by_type shall create and return a component of the requested type,
which is specified by argument requested_type. A requested component shall be derived from the base class
uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this
argument is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is
used to search for an instance override. Newly created components shall have the given name and parent.

6.4.4.4 create_component_by_name

virtual uvm_component* create_component_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL) = 0;

The member function create_component_by_name shall create and return a component of the requested type,
which is specified by argument requested_type_name. The requested type shall be registered with the factory
with that name prior to the request. If the factory does not recognize the requested_type_name, an error is
produced and the member function shall return NULL. A requested component shall be derived from the base
class uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this
argument is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is
used to search for an instance override. If no instance override is found, the factory then searches for a type
override. Newly created components shall have the given name and parent.

NOTE—The convenience function create_component is available in the class uvm_component for the
creation of a component (see Section 7.1.8.1). Alternatively, an application can create an object by using
the static member function create via the uvm_component_registry which is made available via the macro
UVM_COMPONENT_UTILS or UVM_COMPONENT_PARAM_UTILS.

53
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.4.5 Debug

6.4.5.1 debug_create_by_type

virtual void debug_create_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "") = 0;

The member function debug_create_by_type shall perform the same search algorithm as the member function
create_object_by_type, but it shall not create a new object. Instead, it provides detailed information about
what type of object it would return, listing each override that was applied to arrive at the result. Interpretation
of the arguments are exactly as with the member function create_object_by_type.

6.4.5.2 debug_create_by_name

virtual void debug_create_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "") = 0;

The member function debug_create_by_name shall perform the same search algorithm as the member
function create_object_by_name, but it shall not create a new object. Instead, it provides detailed information
about what type of object it would return, listing each override that was applied to arrive at the result.
Interpretation of the arguments are exactly as with the member function create_object_by_name.

6.4.5.3 find_override_by_type

virtual uvm_object_wrapper* find_override_by_type(uvm_object_wrapper* requested_type,
 const std::string& full_inst_path) = 0;

The member function find_override_by_type shall return the proxy to the object that would be created given
the arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf
name of the object to be created.

6.4.5.4 find_override_by_name

virtual uvm_object_wrapper* find_override_by_name(const std::string& requested_type_name,
 const std::string& full_inst_path) = 0;

The member function find_override_by_name shall return the proxy to the object that would be created given
the arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf
name of the object to be created.

6.4.5.5 print

virtual void print(int all_types = 1) = 0;

The member function print shall print the state of the uvm_factory, including registered types, instance
overrides, and type overrides.

When argument all_types is set to zero, only type and instance overrides are displayed. When all_types is set
to 1 (default), all registered user-defined types are printed as well, provided they have names associated with
them. When all_types is set to 2, the UVM types (prefixed with uvm_) are included in the list of registered
types.

54
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.5 uvm_default_factory

The class uvm_default_factory shall provide the default implementation of the UVM factory.

6.5.1 Class definition

namespace uvm {

 class uvm_default_factory : public uvm_factory
 {
 public:

 // Group: Registration

 virtual void do_register°(uvm_object_wrapper* obj);

 // Group: Type & instance overrides

 virtual void set_inst_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 const std::string& full_inst_path);

 virtual void set_inst_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 const std::string& full_inst_path);

 virtual void set_type_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 bool replace = true);

 virtual void set_type_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 bool replace = true);

 // Group: Creation

 virtual uvm_object* create_object_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

 virtual uvm_object* create_object_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

 virtual uvm_component* create_component_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL);

 virtual uvm_component* create_component_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL);

 // Group: Debug

 virtual void debug_create_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

 virtual void debug_create_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

 virtual uvm_object_wrapper* find_override_by_type(uvm_object_wrapper* requested_type,
 const std::string& full_inst_path);

 virtual uvm_object_wrapper* find_override_by_name(const std::string& requested_type_name,
 const std::string& full_inst_path);

 virtual void print(int all_types = 1);

 }; // class uvm_default_factory

55
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} // namespace uvm

6.5.2 Registration

6.5.2.1 do_register° (register†)

virtual void do_register°(uvm_object_wrapper* obj);

The member function do_register° shall register the given proxy object, obj, with the factory.

6.5.3 Type and instance overrides

6.5.3.1 set_inst_override_by_type

virtual void set_inst_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 const std::string& full_inst_path);

The member function set_inst_override_by_type shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type using a context that matches
full_inst_path.

6.5.3.2 set_inst_override_by_name

virtual void set_inst_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 const std::string& full_inst_path);

The member function set_inst_override_by_name shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type using a context that matches
full_inst_path.

6.5.3.3 set_type_override_by_type

virtual void set_type_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 bool replace = true);

The member function set_type_override_by_type shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type, provided no instance
override applies.

6.5.3.4 set_type_override_by_name

virtual void set_type_override_by_name(const std::string& original_type_name,
 const std::string& override_type_name,
 bool replace = true);

The member function set_type_override_by_name shall configure the factory to create an object of the
override’s type whenever a request is made to create an object of the original type, provided no instance
override applies.

56
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.5.4 Creation

6.5.4.1 create_object_by_type

virtual uvm_object* create_object_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

The member function create_object_by_type shall create and return an object of the requested type, specified
by type.

6.5.4.2 create_object_by_name

virtual uvm_object* create_object_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

The member function create_object_by_name shall create and return an object of the requested type, specified
by name.

6.5.4.3 create_component_by_type

virtual uvm_component* create_component_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL);

The member function create_component_by_type shall create and return a component of the requested type,
specified by type.

6.5.4.4 create_component_by_name

virtual uvm_component* create_component_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "",
 uvm_component* parent = NULL);

The member function create_component_by_name shall create and return a component of the requested type,
specified by name.

6.5.5 Debug

6.5.5.1 debug_create_by_type

virtual void debug_create_by_type(uvm_object_wrapper* requested_type,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

The member function debug_create_by_type shall perform the same search algorithm as the member function
create_object_by_type, but it shall not create a new object.

6.5.5.2 debug_create_by_name

virtual void debug_create_by_name(const std::string& requested_type_name,
 const std::string& parent_inst_path = "",
 const std::string& name = "");

57
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function debug_create_by_name shall perform the same search algorithm as the member
function create_object_by_name, but it shall not create a new object.

6.5.5.3 find_override_by_type

virtual uvm_object_wrapper* find_override_by_type(uvm_object_wrapper* requested_type,
 const std::string& full_inst_path);

The member function find_override_by_type shall return the proxy to the object that would be created given
the arguments.

6.5.5.4 find_override_by_name

virtual uvm_object_wrapper* find_override_by_name(const std::string& requested_type_name,
 const std::string& full_inst_path);

The member function find_override_by_name shall return the proxy to the object that would be created given
the arguments.

6.5.5.5 print

virtual void print(int all_types = 1);

The member function print shall print the state of the uvm_factory, including registered types, instance
overrides, and type overrides.

58
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7. Component hierarchy classes

The UVM components form the foundation of the UVM. They are used to assemble the actual verification
environment in a hierarchical and modular fashion, offering a basic set of building blocks such as sequencers,
drivers, monitors, scoreboards, and other components. The UVM class library provides a set of predefined
component types, all derived directly or indirectly from class uvm_component. The following classes are
defined:

— uvm_component
— uvm_agent
— uvm_driver
— uvm_monitor
— uvm_env
— uvm_scoreboard
— uvm_subscriber
— uvm_test
— uvm_sequencer (see Chapter 8)

7.1 uvm_component

The class uvm_component is the root base class for all structural elements. It provides interfaces for:
— Hierarchy: lookup child components
— Phasing: pre-run phases, run phase, and post-run phases
— Factory: convenience interface to uvm_factory
— Process control: to suspend and resume processes
— Objection: to handle raised and dropped objections
— Reporting: hierarchical reporting of messages
— Recording: transaction recording

7.1.1 Class definition

namespace uvm {

 class uvm_component : public sc_core::sc_module,
 public uvm_report_object
 {
 public:

 // Constructor
 explicit uvm_component(uvm_component_name name);

 // Group: Hierarchy Interface
 virtual uvm_component* get_parent() const;
 virtual const std::string get_full_name() const;
 void get_children(std::vector<uvm_component*>& children) const;
 uvm_component* get_child(const std::string& name) const;
 int get_next_child(std::string& name) const;
 int get_first_child(std::string& name) const;
 int get_num_children() const;
 bool has_child(const std::string& name) const;
 uvm_component* lookup(const std::string& name) const;
 unsigned int get_depth() const;

 // Group: Phasing Interface
 virtual void build_phase(uvm_phase& phase);
 virtual void connect_phase(uvm_phase& phase);

59
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void end_of_elaboration_phase(uvm_phase& phase);
 virtual void start_of_simulation_phase(uvm_phase& phase);
 virtual void run_phase(uvm_phase& phase);
 virtual void pre_reset_phase(uvm_phase& phase);
 virtual void reset_phase(uvm_phase& phase);
 virtual void post_reset_phase(uvm_phase& phase);
 virtual void pre_configure_phase(uvm_phase& phase);
 virtual void configure_phase(uvm_phase& phase);
 virtual void post_configure_phase(uvm_phase& phase);
 virtual void pre_main_phase(uvm_phase& phase);
 virtual void main_phase(uvm_phase& phase);
 virtual void post_main_phase(uvm_phase& phase);
 virtual void pre_shutdown_phase(uvm_phase& phase);
 virtual void shutdown_phase(uvm_phase& phase);
 virtual void post_shutdown_phase(uvm_phase& phase);
 virtual void extract_phase(uvm_phase& phase);
 virtual void check_phase(uvm_phase& phase);
 virtual void report_phase(uvm_phase& phase);
 virtual void final_phase(uvm_phase& phase);
 virtual void phase_started(uvm_phase& phase);
 virtual void phase_ready_to_end(uvm_phase& phase);
 virtual void phase_ended(uvm_phase& phase);
 void set_domain(uvm_domain* domain, int hier = 1);
 uvm_domain* get_domain() const;
 void define_domain(uvm_domain* domain);
 void set_phase_imp(uvm_phase* phase, uvm_phase* imp, int hier = 1);

 // Group: Process control interface
 virtual bool suspend();
 virtual bool resume();

 // Group: Configuration Interface
 void print_config(bool recurse = false, bool audit = false) const;
 void print_config_with_audit(bool recurse = false) const;
 void print_config_matches(bool enable = true);

 // Group: Objection Interface
 virtual void raised(uvm_objection* objection,
 uvm_object* source_obj,
 const std::string& description,
 int count);

 virtual void dropped(uvm_objection* objection,
 uvm_object* source_obj,
 const std::string& description,
 int count);

 virtual void all_dropped(uvm_objection* objection,
 uvm_object* source_obj,
 const std::string& description,
 int count);

 // Group: Factory Interface
 uvm_component* create_component(const std::string& requested_type_name,
 const std::string& name);

 uvm_object* create_object(const std::string& requested_type_name,
 const std::string& name);

 static void set_type_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 bool replace = true);

 void set_inst_override_by_type(const std::string& relative_inst_path,
 uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type);

 static void set_type_override(const std::string& original_type_name,
 const std::string& override_type_name,
 bool replace = true);

 void set_inst_override(const std::string& relative_inst_path,
 const std::string& original_type_name,
 const std::string& override_type_name);

 void print_override_info(const std::string& requested_type_name = "",
 const std::string& name = "");

60
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 // Group: Hierarchical reporting interface
 void set_report_id_verbosity_hier(const std::string& id,
 int verbosity);

 void set_report_severity_id_verbosity_hier(uvm_severity severity,
 const std::string& id,
 int verbosity);

 void set_report_severity_action_hier(uvm_severity severity,
 uvm_action action);

 void set_report_id_action_hier(const std::string& id,
 uvm_action action);

 void set_report_severity_id_action_hier(uvm_severity severity,
 const std::string& id,
 uvm_action action);

 void set_report_default_file_hier(UVM_FILE file);
 void set_report_severity_file_hier(uvm_severity severity,
 UVM_FILE file);

 void set_report_id_file_hier(const std::string& id,
 UVM_FILE file);

 void set_report_severity_id_file_hier(uvm_severity severity,
 const std::string& id,
 UVM_FILE file);

 void set_report_verbosity_level_hier(int verbosity);
 virtual void pre_abort();

 }; // class uvm_component

} // namespace uvm

7.1.2 Construction interface

When creating a new UVM component, an application should always provide a local leaf name. The parent
is traced from the current uvm_component at top of the hierarchy stack. The uvm_component hierarchy
stack is built during module construction, in the pre-run phases build_phase and connect_phase. If the parent
component is not derived from uvm_component, the leaf object becomes part of the object uvm_root. The
full hierarchical name shall be unique; if it is not unique, a warning message is generated, and a number is
appended at the end of the hierarchical name to make it unique.

Compatible with SystemC, it is illegal to create a component after the before_end_of_elaboration phase or
UVM pre-run phases build_phase and connect_phase. The constructor for uvm_component spawns off the
member function run_phase of that component.

7.1.2.1 Constructor

explicit uvm_component(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.1.3 Hierarchy interface

The following member functions provide user access to information about the component hierarchy, for
example, topology.

7.1.3.1 get_parent

virtual uvm_component* get_parent() const;

61
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_parent shall return a pointer to the component’s parent, or NULL if it has no parent.

7.1.3.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of the component. It shall
concatenate the hierarchical name of the parent, if any, with the leaf name of the component, as returned by
member function uvm_object::get_name (see Section 4.2.3.2).

7.1.3.3 get_children

void get_children(std::vector<uvm_component*>& children) const;

The member function get_children shall return a vector of type std::vector containing a pointer to every
instance of the component’s children of class uvm_component.

7.1.3.4 get_child

uvm_component* get_child(const std::string& name) const;

The member function get_child shall return a pointer to the component’s child which matches the argument
string name.

7.1.3.5 get_first_child

int get_first_child(std::string& name) const;

The member function get_first_child shall pass the name of the first child of a component to the argument
name. The member function returns true of the first child has been found; otherwise it shall return false.

7.1.3.6 get_first_child

int get_next_child(std::string& name) const;

The member function get_next_child shall pass the name of the next child of a component, followed after a
call to member function get_first_child, to the argument name. The member function returns true of the next
child has been found; otherwise it shall return false.

7.1.3.7 get_num_children

int get_num_children() const;

The member function get_num_children shall return the number of the component’s children.

7.1.3.8 has_child

bool has_child(const std::string& name) const;

The member function has_child shall return true if this component has a child with the given name; otherwise
it shall return false;

62
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.3.9 lookup

uvm_component* lookup(const std::string& name) const;

The member function lookup shall return a pointer to a component with the passed hierarchical name name
relative to the component. If the argument name is preceded with a ‘.’ (dot), then the search shall begin relative
to the top level (absolute lookup). The member function shall return NULL if no component has been found.
The argument name shall not contain wildcards.

7.1.3.10 get_depth

unsigned int get_depth() const;

The member function get_depth shall return the component’s depth from the root level. uvm_top has a depth
of zero. The test and any other top level components have a depth of 1, and so on.

7.1.4 Phasing interface

UVM components execute their behavior in strictly ordered, pre-defined phases. Each phase is defined by its
own member function, which derived components can override to incorporate component-specific behavior.
During simulation, the phases are executed one by one, where one phase shall complete before the next phase
begins.

The phases can be grouped in three main categories:
— Pre-run phases
— Run-time phases
— Post-run phases

7.1.4.1 Pre-run phases

The pre-run phases are responsible for the construction, connection and elaboration of the structural
composition. In the pre-run phases, there is neither notion nor progress of time. It consists of the following
phases:

— build_phase: The component constructs its children in this phase. It may use the static member function
uvm_config_db::get to obtain any configuration for itself, the member function uvm_config_db::set
to define any configuration for its own children, and the factory interface for actually creating the
children and other objects it might need. An application shall declare child objects derived from
uvm_component as pointers, instead of member fields of a component, such that they can be created
via the factory in this phase.

— connect_phase: After creating the children in the build_phase, the component makes connections
(binding of (TLM) ports and exports) from child-to-child or from child-to-self (that is, to promote a
child or export up the hierarchy for external access).

— end_of_elaboration_phase: At this point, the entire testbench environment has been built and
connected. No new components and connections shall be created from this point forward. Components
do final checks for proper connectivity.

— start_of_simulation_phase: The simulation is about to begin, and this phase is used to perform
any pre-run activity such as displaying banners, printing final testbench topology and configuration
information.

As UVM components are derived from class sc_module, the inherited callbacks before_end_of_elaboration,
end_of_elaboration, and start_of_simulation are available. It is recommended not to use these member

63
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

functions for the construction of testbenches, but to use the UVM pre-run phases. Main reason is to
support maximum reusability and flexibility for building, configuration and connecting various verification
components using the same construction mechanism.

7.1.4.2 Run-time phases

The run-time phases are used to perform the actual verification. These phases are exclusively designed only
for objects derived from class uvm_component. Run-time phases consume time.

A component's primary function is implemented in the member function run_phase. The component should
not declare ‘run_phase’ as a thread process. The UVM-SystemC library spawns run_phase as a thread process.
Other processes may be spawned from the run phase, if desired. When a component returns from executing
its member function run_phase, it does not signify completion of its run phase. Any processes that it may
have spawned still continue to run.

The run phase executes along with the other processes in the SystemC language: no special status is provided
to the run_phase processes; for example, there is no guarantee that the run_phase processes is the first on
the runable queue at time 0s, and hence there is no guarantee that the run_phase processes execute ahead of
the other SystemC processes.

Concurrently to the execution of the run_phase, UVM defines a pre-defined schedule which consists of four
groups of phases which are executed sequentially:

— Reset phases: Phases to apply reset signals for the DUT. Consists of three phases called
pre_reset_phase, reset_phase, and post_reset_phase.

— Configure phases: Phases which can be used for the configuration of the DUT. Consists of three phases
called pre_configure_phase, configure_phase, and post_configure_phase.

— Main phases: Phases which are used to apply the primary test stimulus to DUT. Consists of three phases
called pre_main_phase, main_phase, and post_main_phase.

— Shutdown phase: Phases to wait for all data to be drained out of the DUT and to disable DUT. Consists
of three phases called pre_shutdown_phase, shutdown_phase, and post_shutdown_phase.

7.1.4.3 Post-run phases

The post-run phases are:
— extract_phase: This phase occurs after the run phase is over. This phase is specific to objects derived

from class uvm_component and does not apply to objects derived from class sc_module. It is used
to extract simulation results from coverage collectors and scoreboards, collect status/error counts,
statistics, and other information from components in bottom-up order. Being a separate phase, the
extract phase ensures all relevant data from potentially independent sources (that is, other components)
are collected before being checked in the next phase.

— check_phase: This phase is specific to objects derived from class uvm_component and does not
apply to objects derived from class sc_module. Having extracted vital simulation results in the previous
phase, the check phase is used to validate such data and determine the overall simulation outcome. It
executes bottom-up.

— report_phase: Finally, the report phase is used to output results to files and/or the screen. This phase is
also be specific to objects derived from class uvm_component and does not apply to objects derived
from class sc_module.

— final_phase: This phase is called as soon as all tests have been executed and completed. This phase is
used to close created or used files before the simulation exits.

64
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.4.4 build_phase

virtual void build_phase(uvm_phase& phase);

The member function build_phase shall provide a context to implement functionality as part of the build
phase. The application shall not call this member function directly.

7.1.4.5 connect_phase

virtual void connect_phase(uvm_phase& phase);

The member function connect_phase shall provide a context to implement functionality as part of the connect
phase. The application shall not call this member function directly.

7.1.4.6 end_of_elaboration_phase

virtual void end_of_elaboration_phase(uvm_phase& phase);

The member function end_of_elaboration_phase shall provide a context to implement functionality as part
of the end of elaboration phase. The application shall not call this member function directly.

7.1.4.7 start_of_simulation_phase

virtual void start_of_simulation_phase(uvm_phase& phase);

The member function start_of_simulation_phase shall provide a context to implement functionality as part
of the start of simulation phase. The application shall not call this member function directly.

7.1.4.8 run_phase

virtual void run_phase(uvm_phase& phase);

The member function run_phase shall provide a context to implement functionality as part of the run phase.
An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.
Once all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run
after the member function returns, but they shall be killed once the phase ends. The application shall not call
this member function directly.

7.1.4.9 pre_reset_phase

virtual void pre_reset_phase(uvm_phase& phase);

The member function pre_reset_phase shall provide a context to implement functionality as part of the pre-
reset phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

65
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.4.10 reset_phase

virtual void reset_phase(uvm_phase& phase);

The member function reset_phase shall provide a context to implement functionality as part of the reset phase.
An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.
Once all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run
after the member function returns, but they shall be killed once the phase ends. The application shall not call
this member function directly.

7.1.4.11 post_reset_phase

virtual void post_reset_phase(uvm_phase& phase);

The member function post_reset_phase shall provide a context to implement functionality as part of the post-
reset phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.12 pre_configuration_phase

virtual void pre_configuration_phase(uvm_phase& phase);

The member function pre_configuration_phase shall provide a context to implement functionality as part of
the pre-configuration phase. An objection shall be raised, using the member function phase.raise_objection,
to cause the phase to persist. Once all components have dropped their respective objection using
phase.drop_objection, or if no components raise an objection, the phase shall be ended. Any processes
spawned by this member function continue to run after the member function returns, but they shall be killed
once the phase ends. The application shall not call this member function directly.

7.1.4.13 configuration_phase

virtual void configuration_phase(uvm_phase& phase);

The member function configuration_phase shall provide a context to implement functionality as part of the
configuration phase. An objection shall be raised, using the member function phase.raise_objection, to cause
the phase to persist. Once all components have dropped their respective objection using phase.drop_objection,
or if no components raise an objection, the phase shall be ended. Any processes spawned by this member
function continue to run after the member function returns, but they shall be killed once the phase ends. The
application shall not call this member function directly.

7.1.4.14 post_configuration_phase

virtual void post_configuration_phase(uvm_phase& phase);

The member function post_configuration_phase shall provide a context to implement functionality as part of
the post-configuration phase. An objection shall be raised, using the member function phase.raise_objection,
to cause the phase to persist. Once all components have dropped their respective objection using
phase.drop_objection, or if no components raise an objection, the phase shall be ended. Any processes

66
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

spawned by this member function continue to run after the member function returns, but they shall be killed
once the phase ends. The application shall not call this member function directly.

7.1.4.15 pre_main_phase

virtual void pre_main_phase(uvm_phase& phase);

The member function pre_main_phase shall provide a context to implement functionality as part of the pre-
main phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.16 main_phase

virtual void main_phase(uvm_phase& phase);

The member function main_phase shall provide a context to implement functionality as part of the main
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to
persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.17 post_main_phase

virtual void post_main_phase(uvm_phase& phase);

The member function post_main_phase shall provide a context to implement functionality as part of the post-
main phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.18 pre_shutdown_phase

virtual void pre_shutdown_phase(uvm_phase& phase);

The member function pre_shutdown_phase shall provide a context to implement functionality as part of the
pre-shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause
the phase to persist. Once all components have dropped their respective objection using phase.drop_objection,
or if no components raise an objection, the phase shall be ended. Any processes spawned by this member
function continue to run after the member function returns, but they shall be killed once the phase ends. The
application shall not call this member function directly.

7.1.4.19 shutdown_phase

virtual void shutdown_phase(uvm_phase& phase);

67
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function shutdown_phase shall provide a context to implement functionality as part of the
shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause the
phase to persist. Once all components have dropped their respective objection using phase.drop_objection, or
if no components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.20 post_shutdown_phase

virtual void post_shutdown_phase(uvm_phase& phase);

The member function post_shutdown_phase shall provide a context to implement functionality as part of the
post-shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause
the phase to persist. Once all components have dropped their respective objection using phase.drop_objection,
or if no components raise an objection, the phase shall be ended. Any processes spawned by this member
function continue to run after the member function returns, but they shall be killed once the phase ends. The
application shall not call this member function directly.

7.1.4.21 extract_phase

virtual void extract_phase(uvm_phase& phase);

The member function extract_phase shall provide a context to implement functionality as part of the extract
phase. The application shall not call this member function directly.

7.1.4.22 check_phase

virtual void check_phase(uvm_phase& phase);

The member function check_phase shall provide a context to implement functionality as part of the check
phase. The application shall not call this member function directly.

7.1.4.23 report_phase

virtual void report_phase(uvm_phase& phase);

The member function report_phase shall provide a context to implement functionality as part of the report
phase. The application shall not call this member function directly.

7.1.4.24 final_phase

virtual void final_phase(uvm_phase& phase);

The member function final_phase shall provide a context to implement functionality as part of the final phase.
The application shall not call this member function directly.

7.1.4.25 phase_started

virtual void phase_started(uvm_phase& phase);

68
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function phase_started shall provide a context to implement functionality as part of the start of
each phase. The argument phase specifies the phase being started. Any threads spawned in this callback are
not affected when the phase ends.

7.1.4.26 phase_ready_to_end

virtual void phase_ready_to_end(uvm_phase& phase);

The member function phase_ready_to_end shall provide a context to implement functionality as part of the
ending of each phase. The argument phase specifies the phase being ended. The member function shall be
invoked when all objections to ending the given phase have been dropped, thus indicating that phase is ready
to end. All this component’s threads spawned for the given phase shall be killed upon return from this member
function. Components needing to consume delta cycles or advance time to perform a clean exit from the phase
may raise the phase’s objection.

7.1.4.27 phase_ended

virtual void phase_ended(uvm_phase& phase);

The member function phase_ended shall provide a context to implement functionality at the end of each phase.
The argument phase specifies the phase that has ended. Any threads spawned in this callback are not affected
when the phase ends.

7.1.4.28 set_domain

void set_domain(uvm_domain* domain, int hier = 1);

The member function set_domain shall set the phase domain to this component and, if hier is set, recursively
to all its children.

7.1.4.29 get_domain

uvm_domain* get_domain() const;

The member function get_domain shall return a pointer to the phase domain set on this component.

7.1.4.30 define_domain

void define_domain(uvm_domain* domain);

The member function define_domain shall build a custom phase schedules into the provided domain passed
as pointer.

7.1.4.31 set_phase_imp

void set_phase_imp(uvm_phase* phase, uvm_phase* imp, int hier = 1);

The member function set_phase_imp shall provide a context for an application-specific phase implementation,
which shall be created as a singleton object extending the default one and implementing required behavior for
the member functions execute and traverse.

69
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The optional argument hier specifies whether to apply the custom functor to the whole tree or just this
component.

7.1.5 Process control interface

The class uvm_component has the following member functions to support process control constructs on the
run process handle:

— suspend
— resume

The default implementation of these member functions is to invoke the corresponding process control construct
on the component’s run process handle, if the run process is active (that is, not already terminated), for those
simulators that support process control constructs. Each of these member functions return true if the simulator
supports process control constructs. For those simulators that do not support process control constructs, these
member functions do nothing and return false.

NOTE—The process control interface requires at least Accellera Systems Initiative SystemC reference
implementation version 2.3.0.

7.1.5.1 suspend

virtual bool suspend();

The member function suspend shall suspend operation of this component. It shall return true if suspending
succeeds; otherwise it shall return false.

NOTE—This member function shall be implemented by the application to suspend the component according
to the protocol and functionality it implements. A suspended component can be subsequently resumed by
calling the member function resume.

7.1.5.2 resume

virtual bool resume();

The member function resume shall resume operation of this component. It shall return true if resuming
succeeds; otherwise it shall return false.

NOTE—This member function shall be implemented by the application to resume a component that was
previously suspended using member function suspend. Some components may start in the suspended state and
may need to be explicitly resumed.

7.1.6 Configuration interface

The configuration interface accommodates additional printing and debug facilities for user-defined
configurations using the configuration database uvm_config_db.

7.1.6.1 print_config

void print_config(bool recurse = false, bool audit = false) const;

The member function print_config shall print all configuration information for this component, as set by
previous calls to uvm_config_db<T>::set and exports to the resources pool. The settings are printing in the

70
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

order of their precedence. If argument recurse is set, then configuration information for all children and below
are printed as well. If argument audit is set, then the audit trail for each resource is printed along with the
resource name and value.

7.1.6.2 print_config_with_audit

void print_config_with_audit(bool recurse = false) const;

The member function print_config_with_audit shall print all configuration information for this component,
as set by previous calls to uvm_config_db<T>::set and exports to the resources pool. The settings are printing
in the order of their precedence, and without the audit trail. If argument recurse is set, then configuration
information for all children and below are printed as well.

7.1.6.3 print_config_matches

void print_config_matches(bool enable = true);

The member function print_config_matches shall print all information about the matching configuration
settings as they are being applied for each call of uvm_config_db<T>::get. By default, this information is
not printed.

7.1.7 Objection interface

These member functions provide object level access into the uvm_objection mechanism.

7.1.7.1 raised

virtual void raised(uvm_objection* objection,
 uvm_object* source_obj,
 const std::string& description,
 int count);

The member function raised shall be called when this or a descendant of this component instance raises the
specified objection. The argument source_obj is the object that originally raised the objection. The argument
description is optionally provided by the source_obj to give a reason for raising the objection. The argument
count indicates the number of objections raised by the source_obj.

7.1.7.2 dropped

virtual void dropped(uvm_objection* objection,
 uvm_object* source_obj,
 const std::string& description,
 int count);

The member function dropped shall be called when this or a descendant of this component instance drops the
specified objection. The argument source_obj is the object that originally dropped the objection. The argument
description is optionally provided by the source_obj to give a reason for dropping the objection. The argument
count indicates the number of objections dropped by the source_obj.

7.1.7.3 all_dropped

virtual void all_dropped(uvm_objection* objection,
 uvm_object* source_obj,
 const std::string& description,
 int count);

71
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function all_dropped shall be called when all objections have been dropped by this component
and all its descendants. The argument source_obj is the object that dropped the last objection. The argument
description is optionally provided by the source_obj to give a reason for raising the objection. The argument
count indicates the number of objections dropped by the source_obj.

7.1.8 Factory interface

The factory interface provides components with convenient access to the UVM's central uvm_factory object.
The member functions defined in this section shall call the corresponding member functions in uvm_factory,
passing whatever arguments it can to reduce the number of arguments required of the user.

7.1.8.1 create_component

uvm_component* create_component(const std::string& requested_type_name,
 const std::string& name);

The member function create_component shall provide a convenience layer to the member function
uvm_factory::create_component_by_name, which calls upon the factory to create a new child component
whose type corresponds to the preregistered type name, requested_type_name, and instance name, name (see
Section 6.4.4.4).

7.1.8.2 create_object

uvm_object* create_object(const std::string& requested_type_name,
 const std::string& name);

The member function create_object shall provide a convenience layer to the member function
uvm_factory::create_object_by_name, which calls upon the factory to create a new object whose type
corresponds to the preregistered type name, requested_type_name, and instance name, name (see Section
6.4.4.2).

7.1.8.3 set_type_override_by_type

static void set_type_override_by_type(uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type,
 bool replace = true);

The member function set_type_override_by_type shall provide a convenience layer to the member function
uvm_factory::set_type_override_by_type, which registers a factory override for components and objects
created at this level of hierarchy or below (see Section 6.4.3.3).

The argument original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the argument
requested_type matches the original_type and the instance paths match, the factory shall produce the
override_type.

7.1.8.4 set_inst_override_by_type

void set_inst_override_by_type(const std::string& relative_inst_path,
 uvm_object_wrapper* original_type,
 uvm_object_wrapper* override_type);

72
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_inst_override_by_type shall provide a convenience layer to the member function
uvm_factory::set_inst_override_by_type, which registers a factory override for components and objects
created at this level of hierarchy or below (see Section 6.4.3.1).

The argument relative_inst_path is relative to this component and may include wildcards. The
argument original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the requested_type
matches the original_type and the instance paths match, the factory shall produce the override_type.

7.1.8.5 set_type_override

static void set_type_override(const std::string& original_type_name,
 const std::string& override_type_name,
 bool replace = true);

The member function set_type_override shall provide a convenience layer to the member function
uvm_factory::set_type_override_by_name, which configures the factory to create an object of type
override_type_name whenever the factory is asked to produce a type represented by original_type_name (see
Section 6.4.3.4).

The argument original_type_name typically refers to a preregistered type in the factory. It may, however, be any
arbitrary string. Subsequent calls to create_component or create_object with the same string and matching
instance path shall produce the type represented by override_type_name. The argument override_type_name
shall refer to a preregistered type in the factory.

7.1.8.6 set_inst_override

void set_inst_override(const std::string& relative_inst_path,
 const std::string& original_type_name,
 const std::string& override_type_name);

The member function set_inst_override shall provide a convenience layer to the member function
uvm_factory::set_inst_override_by_name, which registers a factory override for components created at this
level of hierarchy or below (see Section 6.4.3.2).

The argument relative_inst_path is relative to this component and may include wildcards. The argument
original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Subsequent calls to create_component or create_object with the same string and matching instance
path shall produce the type represented by override_type_name. The override_type_name shall refer to a
preregistered type in the factory.

7.1.8.7 print_override_info

void print_override_info(const std::string& requested_type_name = "",
 const std::string& name = "");

The member function print_override_info shall provide the same lookup process as create_object and
create_component, but instead of creating an object, it prints information about what type of object would
be created given the provided arguments.

73
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.9 Hierarchical reporting interface

This interface provides versions of the member function set_report_* in the base class uvm_report_object
that are applied recursively to this component and all its children. When a report is issued and its associated
action UVM_LOG is set, the report shall be sent to its associated file descriptor.

7.1.9.1 set_report_id_verbosity_hier

void set_report_id_verbosity_hier(const std::string& id,
 int verbosity);

The member function set_report_id_verbosity_hier shall recursively associate the specified verbosity with
reports of the given id. A verbosity associated with a particular severity-id pair, using member function
set_report_severity_id_verbosity_hier, shall take precedence over a verbosity associated by this member
function.

7.1.9.2 set_report_severity_id_verbosity_hier

void set_report_severity_id_verbosity_hier(uvm_severity severity,
 const std::string& id,
 int verbosity);

The member function set_report_severity_id_verbosity_hier shall recursively associate the specified
verbosity with reports of the given severity with id pair. A verbosity associated with a particular severity-id
pair takes precedence over a verbosity associated with id, which takes precedence over a verbosity associated
with a severity.

7.1.9.3 set_report_severity_action_hier

void set_report_severity_action_hier(uvm_severity severity,
 uvm_action action);

The member function set_report_severity_action_hier shall recursively associate the specified action with
reports of the given severity. An action associated with a particular severity-id pair shall take precedence over
an action associated with id, which shall take precedence over an action associated with a severity as defined
in this member function.

7.1.9.4 set_report_id_action_hier

void set_report_id_action_hier(const std::string& id,
 uvm_action action);

The member function set_report_id_action_hier shall recursively associate the specified action with reports
of the given id. An action associated with a particular severity-id pair shall take precedence over an action
associated with id as defined in this member function.

7.1.9.5 set_report_severity_id_action_hier

void set_report_severity_id_action_hier(uvm_severity severity,
 const std::string& id,
 uvm_action action);

The member function set_report_severity_id_action_hier shall recursively associate the specified action
with reports of the given severity with id pair. An action associated with a particular severity-id pair shall take

74
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

precedence over an action associated with id, which shall take precedence over an action associated with a
severity.

7.1.9.6 set_report_default_file_hier

void set_report_default_file_hier(UVM_FILE file);

The member function set_report_default_file_hier shall recursively associate the report to the default file
descriptor. A file associated with a particular severity-id pair shall take precedence over a file associated with
id, which shall take precedence over a file associated with a severity, which shall take precedence over the
default file descriptor as defined in this member function.

7.1.9.7 set_report_severity_file_hier

void set_report_severity_file_hier(uvm_severity severity,
 UVM_FILE file);

The member function set_report_severity_file_hier shall recursively associate the specified file descriptor
with reports of the given severity. A file associated with a particular severity-id pair shall take precedence over
a file associated with id, which shall take precedence over a file associated with a severity as defined in this
member function.

7.1.9.8 set_report_id_file_hier

void set_report_id_file_hier(const std::string& id,
 UVM_FILE file);

The member function set_report_id_file_hier shall recursively associate the specified file descriptor with
reports of the given id. A file associated with a particular severity-id pair shall take precedence over a file
associated with id as defined in this member function.

7.1.9.9 set_report_severity_id_file_hier

void set_report_severity_id_file_hier(uvm_severity severity,
 const std::string& id,
 UVM_FILE file);

The member function set_report_severity_id_file_hier shall recursively associate the specified file descriptor
with reports of the given severity and id pair. A file associated with a particular severity-id pair shall take
precedence over a file associated with id, which shall take precedence over a file associated with a severity,
which shall take precedence over the default file descriptor.

7.1.9.10 set_report_verbosity_level_hier

void set_report_verbosity_level_hier(int verbosity);

The member function set_report_verbosity_level_hier shall recursively set the maximum verbosity level for
reports for this component and all those below it. Any report from this component sub-tree whose verbosity
exceeds this maximum are ignored.

7.1.9.11 pre_abort

virtual void pre_abort();

75
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function pre_abort shall be executed when the message system is executing a UVM_EXIT
action. The exit action causes an immediate termination of the simulation, but the pre_abort callback hook
gives components an opportunity to provide additional information to the application before the termination
happens. For example, a test may want to execute the report function of a particular component even when
an error condition has happened to force a premature termination. The member function pre_abort shall be
called for all UVM components in the hierarchy in a bottom-up fashion.

7.1.10 Macros

UVM-SystemC defines the following macros for class uvm_component:

Utility macro UVM_COMPONENT_UTILS (classname) to be used inside the Class definition, that expands
to:

— The declaration of the member function get_type_name, which returns the type of the class as string
— The declaration of the member function get_type, which returns a factory proxy object for the type
— The class uvm_component_registry<classname> used by the factory.

Template classes shall use the macro UVM_COMPONENT_PARAM_UTILS, to guarantee correct
registration of one or more parameters passed to the class template. Note that template classes are not evaluated
at compile-time, and thus not registered with the factory. Due to this, name-based lookup with the factory for
template classes is not possible. Instead, an application shall use the member function get_type for factory
overrides.

7.2 uvm_driver

The class uvm_driver is the base class for drivers that initiate requests for new transactions. The ports are
typically connected to the exports of an appropriate sequencer component of class uvm_sequencer.

7.2.1 Class definition

namespace uvm {

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>
 class uvm_driver : public uvm_component
 {
 public:

 // Ports
 uvm_seq_item_pull_port<REQ, RSP> seq_item_port;
 uvm_analysis_port<RSP> rsp_port;

 // Constuctor
 explicit uvm_driver(uvm_component_name name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_driver

} // namespace uvm

7.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be a derivative of class uvm_sequence_item.

76
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.2.3 Ports

7.2.3.1 seq_item_port

uvm_seq_item_pull_port<REQ, RSP> seq_item_port;

The port seq_item_port of type uvm_seq_item_pull_port shall be defined to connect (bind) the driver to the
corresponding export in the sequencer.

NOTE—In line with the UVM-SystemVerilog syntax, the member function connect can be used to establish the
binding between the driver and the sequencer. The UVM-SystemC implementation also supports the SystemC
syntax using the member function bind or using operator() to perform the binding.

7.2.3.2 rsp_port

uvm_analysis_port<RSP> rsp_port;

The port rsp_port shall provide a way of sending responses back to the connected sequencer.

7.2.4 Member functions

7.2.4.1 Constructor

explicit uvm_driver(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.2.4.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an
object of type std::string.

7.3 uvm_monitor

The class uvm_monitor is the base class for monitors. Deriving from uvm_monitor allows an application
to distinguish monitors from generic component types inheriting from uvm_component. Such monitors shall
automatically inherit features that may be added to uvm_monitor in the future.

7.3.1 Class definition

namespace uvm {

 class uvm_monitor : public uvm_component
 {
 public:

 // Constructor
 explicit uvm_monitor(uvm_component_name name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_monitor

77
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} // namespace uvm

7.3.2 Member functions

7.3.2.1 Constructor

explicit uvm_monitor(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.3.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an
object of type std::string.

7.4 uvm_agent

The class uvm_agent is the base class for the creation of agents. Deriving from uvm_agent shall enable an
application to distinguish agents from other component types also using its inheritance. Such agents shall
automatically inherit features that may be added to uvm_agent in the future.

While an agent’s build function, inherited from uvm_component, can be implemented to define any agent
topology, an agent typically contains three subcomponents: a driver, sequencer, and monitor. If the agent is
active, subtypes should contain all three subcomponents. If the agent is passive, subtypes should contain only
the monitor.

7.4.1 Class definition

namespace uvm {

 class uvm_agent : public uvm_component
 {
 public:

 // Constructor
 explicit uvm_agent(uvm_component_name name);

 // Member functions
 virtual const std::string get_type_name() const;
 uvm_active_passive_enum get_is_active() const;

 }; // class uvm_agent

} // namespace uvm

7.4.2 Member functions

7.4.2.1 Constructor

explicit uvm_agent(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

78
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.4.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an
object of type std::string.

7.4.2.3 get_is_active

uvm_active_passive_enum get_is_active();

The member function get_is_active shall return UVM_ACTIVE if the agent is acting as an active agent
and UVM_PASSIVE if it is acting as a passive agent (see Section 17.4.4). An application may override this
behavior if a more complex algorithm is needed to determine the active/passive nature of the agent.

7.5 uvm_env

The class uvm_env is the base class for the creation of a self-containing verification environment, such as a
verification component which contains multiple agents.

7.5.1 Class definition

namespace uvm {

 class uvm_env : public uvm_component
 {
 public:

 // Constructor
 explicit uvm_env(uvm_component_name name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_env

} // namespace uvm

7.5.2 Member functions

7.5.2.1 Constructor

explicit uvm_env(uvm_component_name name);

Constructor

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.5.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an
object of type std::string.

79
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.6 uvm_test

The class uvm_test is the base class for the test environment.

7.6.1 Class definition

namespace uvm {

 class uvm_test : public uvm_component
 {
 public:

 // Constructor
 explicit uvm_test(uvm_component_name name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_test

} // namespace uvm

7.6.2 Member functions

7.6.2.1 Constructor

explicit uvm_test(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.6.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an
object of type std::string.

7.7 uvm_scoreboard

The class uvm_scoreboard is the base class for the creation of a scoreboard. Deriving from uvm_scoreboard
shall enable an application to distinguish scoreboards from other component types inheriting directly from
uvm_component. Such scoreboards shall automatically inherit and benefit from features that may be added
to uvm_scoreboard in the future.

7.7.1 Class definition

namespace uvm {

 class uvm_scoreboard : public uvm_component
 {
 public:
 explicit uvm_scoreboard(uvm_component_name name);
 virtual const std::string get_type_name() const;
 }; // class uvm_scoreboard

} // namespace uvm

80
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.7.2 Member functions

7.7.2.1 Constructor

explicit uvm_scoreboard(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.7.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the component derived from this class as
an object of type std::string.

7.8 uvm_subscriber

The class uvm_subscriber is the base class for the creation of a subscriber. It provides an analysis export
for receiving transactions from a connected analysis export. Making such a connection “subscribes” this
component to any transactions emitted by the connected analysis port.

Subtypes of this class shall define the member function write to process the incoming transactions. This class
is particularly useful when designing a coverage collector that attaches to a monitor.

7.8.1 Class definition

namespace uvm {

 template <typename T = int>
 class uvm_subscriber : public uvm_component
 {
 public:

 // Export
 uvm_analysis_export<T> analysis_export;

 // Constructor
 explicit uvm_subscriber(uvm_component_name name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_subscriber

} // namespace uvm

7.8.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis export.

7.8.3 Export

7.8.3.1 analysis_export

uvm_analysis_export<T> analysis_export;

81
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The export analysis_export shall provide access to the member function write, which derived subscribers
shall implement.

7.8.4 Member functions

7.8.4.1 Constructor

explicit uvm_subscriber(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.8.4.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the component derived from this class as
an object of type std::string.

82
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

8. Sequencer classes

The sequencer classes offer the interface between the stimuli generators (by means of sequences) and the
structural composition of the test infrastructure using verification components. The sequencer is integral
part of a verification component, which can be enabled in case the verification component is marked as
‘active’ (driving) element.

The sequencer processes the transactions, defined as objects derived from class uvm_sequence_item or class
uvm_sequence and passes these transactions to the driver (object derived from class uvm_driver).

The following sequencer classes are defined:
— uvm_sequencer_base
— uvm_sequencer_param_base
— uvm_sequencer

8.1 uvm_sequencer_base

The class uvm_sequencer_base is the root base class for all sequencer classes.

8.1.1 Class definition

namespace uvm {

 class uvm_sequencer_base : public uvm_component
 {
 public:
 // Constructor
 explicit uvm_sequencer_base(uvm_component_name name);

 // Member functions
 bool is_child (uvm_sequence_base* parent, const uvm_sequence_base* child) const;

 virtual int user_priority_arbitration(
 std::vector< uvm_sequence_request* > avail_sequences);

 virtual void execute_item(uvm_sequence_item* item);
 virtual void start_phase_sequence(uvm_phase& phase);

 virtual void wait_for_grant(uvm_sequence_base* sequence_ptr,
 int item_priority = -1,
 bool lock_request = false);

 virtual void wait_for_item_done(uvm_sequence_base* sequence_ptr,
 int transaction_id = -1);

 bool is_blocked(const uvm_sequence_base* sequence_ptr) const;
 bool has_lock(uvm_sequence_base* sequence_ptr);
 virtual void lock(uvm_sequence_base* sequence_ptr);
 virtual void grab(uvm_sequence_base* sequence_ptr);
 virtual void unlock(uvm_sequence_base* sequence_ptr);
 virtual void ungrab(uvm_sequence_base* sequence_ptr);
 virtual void stop_sequences();
 virtual bool is_grabbed() const;
 virtual uvm_sequence_base* current_grabber() const;
 virtual bool has_do_available();
 void set_arbitration(SEQ_ARB_TYPE mode);
 SEQ_ARB_TYPE get_arbitration() const;
 virtual void wait_for_sequences();

 virtual void send_request(uvm_sequence_base* sequence_ptr,
 uvm_sequence_item* seq_item,
 bool rerandomize = false);

 }; // class uvm_sequencer_base

83
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} // namespace uvm

8.1.2 Constructor

explicit uvm_sequencer_base(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.1.3 Member functions

8.1.3.1 is_child

bool is_child(uvm_sequence_base* parent, const uvm_sequence_base* child) const;

The member function is_child shall return true if the child sequence is a child of the parent sequence and
false otherwise.

8.1.3.2 user_priority_arbitration

virtual int user_priority_arbitration(
 std::vector< uvm_sequence_request* > avail_sequences);

The member function user_priority_arbitration shall be called by an application when the sequencer
arbitration mode is set to SEQ_ARB_USER (via the member function set_arbitration) each time that it needs
to arbitrate among sequences. Derived sequencers may override this member function to perform a custom
arbitration policy. The override shall return one of the entries from the avail_sequences queue, which are
indexes into an internal queue of type std::vector< uvm_sequence_request* >. The default implementation
shall behave similar as SEQ_ARB_FIFO, which returns the first entry of avail_sequences.

8.1.3.3 execute_item

virtual void execute_item(uvm_sequence_item* item);

The member function execute_item shall execute the given transaction item given as argument directly on
this sequencer. A temporary parent sequence is automatically created for the item. There is no capability to
retrieve responses. If the driver returns responses, it accumulates in the sequencer, eventually causing response
overflow unless member function uvm_sequence_base::set_response_queue_error_report_disabled is
called.

8.1.3.4 start_phase_sequence

virtual void start_phase_sequence(uvm_phase phase);

The member function start_phase_sequence shall start the default sequence for the phase given as argument.
The default sequence is configured via resources using either a sequence instance or sequence type (object
wrapper). If both are used, the sequence instance takes precedence. When attempting to override a previous
default sequence setting, an application shall override both the instance and type (wrapper) resources, else the
override may not take effect.

8.1.3.5 wait_for_grant

virtual void wait_for_grant(uvm_sequence_base* sequence_ptr,
 int item_priority = -1,

84
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 bool lock_request = false);

The member function wait_for_grant shall issue a request for the specified sequence. If item_priority is not
specified, then the current sequence priority shall be used by the arbiter. If a lock_request is made, then the
sequencer shall issue a lock immediately before granting the sequence. The lock may be granted without the
sequence being granted if the member function is_relevant of the sequence instance is not asserted.

When this member function returns, the sequencer has granted the sequence, and the sequence shall call
send_request without inserting any simulation delay other than delta cycles. The driver is currently waiting
for the next item to be sent via the send_request call.

8.1.3.6 wait_for_item_done

virtual void wait_for_item_done(uvm_sequence_base* sequence_ptr,
 int transaction_id = -1);

The member function wait_for_item_done shall block the sequence until the driver calls item_done or put
on a transaction issued by the specified sequence. If no transaction_id parameter is specified, then the call
shall return the next time that the driver calls item_done or put. If a specific transaction_id is specified, then
the call shall only return when the driver indicates that it has completed that specific item.

8.1.3.7 is_blocked

bool is_blocked(const uvm_sequence_base* sequence_ptr) const;

The member function is_blocked shall return true if the sequence referred to by sequence_ptr is currently
locked out of the sequencer. It shall return false if the sequence is currently allowed to issue operations.

Even when a sequence is not blocked, it is possible for another sequence to issue a lock before this sequence
is able to issue a request or lock.

8.1.3.8 has_lock

bool has_lock(uvm_sequence_base* sequence_ptr);

The member function has_lock shall return true if the sequence referred to in the parameter currently has a
lock on the sequencer; otherwise it shall return false. Even if this sequence has a lock, a child sequence may
also have a lock, in which case the sequence is still blocked from issuing operations on the sequencer.

8.1.3.9 lock

virtual void lock(uvm_sequence_base* sequence_ptr);

The member function lock shall request a lock for the sequence specified by the specified argument
sequence_ptr. A lock request shall be arbitrated the same as any other request. A lock is granted after all earlier
requests are completed and no other locks or grabs are blocking this sequence. The lock call shall return when
the lock has been granted.

8.1.3.10 grab

virtual void grab(uvm_sequence_base* sequence_ptr);

85
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function grab shall request a grab for the sequence specified by the specified argument
sequence_ptr. A grab request is put in front of the arbitration queue. It shall be arbitrated before any other
requests. A grab is granted when no other grabs or locks are blocking this sequence. The grab call shall return
when the grab has been granted.

8.1.3.11 unlock

virtual void unlock(uvm_sequence_base* sequence_ptr);

The member function unlock shall remove any locks and grabs obtained by the specified argument
sequence_ptr.

8.1.3.12 ungrab

virtual void ungrab(uvm_sequence_base* sequence_ptr);

The member function ungrab shall remove any locks and grabs obtained by the specified argument
sequence_ptr.

8.1.3.13 stop_sequences

virtual void stop_sequences();

The member function stop_sequences shall inform the sequencer to kill all sequences and child sequences
currently operating on the sequencer, and remove all requests, locks and responses that are currently queued.
This essentially resets the sequencer to an idle state.

8.1.3.14 is_grabbed

virtual bool is_grabbed() const;

The member function is_grabbed shall return true if any sequence currently has a lock or grab on this
sequencer; otherwise it shall return false.

8.1.3.15 current_grabber

virtual uvm_sequence_base* current_grabber() const;

The member function current_grabber shall return a pointer to the sequence that currently has a lock or grab
on the sequence. If multiple hierarchical sequences have a lock, it returns the child that is currently allowed
to perform operations on the sequencer.

8.1.3.16 has_do_available

virtual bool has_do_available();

The member function has_do_available shall return true if any sequence running on this sequencer is ready
to supply a transaction, otherwise it shall return false.

86
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

8.1.3.17 set_arbitration

void set_arbitration(SEQ_ARB_TYPE mode);

The member function set_arbitration shall set the arbitration mode for the sequencer. The argument mode
shall be of type SEQ_ARB_TYPE and set to:

— SEQ_ARB_FIFO: Requests are granted in FIFO order (default).
— SEQ_ARB_WEIGHTED: Requests are granted randomly by weight.
— SEQ_ARB_RANDOM: Requests are granted randomly.
— SEQ_ARB_STRICT_FIFO: Requests at highest priority granted in FIFO order.
— SEQ_ARB_STRICT_RANDOM: Requests at highest priority granted in randomly.
— SEQ_ARB_USER: Arbitration is delegated to the user-defined member function,

user_priority_arbitration, which specifies the next sequence to grant.

The default arbitration mechanism shall be set to SEQ_ARB_FIFO.

8.1.3.18 get_arbitration

SEQ_ARB_TYPE get_arbitration() const;

The member function get_arbitration shall return the current arbitration mode set for the sequencer (see
Section 8.1.3.20).

8.1.3.19 wait_for_sequences

virtual void wait_for_sequences();

The member function wait_for_sequences shall wait for a sequence to have a new item available.

8.1.3.20 send_request

virtual void send_request(uvm_sequence_base* sequence_ptr,
 uvm_sequence_item* seq_item,
 bool rerandomize = false);

Derived classes shall implement the member function send_request to send a request item to the sequencer,
which shall forward it to the driver.

This member function shall only be called after a wait_for_grant call.

NOTE—Randomization is not yet supported in UVM-SystemC.

8.2 uvm_sequencer_param_base

The class uvm_sequencer_param_base extends the base class uvm_sequencer_base for specific request
(REQ) and response (RSP) types, which are specified as template arguments.

8.2.1 Class definition

namespace uvm {

87
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>
 class uvm_sequencer_param_base : public uvm_sequencer_base
 {
 public:
 // Constructor
 explicit uvm_sequencer_param_base(uvm_component_name name);

 // Group: Requests
 void send_request(uvm_sequence_base* sequence_ptr,
 uvm_sequence_item* seq_item,
 bool rerandomize = false);

 REQ get_current_item() const;

 }; // class uvm_sequencer_param_base

} // namespace uvm

8.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be a derivative of class uvm_sequence_item.

8.2.3 Constructor

explicit uvm_sequencer_param_base(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.2.4 Requests

8.2.4.1 send_request

virtual void send_request(uvm_sequence_base* sequence_ptr,
 uvm_sequence_item* seq_item,
 bool rerandomize = false);

The member function send_request sends a request item pointed to by seq_item to the sequencer pointed to
by sequence_ptr. The sequencer shall forward it to the driver. This member function shall only be called after
a call to member function wait_for_grant.

NOTE—Randomization is not yet supported in UVM-SystemC.

8.2.4.2 get_current_item

REQ get_current_item() const;

The member function get_current_item shall return the requested item of type REQ, which is currently being
executed by the sequencer. If the sequencer is not currently executing an item, this member function shall
return NULL.

The sequencer is executing an item from the time that get_next_item or peek is called by the driver until the
time that member function get or item_done is called by the driver. In case a driver calls member function
get, the current item cannot be shown, since the item is completed at the same time as it is requested.

88
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

8.3 uvm_sequencer

The class uvm_sequencer defines the interface for the TLM communication of sequences or sequence-items
by providing access via an export object of class sc_export.

8.3.1 Class definition

namespace uvm {

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>
 class uvm_sequencer : public uvm_sequencer_param_base<REQ,RSP>,
 public uvm_sqr_if_base<REQ, RSP>
 {
 public:
 // Constructor
 explicit uvm_sequencer(uvm_component_name name);

 // Group: Exports
 uvm_seq_item_pull_imp<REQ, RSP, this> seq_item_export;

 // Group: Sequencer interface
 virtual REQ get_next_item(REQ* req = NULL);
 virtual bool try_next_item(REQ& req);
 virtual void item_done(const RSP& item, bool use_item = true);
 virtual void item_done();
 virtual REQ get(REQ* req = NULL);
 virtual void get(REQ& req);
 virtual REQ peek(REQ* req = NULL);
 virtual void put(const RSP& rsp);
 virtual void stop_sequences();

 }; // class uvm_sequencer

} // namespace uvm

8.3.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be a derivative of class uvm_sequence_item.

8.3.3 Constructor

explicit uvm_sequencer(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.3.4 Exports

8.3.4.1 seq_item_export

uvm_seq_item_pull_imp<REQ, RSP, this > seq_item_export;

The export seq_item_export shall provide access to the sequencer’s implementation
uvm_seq_item_pull_imp via the sequencer interface uvm_sqr_if_base<REQ, RSP> (see Section 14.13).

8.3.5 Sequencer interface

8.3.5.1 get_next_item

virtual REQ get_next_item(REQ* req = NULL);

89
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_next_item shall retrieve the next available item from a sequence (see also Section
14.13.3.1).

8.3.5.2 try_next_item

virtual bool try_next_item(REQ& req);

The member function try_next_item shall retrieve the next available item from a sequence if one is available
(see also Section 14.13.3.2).

8.3.5.3 item_done

virtual void item_done(const RSP& item, bool use_item = true);
virtual void item_done();

The member function item_done shall indicate that the request is completed (see also Section 14.13.3.3).

8.3.5.4 get

virtual REQ get(REQ* req = NULL);
virtual void get(REQ& req);

The member function get shall retrieve the next available item from a sequence (see also Section 14.13.3.4).

8.3.5.5 peek

virtual REQ peek(REQ* req = NULL);

The member function peek shall return the current request item if one is in the FIFO (see also Section
14.13.3.5).

8.3.5.6 put

virtual void put(const RSP& rsp);

The member function put shall send a response back to the sequence that issued the request (see also Section
14.13.3.6).

8.3.5.7 stop_sequences

virtual void stop_sequences();

The member function stop_sequences shall tell the sequencer to kill all sequences and child sequences
currently operating on the sequencer, and remove all requests, locks and responses that are currently queued.
This essentially resets the sequencer to an idle state.

8.3.6 Macros

8.3.6.1 UVM_DECLARE_P_SEQUENCER

UVM_DECLARE_P_SEQUENCER(SEQUENCER);

90
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The macro UVM_DECLARE_P_SEQUENCER shall declare a variable p_sequencer whose type is
specified by the argument SEQUENCER.

91
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9. Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsulated
as a sequence or sequence item. As the sequences and sequence items only describe stimuli, they are
independent and thus not part of the structural hierarchy of a UVM agent (in which sequencer, driver and
monitor resides). Instead, they are included at a higher functional layer defined within the UVM environment
(e.g. encapsulated within a verification component derived from class uvm_env) or as part of a UVM test
environment (component derived from class uvm_test).

The following sequence classes are defined:
— uvm_transaction
— uvm_sequence_item
— uvm_sequence_base
— uvm_sequence

When sequences are executed parallel, the sequencer shall arbitrate among the parallel sequences. By default,
requests are granted in a first-in-first-out (FIFO) order (see Section 8.1.3.17).

9.1 uvm_transaction

The class uvm_transaction is the root base class for all UVM transactions. As such, the class
uvm_sequence_item shall be derived from this class. The main purpose of this class is to provide timestamp
properties, notification events, and transaction recording.

9.1.1 Class definition

namespace uvm {

 class uvm_transaction : public uvm_object
 {
 public:
 // Constructors
 uvm_transaction();
 explicit uvm_transaction(const std::string& name);

 // Member functions
 void set_transaction_id(int id);
 int get_transaction_id() const;

 }; // class uvm_transaction

} // namespace uvm

9.1.2 Constructors

uvm_transaction();
explicit uvm_transaction(const std::string& name);

The constructor shall create and initialize an instance of the class, which is derived from class uvm_object,
with the name name passed as an argument.

9.1.3 Constraints on usage

An application shall not create transactions based on this base class. Instead, it shall use the class
uvm_sequence_item or class uvm_sequence.

92
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.1.4 Member functions

9.1.4.1 set_transaction_id

void set_transaction_id(int id);

The member function set_transaction_id shall set the transaction’s numeric identifier (ID), passed as argument
id. If the transaction ID is not set via this member function, the transaction ID defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the sequence ID to route
responses in sequencers and to correlate responses to requests.

9.1.4.2 get_transaction_id

int get_transaction_id() const;

The member function get_transaction_id shall return the transaction’s numeric identifier (ID), which is -1 if
not set explicitly by set_transaction_id.

When using an object derived from class uvm_sequence<REQ, RSP> to generate stimulus, the transaction ID
is used along with the sequence ID to route responses in sequencers and to correlate responses to requests.

9.2 uvm_sequence_item

The class uvm_sequence_item is the base class for application-defined sequence items and also serves
as the base class for class uvm_sequence. The class uvm_sequence_item provides basic functionality for
transactional objects, both sequence items and sequences, to operate in the sequence mechanism.

9.2.1 Class definition

namespace uvm {

 class uvm_sequence_item : public uvm_transaction
 {
 public:
 / Constructors
 uvm_sequence_item();
 explicit uvm_sequence_item(const std::string& name);

 // Member functions
 void set_use_sequence_info(bool value);
 bool get_use_sequence_info() const;
 void set_id_info(uvm_sequence_item& item);
 virtual void set_sequencer(uvm_sequencer_base* sequencer);
 uvm_sequencer_base* get_sequencer() const;
 void set_parent_sequence(uvm_sequence_base* parent);
 uvm_sequence_base* get_parent_sequence() const;
 void set_depth(int value);
 int get_depth() const;
 virtual bool is_item() const;
 const std::string get_root_sequence_name() const;
 const uvm_sequence_base* get_root_sequence() const;
 const std::string get_sequence_path() const;

 }; // class uvm_sequence_item

} // namespace uvm

93
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.2.2 Constructors

uvm_sequence_item();
explicit uvm_sequence_item(const std::string& name);

The constructor shall create and initialize an instance of the class with the name namepassed as an argument.

9.2.3 Member functions

9.2.3.1 set_use_sequence_info

void set_use_sequence_info(bool value);

The member function set_use_sequence_info shall enable or disable printing, copying, or recording of
sequence information (sequencer, parent_sequence, sequence_id, etc.). When the argument of this member
function is set to false, then the usage of sequence information shall be disabled. When the argument of this
member function is set to true, the printing and copying of sequence information shall be enabled.

9.2.3.2 get_use_sequence_info

bool get_use_sequence_info() const;

The member function get_use_sequence_info shall return true if the usage of sequence information, such as
printing and copying of sequence information, has been enabled. The member function shall return false if the
usage of sequence information has been disabled.

9.2.3.3 set_id_info

void set_id_info(uvm_sequence_item& item);

The member function set_id_info shall copy the sequence ID and transaction ID from the referenced item into
the calling item. This routine should always be used by drivers to initialize responses for future compatibility.

9.2.3.4 set_sequencer

virtual void set_sequencer(uvm_sequencer_base* sequencer);

The member function set_sequencer shall set the default sequencer, passed as argument, to be used for the
sequence or sequence item for which this member function is called. It shall take effect immediately, so it
should not be called while the sequence is actively communicating with the sequencer.

9.2.3.5 get_sequencer

uvm_sequencer_base* get_sequencer() const;

The member function get_sequencer shall return a pointer to the default sequencer used by the sequence or
sequence item for which this member function is called.

9.2.3.6 set_parent_sequence

void set_parent_sequence(uvm_sequence_base* parent);

94
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_parent_sequence shall set the parent sequence, passed as an argument, of the
sequence or sequence item.

9.2.3.7 get_parent_sequence

uvm_sequence_base* get_parent_sequence() const;

The member function get_parent_sequence shall return a pointer to the parent sequence of any sequence for
which this member function was called. If this is a parent sequence, the member function shall return NULL.

9.2.3.8 set_depth

void set_depth(int value);

The member function set_depth shall set the depth of a particular sequence. If this member function is not
called, the depth of any sequence shall be calculated automatically. When called, the member function shall
override the automatically calculated depth, even if it is incorrect.

9.2.3.9 get_depth

int get_depth() const;

The member function get_depth shall return the depth of sequence from its parent. A parent sequence has a
depth of 1, its child has a depth of 2, and its grandchild has a depth of 3.

9.2.3.10 is_item

virtual bool is_item() const;

The member function is_item shall return true when the object for which the member function is called is
derived from uvm_sequence_item. It shall return false if the object is derived from class uvm_sequence.

9.2.3.11 get_root_sequence_name

const std::string get_root_sequence_name() const;

The member function get_root_sequence_name shall provide the name of the root sequence (the top-most
parent sequence).

9.2.3.12 get_root_sequence

const uvm_sequence_base* get_root_sequence() const;

The member function get_root_sequence shall provide a reference to the root sequence (the top-most parent
sequence).

9.2.3.13 get_sequence_path

const std::string get_sequence_path() const;

95
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_sequence_path shall provide a string of names of each sequence in the full
hierarchical path. The dot character ‘.’ is used as the separator between each sequence.

9.3 uvm_sequence_base

The class uvm_sequence_base defines the primary interface member functions to create, control and execute
the sequences.

9.3.1 Class definition

namespace uvm {

 class uvm_sequence_base : public uvm_sequence_item
 {
 public:
 // Constructor
 explicit uvm_sequence_base(const std::string& name);

 // Group: Sequence state
 uvm_sequence_state_enum get_sequence_state() const;
 void wait_for_sequence_state(unsigned int state_mask);

 // Group: Sequence execution
 virtual void start(uvm_sequencer_base* sqr,
 uvm_sequence_base* parent_sequence = NULL,
 int this_priority = -1,
 bool call_pre_post = true);

 virtual void pre_start();
 virtual void pre_body();
 virtual void pre_do(bool is_item);
 virtual void mid_do(uvm_sequence_item* this_item);
 virtual void body();
 virtual void post_do(uvm_sequence_item* this_item);
 virtual void post_body();
 virtual void post_start();

 // Group: Run-time phasing
 uvm_phase* get_starting_phase() const;
 void set_starting_phase(uvm_phase* phase);
 bool get_automatic_phase_objection() const;
 void set_automatic_phase_objection(bool value);

 // Group: Sequence control
 void set_priority(int value);
 int get_priority() const;
 virtual bool is_relevant() const;
 virtual void wait_for_relevant() const;
 void lock(uvm_sequencer_base* sequencer = NULL);
 void grab(uvm_sequencer_base* sequencer = NULL);
 void unlock(uvm_sequencer_base* sequencer = NULL);
 void ungrab(uvm_sequencer_base* sequencer = NULL);
 bool is_blocked() const;
 bool has_lock();
 void kill();
 virtual void do_kill();

 // Group: Sequence item execution
 uvm_sequence_item* create_item(uvm_object_wrapper* type_var,
 uvm_sequencer_base* l_sequencer,
 const std::string& name);

 virtual void start_item(uvm_sequence_item* item,
 int set_priority = -1,
 uvm_sequencer_base* sequencer = NULL);

 virtual void finish_item(uvm_sequence_item* item,
 int set_priority = -1);

 virtual void wait_for_grant(int item_priority = -1,
 bool lock_request = false);

96
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void send_request(uvm_sequence_item* request,
 bool rerandomize = false);

 virtual void wait_for_item_done(int transaction_id = -1);

 // Group: Response interface
 void use_response_handler(bool enable);
 bool get_use_response_handler() const;
 virtual void response_handler(const uvm_sequence_item* response);
 void set_response_queue_error_report_disabled(bool value);
 bool get_response_queue_error_report_disabled() const;
 void set_response_queue_depth(int value);
 int get_response_queue_depth() const;
 virtual void clear_response_queue();

 }; // class uvm_sequence_base

} // namespace uvm

9.3.2 Constructor

explicit uvm_sequence_base(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

9.3.3 Sequence state

9.3.3.1 get_sequence_state

uvm_sequence_state_enum get_sequence_state() const;

The member function get_sequence_state shall return the sequence state as an enumerated value of type
uvm_sequence_state_enum (see Section 17.4.5). This member function can be used to wait on the sequence
reaching or changing from one or more states.

9.3.3.2 wait_for_sequence_state

void wait_for_sequence_state(unsigned int state_mask);

The member function wait_for_sequence_state shall wait until the sequence reaches one of the given states.
If the sequence is already in one of these states, the member function shall return immediately.

9.3.4 Sequence execution

9.3.4.1 start

virtual void start(uvm_sequencer_base* sqr,
 uvm_sequence_base* parent_sequence = NULL,
 int this_priority = -1,
 bool call_pre_post = true);

The member function start shall execute the sequence. The argument sequencer specifies the sequencer on
which to run this sequence. The sequencer shall be compatible with the sequence, that is, the sequencer shall
recognize the communicated request and response types.

If parent_sequence is not passed as argument or set to NULL, then the sequence is treated as a root sequence,
otherwise it is a child of a parent sequence. In the latter case, the parent sequence’s member functions pre_do,
mid_do, and post_do shall be called during the execution of this sequence.

97
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If this_priority is not passed as argument or set to -1, the priority of a sequence is set to priority of its parent
sequence. If it is a root (parent) sequence, its default priority is 100. A different priority greater than zero may
be specified using this argument. Higher numbers indicate higher priority.

If argument call_pre_post is not passed or set to true, then the member functions pre_body and post_body
shall be called before and after calling the member function body of the sequence.

9.3.4.2 pre_start

virtual void pre_start();

The member function pre_start shall be provided as a callback for the application that is called before the
optional execution of member function pre_body. The application shall not call this member function.

9.3.4.3 pre_body

virtual void pre_body();

The member function pre_body shall be provided as a callback for the application that is called before the
execution of member function body, but only when the sequence is started by using member function start.
If start is called with argument call_pre_post set to false, the member function pre_body shall not be called.
The application shall not call this member function.

9.3.4.4 pre_do

virtual void pre_do(bool is_item);

The member function pre_do shall be provided as a callback for the application that is called on the parent
sequence, if the sequence has issued a wait_for_grant call and after the sequencer has selected this sequence,
and before the item is randomized. The application shall not call this member function.

9.3.4.5 mid_do

virtual void mid_do(uvm_sequence_item* this_item);

The member function mid_do shall be provided as a callback for the application that is called after the sequence
item has been randomized, and just before the item is sent to the driver. The application shall not call this
member function.

9.3.4.6 body

virtual void body();

The member function body shall be provided as a callback for the application that is called before the optional
execution of member function post_body. The application shall not call this member function.

NOTE—In an application, the implementation of the sequence resides in this member function.

9.3.4.7 post_do

virtual void post_do(uvm_sequence_item* this_item);

98
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function post_do shall be provided as a callback for the application that is called after the driver
has indicated that it has completed the sequence item, calling either the member function item_done or put.
The application shall not call this member function.

9.3.4.8 post_body

virtual void post_body();

The member function post_body shall be provided as a callback for the application that is called before the
execution of member function post_start, but only when the sequence is started by using member function
start. If start is called with argument call_pre_post set to false, the member function post_body shall not be
called. The application shall not call this member function.

9.3.4.9 post_start

virtual void post_start();

The member function post_start shall be provided as a callback for the application that is called after the
optional execution of member function post_body. The application shall not call this member function.

9.3.5 Run-time phasing

9.3.5.1 get_starting_phase

uvm_phase* get_starting_phase() const;

The member function get_starting_phase shall return the starting phase.

If non-null, the starting phase specifies the phase in which this sequence was started. The starting phase is set
automatically when this sequence is started as the default sequence on a sequencer.

9.3.5.2 set_starting_phase

void set_starting_phase(uvm_phase* phase);

The member function set_starting_phase shall specify the starting phase.

9.3.5.3 get_automatic_phase_objection

bool get_automatic_phase_objection() const;

The member function get_automatic_phase_objection shall return and lock the automatically objection state
of the starting phase.

If the member functions returns true, the sequence automatically raises an objection to the starting phase (if the
starting phase is not NULL) immediately prior to pre_start (see Section 9.3.4.2) being called. The objection
is dropped after post_start (see Section 9.3.4.9) has executed, or kill (see Section 9.3.6.11) has been called.

9.3.5.4 set_automatic_phase_objection

void set_automatic_phase_objection(bool value);

99
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_automatic_phase_objection shall set the automatically objection state of the
starting phase.

The most common interaction with the starting phase within a sequence is to simply raise the phase’s objection
prior to executing the sequence, and drop the objection after ending the sequence, either naturally, or via a call
to kill. In order to simplify this interaction for an application, the implementation shall provide the ability to
perform this functionality automatically.

NOTE—An application should not call the member function set_automatic_phase_objection(true) if a
sequence runs with a forever loop inside of the body, as the objection will never get dropped.

9.3.6 Sequence control

9.3.6.1 set_priority

void set_priority(int value);

The member function set_priority shall set the priority of a sequence. The default priority value for a sequence
is 100. Higher values result in higher priorities. When the priority of a sequence is changed, the new priority
shall be used by the sequencer the next time that it arbitrates between sequences.

9.3.6.2 get_priority

int get_priority() const;

The member function get_priority shall return the current priority of the sequence.

9.3.6.3 is_relevant

virtual bool is_relevant() const;

The member function is_relevant shall mark a sequence as being relevant or not. By default, the member
function is_relevant shall return true, indicating that the sequence is always relevant.

An application may choose to overload this member function to indicate to the sequencer that the sequence
is not currently relevant after a request has been made. Any sequence that implements the member function
is_relevant shall also implement wait_for_relevant, to enable a sequencer to wait for a sequence to become
relevant.

When the sequencer arbitrates, it shall call the member function is_relevant on each requesting, unblocked
sequence to see if it is relevant. If this member function returns false, then the sequence is not used.

If all requesting sequences are not relevant, then the sequencer shall call wait_for_relevant on all sequences
and re-arbitrate upon its return.

9.3.6.4 wait_for_relevant

virtual void wait_for_relevant() const;

The member function shall be called by the sequencer when all available sequences are not relevant. When
wait_for_relevant returns, the sequencer attempts to re-arbitrate.

100
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Returning from this call does not guarantee that a sequence is relevant, although that would be the ideal. This
member function shall provide some delay to prevent an infinite loop.

If a sequence defines is_relevant so that it is not always relevant (by default, a sequence is always relevant),
then the sequence shall also implement the member function wait_for_relevant.

9.3.6.5 lock

void lock(uvm_sequencer_base* sequencer = NULL);

The member function lock shall request a lock on the specified sequencer. If sequencer is NULL, the lock is
requested on the current default sequencer. A lock request shall be arbitrated the same as any other request. A
lock is granted after all earlier requests are completed and no other locks or grabs are blocking this sequence.
The lock call shall return when the lock has been granted.

9.3.6.6 grab

void grab(uvm_sequencer_base* sequencer = NULL);

The member function grab shall request a lock on the specified sequencer. If sequencer is NULL, the grab is
requested on the current default sequencer. A grab request is put in front of the arbitration queue. It shall be
arbitrated before any other requests. A grab is granted when no other grabs or locks are blocking this sequence.
The grab call shall return when the grab has been granted.

9.3.6.7 unlock

void unlock(uvm_sequencer_base* sequencer = NULL);

The member function unlock shall remove any locks or grabs obtained by this sequence on the specified
sequencer. If the sequencer is NULL, then the unlock is done on the current default sequencer.

9.3.6.8 ungrab

void ungrab(uvm_sequencer_base* sequencer = NULL);

The member function ungrab shall remove any locks or grabs obtained by this sequence on the specified
sequencer. If the sequencer is NULL, then the ungrab is done on the current default sequencer.

9.3.6.9 is_blocked

bool is_blocked() const;

The member function is_blocked shall return a Boolean type indicating whether this sequence is currently
prevented from running due to another lock or grab. A true is returned if the sequence is currently blocked. A
false is returned if no lock or grab prevents this sequence from executing. Even if a sequence is not blocked,
it is possible for another sequence to issue a lock or grab before this sequence can issue a request.

9.3.6.10 has_lock

bool has_lock();

101
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function has_lock shall return true if this sequence has a lock; otherwise it shall return false.
Even if this sequence has a lock, a child sequence may also have a lock, in which case the sequence is still
blocked from issuing operations on the sequencer.

9.3.6.11 kill

void kill();

The member function kill shall shall kill the sequence, and cause all current locks and requests in the sequence’s
default sequencer to be removed. The sequence state shall be changed to UVM_STOPPED and the callback
functions post_body and post_start are not being executed.

9.3.6.12 do_kill

virtual void do_kill();

The member function do_kill shall provide a callback for an application that is called whenever a sequence
is terminated by using either kill or stop_sequences.

9.3.7 Sequence item execution

9.3.7.1 create_item

uvm_sequence_item* create_item(uvm_object_wrapper* type_var,
 uvm_sequencer_base* l_sequencer,
 const std::string& name);

The member function create_item shall create and initialize a sequence item of class uvm_sequence_item
or sequence of class uvm_sequence using the factory. The type of the created object, being a sequence
item or sequence, is defined by the first argument type_var, which shall be of type uvm_sequence_item or
uvm_sequence only. The sequence item or sequence shall be initialized to communicate with the specified
sequencer l_sequencer passed as second argument. The name of the created item shall be passed as third
argument.

9.3.7.2 start_item

virtual void start_item(uvm_sequence_item* item,
 int set_priority = -1,
 uvm_sequencer_base* sequencer = NULL);

The member function start_item shall initiate execution of a sequence item specified as argument item. If the
item has not already been initialized using member function create_item, then it is initialized here by using
the sequencer specified by argument sequencer. If argument sequencer is not specified or set to NULL, the
default sequencer shall be used (see also Section 9.2.3.4). The argument set_priority can be used to specify
the priority for the execution. If argument set_priority is not specified or set to -1, the default priority shall be
100. Randomization, or other member functions, may be done between start_item and finish_item to ensure
late generation.

9.3.7.3 finish_item

virtual void finish_item(uvm_sequence_item* item,
 int set_priority = -1);

102
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function finish_item shall finalize execution of execution of a sequence item specified as
argument item. The member function shall be called after start_item with no delays or delta-cycles. The
argument set_priority can be used to specify the priority for the execution. If argument set_priority is not
specified or set to -1, the default priority shall be 100. Randomization, or other member functions, may be
called between start_item and finish_item.

9.3.7.4 wait_for_grant

virtual void wait_for_grant(int item_priority = -1,
 bool lock_request = false);

The member function wait_for_grant shall issue a request to the current sequencer. If argument item_priority
is not specified or set to -1, then the current sequence priority is used by the arbiter. If the argument lock_request
is set to true, then the sequencer shall issue a lock immediately before granting the sequence.

NOTE—The lock may be granted without the sequence being granted if member function is_relevant is not
asserted.

9.3.7.5 send_request

virtual void send_request(uvm_sequence_item* request,
 bool rerandomize = false);

The member function send_request shall send the request item, passed as an argument, to the sequencer, which
shall forward it to the driver. If argument rerandomize is set to true, the item is randomized before being sent
to the driver.

NOTE 1—In an application, the member function send_request shall only be called after a call to
wait_for_grant.

NOTE 2—Randomization is not yet supported in UVM-SystemC.

9.3.7.6 wait_for_item_done

virtual void wait_for_item_done(int transaction_id = -1);

The member function wait_for_item_done shall block until the driver calls item_done or put. If no
transaction_id argument is specified, then the call shall return the next time that the driver calls item_done
or put. If a specific transaction_id is specified, then the call shall return when the driver indicates completion
of that specific item.

NOTE—If a specific transaction_id has been specified, and the driver has already issued an item_done or put
for that transaction, then the call hangs, having missed the earlier notification.

9.3.8 Response interface

9.3.8.1 use_response_handler

void use_response_handler(bool enable);

The member function use_response_handler shall send responses to the response handler when argument
enable is set to true. By default, responses from the driver are retrieved in the sequence by calling member
function get_response.

103
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.3.8.2 get_use_response_handler

bool get_use_response_handler() const;

The member function get_use_response_handler shall return the state set by use_response_handler. If this
member function returns false, the response handler is disabled.

9.3.8.3 response_handler

virtual void response_handler(const uvm_sequence_item* response);

The member function response_handler shall be provided to enable the sequencer, in case returns true, to call
this member function for each response that arrives for this sequence.

9.3.8.4 set_response_queue_error_report_disabled

void set_response_queue_error_report_disabled(bool value);

The member function set_response_queue_error_report_disabled shall enable error reporting of overflows
of the reponse queue. The response queue shall overflow if more responses are sent to this sequence from the
driver than calls to member function get_response are made. If argument value is set to false, error reporting is
disabled. If argument value is set to true, error reporting is enabled. By default, if the response queue overflows,
an error is reported.

9.3.8.5 get_response_queue_error_report_disabled

bool get_response_queue_error_report_disabled() const;

The member function get_response_queue_error_report_disabled shall return the reporting status of an
overflow of the response queue. It returns false when error reports are generated and returns true if no such
error reports are generated.

9.3.8.6 set_response_queue_depth

void set_response_queue_depth(int value);

The member function set_response_queue_depth shall set the depth of the reponse queue. The default
maximum depth of the response queue is 8. An argument value of -1 defines an unbound response queue.

9.3.8.7 get_response_queue_depth

int get_response_queue_depth() const;

The member function get_response_queue_depth shall return the current depth for the response queue. An
unbound response queue returns the value -1.

9.3.8.8 clear_response_queue

virtual void clear_response_queue();

The member function clear_response_queue shall empty the response queue for the sequence.

104
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.4 uvm_sequence

The class uvm_sequence extends the base class uvm_sequence_base for specific request (REQ) and response
(RSP) types, which are specified as template arguments.

9.4.1 Class definition

namespace uvm {

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>
 class uvm_sequence : public uvm_sequence_base
 {
 public:
 // Constructor
 explicit uvm_sequence(const std::string& name);

 // Member functions
 void send_request(uvm_sequence_item* request,
 bool rerandomize = false);

 REQ get_current_item() const;

 virtual void get_response(RSP* response,
 int transaction_id = -1);

 }; // class uvm_sequence

} // namespace uvm

9.4.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be a derivative of class uvm_sequence_item.

9.4.3 Constructor

explicit uvm_sequence(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

9.4.4 Member functions

9.4.4.1 send_request

void send_request(uvm_sequence_item* request,
 bool rerandomize = false);

The member function send_request shall send the request item, passed as an argument, to the sequencer, which
shall forward it to the driver. If argument rerandomize is set to true, the item is randomized before being sent
to the driver.

NOTE 1—In an application, the member function send_request shall only be called after a call to
wait_for_grant.

NOTE 2—Randomization is not yet supported in UVM-SystemC.

9.4.4.2 get_current_item

REQ get_current_item() const;

105
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_current_item shall return the request item currently being executed by the
sequencer. If the sequencer is not currently executing an item, this member function shall return NULL. The
sequencer is executing an item from the time that get_next_item or peek is called until the time that get or
item_done is called.

NOTE—A driver that only calls get will never show a current item, since the item is completed at the same
time as it is requested.

9.4.4.3 get_response

virtual void get_response(RSP* response,
 int transaction_id = -1);

The member function get_response shall retrieve a response via the response queue. If no response is available
in the response queue, the member function blocks until a response is received.

If no transaction_id is passed as an argument, this member function shall return the next response sent to this
sequence. If a transaction_id is specified, the member function shall block until a response with that transaction
ID is received in the response queue.

106
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10. Configuration and resource classes

The configuration and resource classes provide access to a centralized database where type specific information
can be stored and retrieved. A configuration or resource item may be associated with a specific hierarchical
scope of an object derived from class uvm_component or it may be visible to all components regardless of
their hierarchical position.

The following configuration and resource classes are defined:
— uvm_config_db
— uvm_resource_db
— uvm_resource_db_options
— uvm_resource_options
— uvm_resource_base
— uvm_resource_pool
— uvm_resource
— uvm_resource_types

10.1 uvm_config_db

The class uvm_config_db provides a typed interface for object-centric configuration. It is consistent with the
configuration mechanism as defined for the class uvm_component. Information can be read from or written
to the database at any time during simulation.

10.1.1 Class definition

namespace uvm {

 template <class T>
 class uvm_config_db
 {
 public:

 // Constructor
 uvm_config_db();

 // Member functions
 static void set(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name,
 const T& value);

 static bool get(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name,
 T& value);

 static bool exists(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name,
 bool spell_chk = false);

 static void wait_modified(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name);

 }; // class uvm_config_db

} // namespace uvm

107
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.1.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the
configuration database.

10.1.3 Constraints on usage

To remain compatible with UVM-SystemVerilog, all of the member functions in class uvm_config_db are
static, so these are called using the operator::.

10.1.4 Member functions

10.1.4.1 set

static void set(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name,
 const T& value);

The member function set shall create a new or update an existing configuration setting using target field
field_name in instance with name inst_name from the context cntxt in which it is defined. If argument cntxt
is set to NULL, then inst_name defines the complete scope for the configuration setting; otherwise, the full
name of the component referenced to by cntxt shall be added to the instance name. An application may define
inst_name and field_name to be glob-style or regular expression style expressions.

10.1.4.2 get

static bool get(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name,
 T& value);

The member function get shall retrieve a configuration setting via arguments inst_name and field_name, using
a component pointer cntxt as the starting search point. The argument inst_name shall be an explicit instance
name relative to cntxt and may be an empty string if the cntxt is the instance that the configuration object
applies to. The argument field_name is the specific field in the scope that is being searched for.

The member function returns true if the value is being found; otherwise, false is returned.

10.1.4.3 exists

static bool exists(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name,
 bool spell_chk = false);

The member function exists shall check if a value for field_name is available in inst_name, using component
cntxt as the starting search point. inst_name is an explicit instance name relative to cntxt and may be an empty
string if the cntxt is the instance that the configuration object applies to. field_name is the specific field in the
scope that is being searched for. The argument spell_chk can be set to true to turn spell checking on if it is
expected that the field should exist in the database. The function returns true if a config parameter exists and
false if it does not exist.

108
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.1.4.4 wait_modified

static void wait_modified(uvm_component* cntxt,
 const std::string& inst_name,
 const std::string& field_name);

The member function wait_modified shall wait for a configuration setting to be set for field_name in cntxt and
inst_name. The member function blocks until a new configuration setting is applied that effects the specified
field.

10.2 uvm_resource_db

The class uvm_resource_db provides a convenience interface for the resources facility. In many cases basic
operations such as creating and setting a resource or getting a resource could take multiple lines of code
using the interfaces in class uvm_resource_base or class uvm_resource. The convenience layer in class
uvm_resource_db reduces many of those operations to a single line of code.

10.2.1 Class definition

namespace uvm {

 template < typename T = uvm_object* >
 class uvm_resource_db
 {
 public:

 // Member functions
 static uvm_resource<T>* get_by_type(const std::string& scope);

 static uvm_resource<T>* get_by_name(const std::string& scope,
 const std::string& name,
 bool rpterr = true);

 static uvm_resource<T>* set_default(const std::string& scope,
 const std::string& name);

 static void set(const std::string& scope,
 const std::string& name,
 const T& val,
 uvm_object* accessor = NULL);

 static void set_anonymous(const std::string& scope,
 const T& val,
 uvm_object* accessor = NULL);

 static bool read_by_name(const std::string& scope,
 const std::string& name,
 T val,
 uvm_object* accessor = NULL);

 static bool read_by_type(const std::string& scope,
 T val,
 uvm_object* accessor = NULL);

 static bool write_by_name(const std::string& scope,
 const std::string& name,
 const T& val,
 uvm_object* accessor = NULL);

 static bool write_by_type(const std::string& scope,
 const T& val,
 uvm_object* accessor = NULL);

 static void dump();

 private:
 // disabled
 uvm_resource_db();

109
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 }; // class uvm_config_db

} // namespace uvm

10.2.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the resource
database.

10.2.3 Constraints on usage

To remain compatible with UVM-SystemVerilog, all of the member functions in class uvm_resource_db are
static, so these shall be called using the operator::. An application shall not instantiate this class, but shall
call the static member functions directly.

10.2.4 Member functions

10.2.4.1 get_by_type

static uvm_resource<T>* get_by_type(const std::string& scope);

The member function get_by_type shall return the resource by type. The type is specified in the database class
parameter so the only argument to this member function is the scope.

10.2.4.2 get_by_name

static uvm_resource<T>* get_by_name(const std::string& scope,
 const std::string& name,
 bool rpterr = true);

The member function get_by_name shall return the resource by name. The first argument is the current scope
and the second argument is the name of the resource to be retrieved. If the argument rpterr is set to true, a
warning shall be generated if no matching resource is found.

10.2.4.3 set_default

static uvm_resource<T>* set_default(const std::string& scope,
 const std::string& name);

The member function set_default shall create a new resource with a default value and add it to the resource
database using arguments name and scope as the lookup parameters.

10.2.4.4 set

static void set(const std::string& scope,
 const std::string& name,
 const T& val,
 uvm_object* accessor = NULL);

The member function set shall create a new resource, write a value val to it, and add it to the resource database
using arguments name and scope as the lookup parameters. The argument accessor is used for auditing.

110
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.2.4.5 set_anonymous

static void set_anonymous(const std::string& scope,
 const T& val,
 uvm_object* accessor = NULL);

The member function set_anonymous shall create a new resource, write a value val to it, and add it to the
resource database. As the resource has no argument name, it is not added to the name map. But is does have
an argument scope for lookup purposes. The argument accessor is used for auditing.

10.2.4.6 read_by_name

static bool read_by_name(const std::string& scope,
 const std::string& name,
 T val,
 uvm_object* accessor = NULL);

The member function read_by_name shall locate a resource by arguments name and scope and returns the
value through argument val. The member function shall return true if the read was successful; otherwise it
shall return false. The argument accessor is used for auditing.

10.2.4.7 read_by_type

static bool read_by_type(const std::string& scope,
 T val,
 uvm_object* accessor = NULL);

The member function read_by_type shall read a value by type. The value is returned through the argument val.
The argument scope is used for the lookup. The member function shall return true if the read was successful;
otherwise it shall return false. The argument accessor is used for auditing.

10.2.4.8 write_by_name

static bool write_by_name(const std::string& scope,
 const std::string& name,
 const T& val,
 uvm_object* accessor = NULL);

The member function write_by_name shall write the argument val into the resources database. First, look up
the resource by using arguments name and scope. If it is not located then add a new resource to the database
and then write its value.

10.2.4.9 write_by_type

static bool write_by_type(const std::string& scope,
 const T& val,
 uvm_object* accessor = NULL);

The member function write_by_type shall write the argument val into the resources database. First, look up
the resource by type. If it is not located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and consequently may target
other scopes beyond the scope argument. If a get_by_name match is found for name and scope then val shall
be written to that matching resource and thus may impact other scopes which also match the resource.

111
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.2.4.10 dump

static void dump();

The member function dump shall dump all the resources in the resource pool. This is useful for debugging
purposes. This member function does not use the parameter T, so it shall dump the same thing (the entire
database) no matter the value of the parameter.

10.3 uvm_resource_db_options

The class uvm_resource_db_options shall provide a namespace for managing options for the resources
database facility. The class shall define static member functions for manipulating and retrieving the value of
the data members. The static data members represent options and settings that control the behavior of the
resources database facility.

10.3.1 Class definition

namespace uvm {

 class uvm_resource_db_options
 {
 public:

 // Member functions
 static void turn_on_tracing();
 static void turn_off_tracing();
 static bool is_tracing();

 private:
 // Disabled
 uvm_resource_db_options();

 }; // class uvm_resource_db_options

} // namespace uvm

10.3.2 Member functions

10.3.2.1 turn_on_tracing

static void turn_on_tracing();

The member function turn_on_tracing shall enable tracing for the resource database. This causes all reads
and writes to the database to display information about the accesses.

10.3.2.2 turn_off_tracing

static void turn_off_tracing();

The member function turn_off_tracing shall disable tracing for the resource database.

10.3.2.3 is_tracing

static bool is_tracing();

The member function is_tracing shall return true if the tracing facility is enabled; otherwise it shall return false.

112
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.4 uvm_resource_options

The class uvm_resource_options shall provide a namespace for managing options for the resources facility.
The class shall only provide static member functions for manipulating and retrieving the value of its data
members.

10.4.1 Class definition

namespace uvm {

 class uvm_resource_options
 {
 public:

 // Member functions
 static void turn_on_auditing();
 static void turn_off_auditing();
 static bool is_auditing();

 private:
 // disabled
 uvm_resource_options();

 }; // class uvm_resource_options

} // namespace uvm

10.4.2 Member functions

10.4.2.1 turn_on_auditing

static void turn_on_auditing();

The member function turn_on_auditing shall enable auditing for the resource database. This causes all reads
and writes to the database to store information about the accesses. Auditing is enabled by default.

10.4.2.2 turn_off_auditing

static void turn_off_auditing();

The member function turn_off_auditing shall disable auditing for the resource database. If auditing is
disabled, it is not possible to get extra information about resource database accesses.

10.4.2.3 is_auditing

static bool is_auditing();

The member function is_auditing shall return true if auditing is enabled; otherwise it shall return false.

10.5 uvm_resource_base

The class uvm_resource_base shall provide a non-parameterized base class for resources. It supports
interfaces for scope matching and virtual member functions for printing the resource and accessors list.

10.5.1 Class definition

namespace uvm {

113
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 class uvm_resource_base : public uvm_object
 {
 public:

 // Constructor
 uvm_resource_base(const std::string& name = "",
 const std::string& scope = "*");

 // Group: Resource database interface
 virtual uvm_resource_base* get_type_handle() const = 0;

 // Group: Read-only interface
 void set_read_only();
 bool is_read_only() const;

 // Group: Notification
 void wait_modified();

 // Group: Scope interface
 void set_scope(const std::string* scope);
 std::string get_scope() const;
 bool match_scope(const std::string& scope);

 // Group: Priority
 virtual void set_priority(uvm_resource_types::priority_e pri) = 0;

 // Group: Utility functions
 void do_print(const uvm_printer& printer) const;

 // Group: Audit trail
 void record_read_access(uvm_object* accessor = NULL);
 void record_write_access(uvm_object* accessor = NULL);
 virtual void print_accessors() const;
 void init_access_record(uvm_resource_types::access_t access_record);

 // Data members
 unsigned int precedence;
 static int unsigned default_precedence;

 }; // class uvm_resource_base

} // namespace uvm

10.5.2 Constructor

uvm_resource_base(const std::string& name = "",
 const std::string& scope = "*");

The constructor takes two arguments, the name of the resource name and a regular expression scope which
represents the set of scopes over which this resource is visible.

10.5.3 Resource database interface

10.5.3.1 get_type_handle

virtual uvm_resource_base* get_type_handle() const = 0;

The member function get_type_handle shall return the type handle of the resource container.

10.5.4 Read-only interface

10.5.4.1 set_read_only

void set_read_only();

114
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_read_only shall define the resource as a read-only resource. An attempt to call
uvm_resource<T>::write on the resource shall cause an error.

10.5.4.2 is_read_only

bool is_read_only() const;

The member function is_read_only shall return true if this resource has been set to read-only; otherwise it
shall return false.

10.5.5 Notification

10.5.5.1 wait_modified

void wait_modified();

The member function wait_modified shall block execution until the resource has been modified, that is, it
waits till a uvm_resource<T>::write operation has been performed.

10.5.6 Scope interface

10.5.6.1 set_scope

void set_scope(const std::string& scope);

The member function set_scope shall set the value of the regular expression that identifies the set of scopes over
which this resource is visible. If the supplied argument is a glob it shall be converted to a regular expression
before it is stored.

10.5.6.2 get_scope

std::string get_scope() const;

The member function get_scope shall retrieve the regular expression string that identifies the set of scopes
over which this resource is visible.

10.5.6.3 match_scope

bool match_scope(const std::string& scope);

The member function match_scope shall return true if this resource is visible in a scope. The scope is specified
as argument and may use regular expressions.

10.5.7 Priority

10.5.7.1 set_priority

virtual void set_priority(uvm_resource_types::priority_e pri) = 0;

The member function set_priority shall change the search priority of the resource based on the value of the
priority enumeration given as argument.

115
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.5.8 Utility functions

10.5.8.1 do_print

void do_print(const uvm_printer& printer) const;

The member function do_print shall be called by member function print. It allows an application to implement
application-specific printing routines.

10.5.9 Audit trail

10.5.9.1 record_read_access

void record_read_access(uvm_object* accessor = NULL);

The member function record_read_access shall record the read access for this resource.

10.5.9.2 record_write_access

void record_write_access(uvm_object* accessor = NULL);

The member function record_write_access shall record the write access for this resource.

10.5.9.3 print_accessors

virtual void print_accessors() const;

The member function print_accessors shall print the access records for this resource.

10.5.9.4 init_access_record

void init_access_record(uvm_resource_types::access_t access_record);

The member function init_access_record shall initialize a new access record.

10.5.10 Data members

10.5.10.1 precedence

unsigned int precedence;

The data member precedence shall be used to associate a precedence that a resource has with respect to other
resources which match the same scope and name. Resources are set to the default_precedence initially, and
may be set to a higher or lower precedence as desired.

10.5.10.2 default_precedence

static int unsigned default_precedence;

The data member default_precedence is the default precedence for a resource that has been created. When
two resources have the same precedence, the first resource found has precedence.

116
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.6 uvm_resource_pool

The class uvm_resource_pool shall provide the centralized resource pool to store each resource both by
primary name and by type handle.

10.6.1 Class definition

namespace uvm {

 class uvm_resource_pool
 {
 public:
 static uvm_resource_pool* get();
 bool spell_check(const std::string& s) const;

 // Group: Set interface
 void set(uvm_resource_base* rsrc, int override = 0);
 void set_override(uvm_resource_base* rsrc);
 void set_name_override(uvm_resource_base* rsrc);
 void set_type_override(uvm_resource_base* rsrc);

 // Group: Lookup
 uvm_resource_types::rsrc_q_t* lookup_name(const std::string& scope,
 const std::string& name,
 uvm_resource_base* type_handle,
 bool rpterr = true) const;

 uvm_resource_base* get_highest_precedence(uvm_resource_types::rsrc_q_t* q) const;

 static void sort_by_precedence(uvm_resource_types::rsrc_q_t* q);

 uvm_resource_base* get_by_name(const std::string& scope,
 const std::string& name,
 uvm_resource_base* type_handle,
 bool rpterr = true);

 uvm_resource_types::rsrc_q_t* lookup_type(const std::string& scope,
 uvm_resource_base* type_handle) const;

 uvm_resource_base* get_by_type(const std::string& scope,
 uvm_resource_base* type_handle);

 uvm_resource_types::rsrc_q_t* lookup_regex_names(const std::string& scope,
 const std::string& name,
 uvm_resource_base* type_handle = NULL);

 uvm_resource_types::rsrc_q_t* lookup_regex(const std::string& re,
 const std::string& scope);

 uvm_resource_types::rsrc_q_t* lookup_scope(const std::string& scope);

 // Group: Priority interface
 void set_priority_type(uvm_resource_base* rsrc,
 uvm_resource_types::priority_e pri);

 void set_priority_name(uvm_resource_base* rsrc,
 uvm_resource_types::priority_e pri);

 void set_priority(uvm_resource_base* rsrc,
 uvm_resource_types::priority_e pri);

 // Group: Debug
 uvm_resource_types::rsrc_q_t* find_unused_resources() const;
 void print_resources(uvm_resource_types::rsrc_q_t rq, bool audit = false) const;
 void dump(bool audit = false) const;

 }; // class uvm_resource_pool

} // namespace uvm

117
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.6.2 get

static uvm_resource_pool* get();

The member function get shall return the singleton handle to the resource pool.

10.6.3 spell_check

bool spell_check(const std::string& s) const;

The member function spell_check shall invoke the spell checker for the string s passed as argument. The
universe of correctly spelled strings—i.e. the dictionary—is the name map.

10.6.4 Set interface

10.6.4.1 set

void set(uvm_resource_base* rsrc, int override = 0);

The member function set shall add a new resource to the resource pool. The resource is inserted into both the
name map and type map so it can be located by either.

An object creates a resource and sets it into the resource pool. Later, other objects that want to access the
resource shall get it from the pool.

Overrides can be specified using this interface. Either a name override, a type override or both can be specified.
If an override is specified, then the resource is entered at the front of the queue instead of at the back.

It is not recommended that an application specify the override parameter directly. Instead, an application should
use the member functions set_override, set_name_override, or set_type_override.

10.6.4.2 set_override

void set_override(uvm_resource_base* rsrc);

The member function set_override shall override the resource, provided as an argument, in the resource pool
both by name and type.

10.6.4.3 set_name_override

void set_name_override(uvm_resource_base* rsrc);

The member function set_name_override shall override the resource, provided as argument rsrc, in the
resource pool using normal precedence in the type map and shall override the name.

10.6.4.4 set_type_override

void set_type_override(uvm_resource_base* rsrc);

The member function set_type_override shall override the resource, provided as argument rsrc, in the resource
pool using normal precedence in the name map and shall override the type.

118
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.6.5 Lookup

10.6.5.1 lookup_name

uvm_resource_types::rsrc_q_t* lookup_name(const std::string& scope,
 const std::string& name,
 uvm_resource_base* type_handle,
 bool rpterr = true) const;

The member function lookup_name shall return a queue of resources that match the name, scope, and
type_handle, which are passed as arguments. If no resources match the queue is returned empty. If rpterr is
set, then a warning is issued if no matches are found, and the spell checker is invoked on name. If type_handle
is NULL, then a type check is not made and resources are returned that match only name and scope.

10.6.5.2 get_highest_precedence

uvm_resource_base* get_highest_precedence(uvm_resource_types::rsrc_q_t* q) const;

The member function get_highest_precedence shall traverse the queue passes as argument, q, of resources
and return the one with the highest precedence. In the case where there exists more than one resource with the
highest precedence value, the first one that has that precedence shall be the one that is returned.

10.6.5.3 sort_by_precedence

static void sort_by_precedence(uvm_resource_types::rsrc_q_t* q);

The member function sort_by_precedence shall sort the resources, passed as argument as a list of resources,
in precedence order. The highest precedence resource shall be first in the list and the lowest precedence shall
be last. Resources that have the same precedence and the same name shall be ordered by most recently set first.

10.6.5.4 get_by_name

uvm_resource_base* get_by_name(const std::string& scope,
 const std::string& name,
 uvm_resource_base* type_handle,
 bool rpterr = true);

The member function get_by_name shall return the resource by using the arguments name, scope, and
type_handle. Whether the get succeeds or fails, save a record of the get attempt. If the argument rpterr is set
to true, the member function shall report potential errors.

10.6.5.5 lookup_type

uvm_resource_types::rsrc_q_t* lookup_type(const std::string& scope,
 uvm_resource_base* type_handle) const;

The member function lookup_type shall return a queue of resources that match the argument type_handle and
argument scope. If no resources match, then the returned queue is empty.

10.6.5.6 get_by_type

uvm_resource_base* get_by_type(const std::string& scope,
 uvm_resource_base* type_handle);

119
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_by_type shall return the resources that match the argument type_handle and
argument scope. It shall insert a record into the get history list whether or not the get succeeded.

10.6.5.7 lookup_regex_names

uvm_resource_types::rsrc_q_t* lookup_regex_names(const std::string& scope,
 const std::string& name,
 uvm_resource_base* type_handle = NULL);

The member function lookup_regex_names shall return a queue of resources that match the arguments name,
scope, and type_handle, where name and scope may be expressed as a regular expression.

10.6.5.8 lookup_regex

uvm_resource_types::rsrc_q_t* lookup_regex(const std::string& re,
 const std::string& scope);

The member function lookup_regex shall return a queue of resources that whose name matches the regular
expression argument re and whose scope matches the specified argument scope.

10.6.5.9 lookup_scope

uvm_resource_types::rsrc_q_t* lookup_scope(const std::string& scope);

The member function lookup_scope shall return a queue of resources that are visible to a particular scope.

NOTE—This member function could be quite computation expensive, as it has to traverse all of the resources
in the resource database.

10.6.6 Priority interface

10.6.6.1 set_priority_type

void set_priority_type(uvm_resource_base* rsrc,
 uvm_resource_types::priority_e pri);

The member function set_priority_type shall change the priority of the resource rsrc in the resource type
map only, based on the value of priority enumeration argument pri. The priority in the resource name map
remains unchanged.

10.6.6.2 set_priority_name

void set_priority_name(uvm_resource_base* rsrc,
 uvm_resource_types::priority_e pri);

The member function set_priority_name shall change the priority of the resource rsrc in the resource name
map only, based on the value of priority enumeration argument pri. The priority in the resource type map
remains unchanged.

10.6.6.3 set_priority

void set_priority(uvm_resource_base* rsrc,
 uvm_resource_types::priority_e pri);

120
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_priority shall change the priority of the resource rsrc in the resource name map and
type map, based on the value of priority enumeration argument pri.

10.6.7 Debug

10.6.7.1 find_unused_resources

uvm_resource_types::rsrc_q_t* find_unused_resources() const;

The member function find_unused_resources shall return a queue of resources that have at least one write
and no reads.

10.6.7.2 print_resources

void print_resources(uvm_resource_types::rsrc_q_t rq, bool audit = false) const;

The member function print_resources shall print the queue of resources passed as argument rq. If the argument
audit is set to true, the audit trail is printed for each resource along with the name, value, and scope regular
expression.

10.6.7.3 dump

void dump(bool audit = false) const;

The member function dump shall print the entire resource pool. The member function print_resources shall
be used to initiate the printing. If the argument audit is set to true, the audit trail is printed for each resource
along with the name, value, and scope regular expression.

10.7 uvm_resource

The class uvm_resource shall provide the interface to read and write to the resource database.

10.7.1 Class definition

namespace uvm {

 template <typename T = int>
 class uvm_resource : public uvm_resource_base
 {
 public:

 // Group: Type Interface
 static uvm_resource<T>* get_type();
 uvm_resource_base* get_type_handle() const;

 // Group: Set/Get Interface
 void set();
 void set_override(uvm_resource_types::override_t override =
 uvm_resource_types::BOTH_OVERRIDE);

 static uvm_resource<T>* get_by_name(const std::string& scope,
 const std::string& name,
 bool rpterr = true);

 static uvm_resource<T>* get_by_type(const std::string& scope,
 uvm_resource_base* type_handle);

 // Group: Read/Write Interface
 T read(uvm_object*& accessor);

121
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 void write(const T& t, uvm_object*& accessor);

 // Group: Priority
 void set_priority(uvm_resource_types::priority_e pri);
 static uvm_resource<T>* get_highest_precedence(uvm_resource_types::rsrc_q_t* q);

 }; // class uvm_resource

} // namespace uvm

10.7.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the resource
database.

10.7.3 Type interface

10.7.3.1 get_type

static uvm_resource<T>* get_type();

The member function get_type shall return the static type handle. The return type is the type of the
parameterized class.

10.7.3.2 get_type_handle

uvm_resource_base* get_type_handle() const;

The member function get_type_handle shall return the static type handle of this resource in a polymorphic
fashion. The return type of get_type_handle is uvm_resource_base.

NOTE—As the member function is not static, it can only be used by instances of a parameterized resource.

10.7.4 Set/Get interface

10.7.4.1 set

void set();

The member function set shall put the resource into the global resource pool.

10.7.4.2 set_override

void set_override(uvm_resource_types::override_t override =
 uvm_resource_types::BOTH_OVERRIDE);

The member function set_override shall put the resource into the global resource pool as an override. This
means it gets put at the head of the list and is searched before other existing resources that occupy the same
position in the name map or the type map. The default is to override both the name and type maps. However,
using the override argument you can specify that either the name map or type map is overridden.

10.7.4.3 get_by_name

static uvm_resource<T>* get_by_name(const std::string& scope,
 const std::string& name,

122
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 bool rpterr = true);

The member function get_by_name shall look up a resource by name in the name map. The first resource with
the specified name, whose type is the current type, and is visible in the specified scope is returned, if one exists.
The rpterr flag indicates whether or not an error should be reported if the search fails. If the argument rpterr is
set to one then a failure message is issued, including suggested spelling alternatives, based on resource names
that exist in the database, gathered by the spell checker.

10.7.4.4 get_by_type

static uvm_resource<T>* get_by_type(const std::string& scope,
 uvm_resource_base* type_handle);

The member function get_by_type shall look up a resource by type_handle in the type map. The first resource
with the specified type_handle that is visible in the specified scope is returned, if one exists. The member
function shall return NULL if there is no resource matching the specifications.

10.7.5 Read/Write interface

10.7.5.1 read

T read(uvm_object*& accessor);

The member function read shall return the object stored in the resource container. If an accessor object is
supplied then also update the accessor record for this resource.

10.7.5.2 write

void write(const T& t, uvm_object*& accessor);

The member function write shall modify the object stored in this resource container. If the resource is read-
only then issue an error message and return without modifying the object in the container. If the resource is
not read-only and an accessor object has been supplied then also update the accessor record. Lastly, replace
the object value in the container with the value supplied as the argument, t, and release any processes blocked
on uvm_resource_base::wait_modified.

10.7.6 Priority interface

10.7.6.1 set_priority

void set_priority(uvm_resource_types::priority_e pri);

The member function set_priority shall change the search priority of the resource based on the value of the
priority enum argument, pri.

10.7.6.2 get_highest_precedence

static uvm_resource<T>* get_highest_precedence(uvm_resource_types::rsrc_q_t* q);

The member function get_highest_precedence shall locate the first resource, in a queue of resources, with
the highest precedence whose type is T.

123
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.8 uvm_resource_types

The class uvm_resource_types shall provide typedefs and enums used throughout the resources facility. This
class shall not contain any member function or data members, only typedefs. It’s used in lieu of package-
scope types.

10.8.1 Class definition

namespace uvm {

 class uvm_resource_types
 {
 public:

 typedef std::queue<uvm_resource_base* > rsrc_q_t;
 typedef enum { TYPE_OVERRIDE, NAME_OVERRIDE, BOTH_OVERRIDE } override_t;
 typedef enum { PRI_HIGH, PRI_LOW } priority_e;

 }; // class uvm_resource_types

} // namespace uvm

10.8.2 Type definitions (typedefs)

10.8.2.1 rsrc_q_t

The typedef rsrc_q_t shall define a queue of handles of type uvm_resource_base.

10.8.2.2 override_t

The typedef override_t shall define an enumeration to override a resource. Valid values are:
— TYPE_OVERRIDE: Override a resource in the resource pool both by type.
— NAME_OVERRIDE: Override a resource in the resource pool both by name.
— BOTH_OVERRIDE: Override a resource in the resource pool both by name and type.

10.8.2.3 priority_e

The typedef priority_e shall define an enumeration for the priority of a resource. Valid values are:
— PRI_HIGH: High priority, which places the resource at the front of the queue.
— PRI_LOW: Low priority, which places the resource at the back of the queue.

124
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11. Phasing and synchronization classes

The phasing and synchronization concept in UVM defines standardized stages called phases which are
executed in a well defined order. Each UVM component offers dedicated callbacks for each of these phases
to implement application-specific behavior. Phases are executed sequentially, but each phase may consist of
multiple function calls (of components contributing to that phase) in parallel. Besides standardized common
and UVM run-time phases, user-defined phases can be added.

In order to support synchronization during the execution of the run-time phases, which run as concurrent
processes, additional methods are available to coordinate the execution of or status of these processes between
all UVM components or objects.

The following phasing and synchronization classes are defined:
— uvm_phase: The base class for defining a phase’s behavior, state, context.
— uvm_domain: Phasing schedule node representing an independent branch of the schedule.
— uvm_bottomup_phase: A phase implementation for bottom up function phases.
— uvm_topdown_phase: A phase implementation for top-down function phases.
— uvm_process_phase° (uvm_task_phase†): A phase implementation for phases which are launched as

spawned processes.
— uvm_objection: Mechanism to synchronize phases based on passing execution status information

between running processes.

11.1 uvm_phase

The class uvm_phase shall provide the base class for the UVM phasing mechanism.

11.1.1 Class definition

namespace uvm {

 class uvm_phase : public uvm_object
 {
 public:
 // Constructor
 explicit uvm_phase(const std::string& name,
 uvm_phase_type phase_type = UVM_PHASE_SCHEDULE,
 uvm_phase* parent = NULL);

 uvm_phase_type get_phase_type() const;

 // Group: State
 uvm_phase_state get_state() const;

 int get_run_count() const;
 uvm_phase* find_by_name(const std::string& name, bool stay_in_scope = true) const;
 uvm_phase* find(const uvm_phase* phase, bool stay_in_scope = true) const;
 bool is(const uvm_phase* phase) const;
 bool is_before(const uvm_phase* phase) const;
 bool is_after(const uvm_phase* phase) const;

 // Group: Callbacks
 virtual void exec_func(uvm_component* comp, uvm_phase* phase);
 virtual void exec_process(uvm_component* comp, uvm_phase* phase);

 // Group: Schedule
 void add(uvm_phase* phase,
 uvm_phase* with_phase = NULL,
 uvm_phase* after_phase = NULL,
 uvm_phase* before_phase = NULL);

125
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_phase* get_parent() const;
 virtual const std::string get_full_name() const;
 uvm_phase* get_schedule(bool hier = false) const;
 std::string get_schedule_name(bool hier = false) const;
 uvm_domain* get_domain() const;
 std::string get_domain_name() const;
 uvm_phase* get_imp() const;

 // Group: Objection
 uvm_objection* get_objection() const;
 virtual void raise_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

 virtual void drop_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

 // Group: Synchronization
 void sync(uvm_domain* target,
 uvm_phase* phase = NULL,
 uvm_phase* with_phase = NULL);

 void unsync(uvm_domain* target,
 uvm_phase* phase = NULL,
 uvm_phase* with_phase = NULL);

 void wait_for_state(uvm_phase_state state, uvm_wait_op op = UVM_EQ);

 // Group: Jumping
 void jump(const uvm_phase* phase);
 uvm_phase* get_jump_target() const;
 }; // class uvm_phase

} // namespace uvm

11.1.2 Construction

11.1.2.1 Constructor

explicit uvm_phase(const std::string& name,
 uvm_phase_type phase_type = UVM_PHASE_SCHEDULE,
 uvm_phase* parent = NULL);

The constructor shall create a new phase node, using the arguments name, the type name of type type_name
and optionally the pointer to the parent phase parent, as argument.

11.1.2.2 get_phase_type

uvm_phase_type get_phase_type() const;

The member function get_phase_type shall return the phase type as defined by uvm_phase_type (see Section
17.4.6).

11.1.3 State

11.1.3.1 get_state

uvm_phase_state get_state() const;

The member function get_state shall return the current state of this phase.

126
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.1.3.2 uvm_phase_get_run_count

int get_run_count() const;

The member function get_run_count shall return the integer number of times this phase has executed.

11.1.3.3 find_by_name

uvm_phase* find_by_name(const std::string& name,
 bool stay_in_scope = true) const;

The member function find_by_name shall locate a phase node with the specified name and return its handle.
If argument stay_in_scope is set to true, it searches only within this phase’s schedule or domain.

11.1.3.4 find

uvm_phase* find(const uvm_phase* phase,
 bool stay_in_scope = true) const;

The member function find shall locate the phase node with the specified phase implementation and return its
handle. If argument stay_in_scope is set to true, it searches only within this phase’s schedule or domain.

11.1.3.5 is

bool is(const uvm_phase* phase) const;

The member function is shall return true if the containing uvm_phase refers to the same phase as the phase
argument; otherwise it shall return false.

11.1.3.6 is_before

bool is_before(const uvm_phase* phase) const;

The member function is_before shall return true if the containing uvm_phase refers to a phase that is earlier
than the phase argument; otherwise it shall return false.

11.1.3.7 is_after

bool is_after(const uvm_phase* phase) const;

The member function is_after shall return true if the containing uvm_phase refers to a phase that is later than
the phase argument; otherwise it shall return false.

11.1.4 Callbacks

11.1.4.1 exec_func

virtual void exec_func(uvm_component* comp, uvm_phase* phase);

The member function exec_func shall implement the functor/delegate functionality for a function phase type
comp - the component to execute the functionality upon phase - the phase schedule that originated this phase
call.

127
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.1.4.2 exec_process° (exec_task†)

virtual void exec_process(uvm_component* comp, uvm_phase* phase);

The member function exec_process° shall implement the functor/delegate functionality for a task phase type
comp—the component to execute the functionality upon phase—the phase schedule that originated this phase
call.

NOTE—The member function was called exec_task in UVM in SystemVerilog, but has been renamed in line
with SystemC processes.

11.1.5 Schedule

11.1.5.1 add

void add(uvm_phase* phase,
 uvm_phase* with_phase = NULL,
 uvm_phase* after_phase = NULL,
 uvm_phase* before_phase = NULL);

The member function add shall build a schedule structure, inserting phase by phase, specifying linkage. Phases
can be added anywhere, in series or parallel with existing nodes. The argument phase is the handle of a singleton
derived phase implementation containing actual functor. By default the new phase shall be appended to the
schedule. When argument with_phase is passed, the new phase shall be added in parallel to the actual phase.
When argument after_phase is passed, the new phase shall be added as successor to the actual phase. When
the argument before_phase is passed, the new phase shall be added as predecessor to the actual phase.

11.1.5.2 get_parent

uvm_phase* get_parent() const;

The member function get_parent shall return the parent schedule node, if any, for hierarchical graph traversal.

11.1.5.3 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full path from the enclosing domain down to this node.
The singleton phase implementations have no hierarchy.

11.1.5.4 get_schedule

uvm_phase* get_schedule(bool hier = false) const;

The member function get_schedule shall return the topmost parent schedule node, if any, for hierarchical
graph traversal.

11.1.5.5 get_schedule_name

std::string get_schedule_name(bool hier = false) const;

The member function get_schedule_name shall return the schedule name associated with this phase node.

128
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.1.5.6 get_domain

uvm_domain* get_domain() const;

The member function get_domain shall return the enclosing domain.

11.1.5.7 get_domain_name

std::string get_domain_name() const;

The member function get_domain_name shall returns the domain name associated with this phase node.

11.1.5.8 get_imp

uvm_phase* get_imp() const;

The member function get_imp shall return the phase implementation for this node. It shall return NULL if this
phase type is not a UVM_PHASE_LEAF_NODE.

11.1.6 Synchronization

11.1.6.1 get_objection

uvm_objection* get_objection() const;

The member function get_objection shall return the object of class uvm_objection that gates the termination
of the phase.

11.1.6.2 raise_objection

virtual void raise_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

The member function raise_objection shall return the object of class uvm_objection that gates the termination
of the phase.

11.1.6.3 drop_objection

virtual void drop_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

The member function drop_objection shall drop an objection to ending a phase. The drop is expected to be
matched with an earlier raise.

11.1.6.4 sync

void sync(uvm_domain* target,
 uvm_phase* phase = NULL,
 uvm_phase* with_phase = NULL);

129
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function sync shall synchronize two domains, fully or partially. The argument target is a handle
of the target domain to synchronize this one to. The optional argument phase is the phase in this domain to
synchronize with; otherwise synchronize to all. The optional argument with_phase is the target-domain phase
to synchronize with; otherwise use phase in the target domain.

11.1.6.5 unsync

void unsync(uvm_domain* target,
 uvm_phase* phase = NULL,
 uvm_phase* with_phase = NULL);

The member function unsync shall remove the synchronization between two domains, fully or partially. The
argument target is a handle of the target domain to remove synchronize from. The optional argument phase
is the phase in this domain to un-synchronize with; otherwise un-synchronize to all. The optional argument
with_phase is the target-domain phase to un-synchronize with; otherwise use phase in the target domain.

11.1.6.6 wait_for_state

void wait_for_state(uvm_phase_state state, uvm_wait_op op = UVM_EQ);

The member function wait_for_state shall wait until this phase compares with the given state and op operand.
For UVM_EQ and UVM_NE operands, several uvm_phase_states can be supplied by their enum constants,
in which case the caller shall wait until the phase state is any of UVM_EQ or none of UVM_NE the provided
states.

11.1.7 Jumping

11.1.7.1 jump

void jump(const uvm_phase* phase);

The member function jump shall jump to a specified phase. If the destination phase is within the current phase
schedule, a simple local jump takes place. If the jump-to phase is outside of the current schedule then the jump
affects other schedules which share the phase.

11.1.7.2 get_jump_target

uvm_phase* get_jump_target() const;

The member function get_jump_target shall return the handle to the target phase of the current jump, or
NULL if no jump is in progress. This member function shall only be used during the phase_ended callback.

11.2 uvm_domain

The class uvm_domain shall provide a phasing schedule node representing an independent branch of the
schedule.

11.2.1 Class definition

namespace uvm {

 class uvm_domain : public uvm_phase
 {

130
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 public:
 // Constructor
 explicit uvm_domain(const std::string& name);

 // Member functions
 static std::map< std::string, uvm_domain* > get_domains();
 static uvm_phase* get_uvm_schedule();
 static uvm_domain* get_common_domain();
 static void add_uvm_phases(uvm_phase* schedule);
 static uvm_domain* get_uvm_domain();

 }; // class uvm_domain

} // namespace uvm

11.2.2 Constructor

explicit uvm_domain(const std::string& name);

The constructor shall create a new instance of a phase domain with the name passed as argument.

11.2.3 Member functions

11.2.3.1 get_domains

static std::map< std::string, uvm_domain* > get_domains();

The member function get_domains shall provide a list of all domains in the provided domains argument.

11.2.3.2 get_uvm_schedule

static uvm_phase* get_uvm_schedule();

The member function get_uvm_schedule shall return the “UVM” schedule, which consists of the run-time
phases that all components execute when participating in the “UVM” domain.

11.2.3.3 get_common_domain

static uvm_domain* get_common_domain();

The member function get_common_domain shall return the “common” domain, which consists of the
common phases that all components execute in sync with each other. Phases in the “common” domain are
build, connect, end_of_elaboration, start_of_simulation, run, extract, check, report, and final.

11.2.3.4 add_uvm_phases

static void add_uvm_phases(uvm_phase* schedule);

The member function add_uvm_phases shall append to the given schedule the built-in UVM phases.

11.2.3.5 get_uvm_domain

static uvm_domain* get_uvm_domain();

The member function get_uvm_domain shall return the handle to the singleton uvm domain.

131
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.3 uvm_bottomup_phase

The class uvm_bottomup_phase shall provide the base class for function phases that operate bottom-up. The
member function execute is called for each component. This is the default traversal so is included only for
naming. The bottom-up phase completes when the member function execute has been called and returned on
all applicable components in the hierarchy.

11.3.1 Class definition

namespace uvm {

 class uvm_bottomup_phase : public uvm_phase
 {
 public:
 // Constructor
 explicit uvm_bottomup_phase(const std::string& name);

 // Member functions
 virtual void traverse(uvm_component* comp,
 uvm_phase* phase,
 uvm_phase_state state);

 virtual void execute(uvm_component* comp,
 uvm_phase* phase);

 }; // class uvm_bottomup_phase

} // namespace uvm

11.3.2 Constructor

explicit
 uvm_bottomup_phase(const std::string& name);

The constructor shall create a new instance of a bottom-up phase using the name passed as argument.

11.3.3 Member functions

11.3.3.1 traverse

virtual void traverse(uvm_component* comp,
 uvm_phase* phase,
 uvm_phase_state state);

The member function traverse shall traverse the component tree in bottom-up order, calling member function
execute for each component.

11.3.3.2 execute

virtual void execute(uvm_component* comp,
 uvm_phase* phase);

The member function execute shall execute the bottom-up phase phase for the component comp.

11.4 uvm_topdown_phase

The class uvm_topdown_phase shall provide the base class for function phases that operate top-down. The
member function execute is called for each component. This is the default traversal so is included only for

132
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

naming. The top-down phase completes when the member function execute has been called and returned on
all applicable components in the hierarchy.

11.4.1 Class definition

namespace uvm {

 class uvm_topdown_phase : public uvm_phase
 {
 public:
 // Constructor
 explicit uvm_topdown_phase(const std::string& name);

 // Member functiond
 virtual void traverse(uvm_component* comp,
 uvm_phase* phase,
 uvm_phase_state state);

 virtual void execute(uvm_component* comp,
 uvm_phase* phase);

 }; // class uvm_topdown_phase

} // namespace uvm

11.4.2 Constructor

explicit uvm_topdown_phase(const std::string& name);

The constructor shall create a new instance of a top-down phase using the name name passed as argument.

11.4.3 Member functions

11.4.3.1 traverse

virtual void traverse(uvm_component* comp,
 uvm_phase* phase,
 uvm_phase_state state);

The member function traverse shall traverse the component tree in top-down order, calling member function
execute for each component.

11.4.3.2 execute

virtual void execute(uvm_component* comp,
 uvm_phase* phase);

The member function execute shall execute the top-down phase phase for the component comp.

11.5 uvm_process_phase° (uvm_task_phase†)

The class uvm_process_phase° shall provide the base class for all process-oriented phases. It is responsible
to create spawned processes as part of the execution of the callback uvm_phase::exec_process for each
component in the hierarchy. The completion of the execution of this callback does not imply, nor is it required
for, the end of phase. Once the phase completes, any remaining spawned processes caused by executing
uvm_phase::exec_process are forcibly and immediately killed. By default, the way for a process phase to
extend over time is if there is at least one component that raises an objection.

133
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.5.1 Class definition

namespace uvm {

 class uvm_process_phase° : public uvm_phase
 {
 public:
 // Constructor
 explicit uvm_process_phase°(const std::string& name);

 // Member functions
 virtual void traverse(uvm_component* comp,
 uvm_phase* phase,
 uvm_phase_state state);

 virtual void execute(uvm_component* comp,
 uvm_phase* phase);

 }; // class uvm_process_phase

} // namespace uvm

11.5.2 Member functions

11.5.2.1 traverse

virtual void traverse(uvm_component* comp,
 uvm_phase* phase,
 uvm_phase_state state);

The member function traverse shall traverse the component tree in bottom-up order, calling member function
execute for each component.

NOTE—The actual order for process-based phases does not really matter, as each component process is
executed in a separate process whose starting order is not deterministic.

11.5.2.2 execute

virtual void execute(uvm_component* comp,
 uvm_phase* phase);

The member function execute shall spawn a process of phase phase for the component comp.

11.6 uvm_objection

The class uvm_objection shall provide a facility for coordinating status information between two or more
participating components, objects, and even module-based IP.

11.6.1 Class definition

namespace uvm {

 class uvm_objection : public uvm_object
 {
 public:
 // Constructors
 uvm_objection();
 uvm_objection(const std::string& name);

 // Group: Objection control
 virtual void clear(uvm_object* obj = NULL);
 bool trace_mode(int mode = -1);

134
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void raise_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

 virtual void drop_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

 void set_drain_time(uvm_object* obj = NULL,
 const sc_core::sc_time& drain = sc_core::SC_ZERO_TIME);

 // Group: Callback hooks
 virtual void raised(uvm_object* obj,
 uvm_object* source_obj,
 const std::string& description,
 int count);

 virtual void dropped(uvm_object* obj,
 uvm_object* source_obj,
 const std::string& description,
 int count);

 virtual void all_dropped(uvm_object* obj,
 uvm_object* source_obj,
 const std::string& description,
 int count);

 // Group: Objection status
 void get_objectors(std::vector<uvm_object*>& objlist) const;

 void wait_for(uvm_objection_event objt_event,
 uvm_object* obj = NULL);

 int get_objection_count(uvm_object* obj = NULL) const;
 int get_objection_total(uvm_object* obj = NULL) const;

 const sc_core::sc_time get_drain_time(uvm_object* obj = NULL) const;

 void display_objections(uvm_object* obj = NULL,
 bool show_header = true) const;

 }; // class uvm_objection

} // namespace uvm

11.6.2 Constructors

uvm_objection();
uvm_objection(const std::string& name);

The constructor shall create a new objection instance with name name, if specified.

11.6.3 Objection control

11.6.3.1 clear

virtual void clear(uvm_object* obj = NULL);

The member function clear shall clear the objection state immediately. All counts are cleared and any processes
that called wait_for(UVM_ALL_DROPPED, uvm_top) are released An application should pass this to the
obj argument for record keeping. Any configured drain times are not affected.

11.6.3.2 trace_mode

bool trace_mode(int mode = -1);

135
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function trace_mode shall set or get the trace mode for the objection object. If no argument is
specified (or an argument other than 0 or 1) the current trace mode is unaffected. A trace_mode of 0 turns
tracing off. A trace mode of 1 turns tracing on. The return value is the mode prior to being reset.

11.6.3.3 raise_objection

virtual void raise_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

The member function raise_objection shall increase the number of objections for the source object by count,
which defaults to 1. The object is usually the current (this) handle of the caller. If an object is not specified or
NULL, the implicit top-level component, uvm_root, is chosen.

Raising an objection shall cause the following.

— The source and total objection counts for object are increased by count.
— The member function raised is called, which calls the member function uvm_component::raised for

all of the components up the hierarchy.
The description is a string that marks a specific objection and is used in tracing or debug.

11.6.3.4 drop_objection

virtual void drop_objection(uvm_object* obj,
 const std::string& description = "",
 int count = 1);

The member function drop_objection shall decrease the number of objections for the source object by count,
which defaults to 1. The object is usually the current handle (this) of the caller. If object is not specified or
NULL, the implicit top-level component, uvm_root, is chosen.

Dropping an objection shall cause the following:
— The source and total objection counts for object are decreased by count. It shall be an error to drop the

objection count for object below zero.
— The member function dropped is called, which calls the member function uvm_component::dropped

for all of the components up the hierarchy.

If the total objection count has not reached zero for the object, then the drop is propagated up the object
hierarchy as with raise_objection. Then, each object in the hierarchy shall update its source counts (objections
that they originated) and total counts (the total number of objections by them and all their descendants).

If the total objection count reaches zero, propagation up the hierarchy is deferred until a configurable drain-
time has passed and the uvm_component::all_dropped callback for the current hierarchy level has returned.

For each instance up the hierarchy from the source caller, a process is forked in a non-blocking fashion,
allowing the drop call to return. The forked process then does the following:

— If a drain time was set for the given object, the process waits for that amount of time.
— The objection’s virtual member function all_dropped is called, which calls the member function

uvm_component::all_dropped (if object is a component).
— The process then waits for the all_dropped callback to complete.
— After the drain time has elapsed and the all_dropped callback has completed, propagation of the

dropped objection to the parent proceeds as described in raise_objection, except as described below.

136
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If a new objection for this object or any of its descendents is raised during the drain time or during execution of
the all_dropped callback at any point, the hierarchical chain described above is terminated and the dropped
callback does not go up the hierarchy. The raised objection shall propagate up the hierarchy, but the number of
raised propagated up is reduced by the number of drops that were pending waiting for the all_dropped/drain
time completion. Thus, if exactly one objection caused the count to go to zero, and during the drain exactly
one new objection comes in, no raises or drops are propagated up the hierarchy.

As an optimization, if the object has no drain-time set and no registered callbacks, the forked process can be
skipped and propagation proceeds immediately to the parent as described.

11.6.3.5 set_drain_time

void set_drain_time(uvm_object* obj = NULL,
 const sc_core::sc_time& drain = sc_core::SC_ZERO_TIME);

The member function set_drain_time shall set the drain time on the given object to drain. The drain time is
the amount of time to wait once all objections have been dropped before calling the all_dropped callback and
propagating the objection to the parent. If a new objection for this object or any of its descendents is raised
during the drain time or during execution of the all_dropped callbacks, the drain_time/all_dropped execution
is terminated.

11.6.4 Callback hooks

11.6.4.1 raised

virtual void raised(uvm_object* obj,
 uvm_object* source_obj,
 const std::string& description,
 int count);

The member function raised shall be called when a raise_objection has reached obj. The default
implementation shall call uvm_component::raised (see Section 7.1.7.1).

11.6.4.2 dropped

virtual void dropped(uvm_object* obj,
 uvm_object* source_obj,
 const std::string& description,
 int count);

The member function dropped shall be called when a drop_objection has reached obj. The default
implementation shall call uvm_component::dropped (see Section 7.1.7.2).

11.6.4.3 all_dropped

virtual void all_dropped(uvm_object* obj,
 uvm_object* source_obj,
 const std::string& description,
 int count);

The member function all_dropped shall be called when a drop_objection has reached obj, and the total
count for obj goes to zero. This callback is executed after the drain time associated with obj. The default
implementation shall call uvm_component::all_dropped (see Section 7.1.7.3).

137
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.6.5 Objections status

11.6.5.1 get_objectors

void get_objectors(std::vector<uvm_object*>& objlist) const;

The member function get_objectors shall return the current list of objecting objects (objects that raised an
objection but have not dropped it).

11.6.5.2 wait_for

void wait_for(uvm_objection_event objt_event,
 uvm_object* obj = NULL);

The member function wait_for shall wait for the raised, dropped, or all_dropped event to occur in the given
object obj. The member function returns after all corresponding callbacks for that event have been executed.

11.6.5.3 get_objection_count

int get_objection_count(uvm_object* obj = NULL) const;

The member function get_objection_count shall return the current number of objections raised by the given
object obj.

11.6.5.4 get_objection_total

int get_objection_total(uvm_object* obj = NULL) const;

The member function get_objection_total shall return the current number of objections raised by the given
object obj and all descendants.

11.6.5.5 get_drain_time

const sc_core::sc_time get_drain_time(uvm_object* obj = NULL) const;

The member function get_drain_time shall return the current drain time set for the given object obj. The
default drain time shall be set to sc_core::SC_ZERO_TIME.

11.6.5.6 display_objections

void display_objections(uvm_object* obj = NULL,
 bool show_header = true) const;

The member function display_objections shall display objection information about the given object obj.
If object is not specified or NULL, the implicit top-level component, uvm_root, is chosen. The argument
show_header allows control of whether a header is output.

11.7 uvm_callback

The class uvm_callback shall provide the base class for user-defined callback classes. Typically, the
component developer defines an application-specific callback class that extends from this class. In it, he defines

138
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

one or more virtual member functions, called a callback interface, that represent the hooks available for user
override.

The member functions intended for optional override should not be declared pure virtual. Usually, all the
callback member functions are defined with empty implementations so users have the option of overriding
any or all of them. The prototypes for each hook member function are completely application specific with
no restrictions.

11.7.1 Class definition

namespace uvm {

 class uvm_callback : public uvm_object
 {
 public:
 // Constructor
 uvm_callback(const std::string& name = "uvm_callback");

 // Member functions
 bool callback_mode(int on = -1);
 bool is_enabled();
 virtual const std::string get_type_name() const;

 }; // class uvm_callback

} // namespace uvm

11.7.2 Constructor

uvm_callback(const std::string& name = "uvm_callback");

The constructor shall create a new object of type uvm_callback, giving it an optional name.

11.7.3 Member functions

11.7.3.1 callback_mode

bool callback_mode(int on = -1);

The member function callback_mode shall enable or disable callbacks. If argument on is set 1, callbacks are
enabled. If argument on is set 0, callbacks are disabled.

11.7.3.2 is_enabled

bool is_enabled();

The member function is_enabled shall return 1 if the callback is enabled, otherwise it shall return 0.

11.7.3.3 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of this callback object.

139
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.8 uvm_callback_iter

The class uvm_callback_iter is an iterator class for iterating over callback queues of a specific callback type.

11.8.1 Class definition

namespace uvm {

 template < typename T = uvm_object, typename CB = uvm_callback>
 class uvm_callback_iter
 {
 public:
 // Constructor
 uvm_callback_iter(T* obj);

 // Member functions
 CB* first();
 CB* last();
 CB* next();
 CB* prev();
 CB* get_cb();

 }; // class uvm_callback

} // namespace uvm

11.8.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB are registered.
This object shall be a derivative of class uvm_object.

11.8.3 Template parameter CB

The template parameter T specifies the base callback type that is managed by this callback class. The template
parameter CB is optional. If not specified, the parameter is assigned the type uvm_callback.

11.8.4 Constructor

uvm_callback_iter(T* obj);

The constructor shall create a new callback iterator object. It is required that the object context be provided.

11.8.5 Member functions

11.8.5.1 first

CB* first();

The member function first shall return the first valid (enabled) callback of the callback type (or a derivative)
that is in the queue of the context object. If the queue is empty, then NULL is returned.

11.8.5.2 last

CB* last();

The member function last shall return the last valid (enabled) callback of the callback type (or a derivative)
that is in the queue of the context object. If the queue is empty, then NULL is returned.

140
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.8.5.3 next

CB* next();

The member function next shall return the next valid (enabled) callback of the callback type (or a derivative)
that is in the queue of the context object. If there are no more valid callbacks in the queue, then NULL is
returned.

11.8.5.4 prev

CB* prev();

The member function prev shall return the previous valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object. If there are no more valid callbacks in the queue, then
NULL is returned.

11.8.5.5 get_cb

CB* get_cb();

The member function get_cb shall return the last callback accessed via the call first or next.

11.9 uvm_callbacks

The class uvm_callbacks shall provide a base class for implementing callbacks, which are typically used
to modify or augment component behavior without changing the component class. To work effectively, the
developer of the component class defines a set of “hook” methods that enable users to customize certain
behaviors of the component in a manner that is controlled by the component developer. The integrity of the
component’s overall behavior is intact, while still allowing certain customizable actions by the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined callback interface
implementation as well as the object type associated with the callback. The object type-callback type pair
are associated together using the macro UVM_REGISTER_CB to define a valid pairing; valid pairings are
checked when a user attempts to add a callback to an object (see Section 13.4.2).

To provide the most flexibility for end-user customization and reuse, it is recommended that the component
developer also define a corresponding set of virtual method hooks in the component itself. This affords
users the ability to customize via inheritance/factory overrides as well as callback object registration. The
implementation of each virtual method would provide the default traversal algorithm for the particular callback
being called. Being virtual, an application can define subtypes that override the default algorithm, perform
tasks before and/or after calling the base class to execute any registered callbacks, or to not call the base
implementation, effectively disabling that particular hook.

11.9.1 Class definition

namespace uvm {

 template <typename T = uvm_object, typename CB = uvm_callback>
 class uvm_callbacks : public uvm_typed_callbacks<T>
 {
 public:
 // Constructor
 uvm_callbacks();

 // Group: Add/delete inteface

141
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 static void add(T* obj, uvm_callback* cb, uvm_apprepend ordering = UVM_APPEND);

 static void add_by_name(const std::string& name,
 uvm_callback* cb,
 uvm_component* root,
 uvm_apprepend ordering = UVM_APPEND);

 static void do_delete°(T* obj, uvm_callback* cb);

 static void delete_by_name(const std::string& name,
 uvm_callback* cb,
 uvm_component* root);

 // Group: Iterator Interface
 static CB* get_first(int& itr, T* obj);
 static CB* get_last(int& itr, T* obj);
 static CB* get_next(int& itr, T* obj);
 static CB* get_prev(int& itr, T* obj);

 // Group: Debug
 static void display(T* obj = NULL);

 }; // class uvm_callbacks

} // namespace uvm

11.9.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB are registered.
This object shall be a derivative of class uvm_object.

11.9.3 Template parameter CB

The template parameter CB specifies the base callback type that is managed by this callback class.The template
parameter CB is optional. If not specified, the parameter is assigned the type uvm_callback.

11.9.4 Constructor

uvm_callbacks();

The constructor shall create a new object of type uvm_callbacks <T, CB>.

11.9.5 Add/delete interface

11.9.5.1 add

static void add(T* obj, uvm_callback* cb, uvm_apprepend ordering = UVM_APPEND);

The member function add shall register the given callback object, cb, with the given handle obj. The
object handle can be NULL, which allows registration of callbacks without an object context. If ordering is
UVM_APPEND (default), the callback shall be executed after previously added callbacks, else the callback
shall be executed ahead of previously added callbacks. The argument cb is the callback handle; it shall be non-
NULL, and if the callback has already been added to the object instance then a warning shall be issued.

11.9.5.2 add_by_name

static void add_by_name(const std::string& name,
 uvm_callback* cb,
 uvm_component* root,
 uvm_apprepend ordering = UVM_APPEND);

142
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function add_by_name shall register the given callback object, cb, with one or more components
of type uvm_component. The components shall already exist and shall be type T or a derivative. As with
add the CB parameter is optional. Argument root specifies the location in the component hierarchy to start the
search for name. See uvm_root::find_all (Section 4.3.3.2) for more details on searching by name.

11.9.5.3 do_delete°(delete†)

static void do_delete° (T* obj, uvm_callback* cb);

The member function do_delete° shall delete the given callback object, cb, from the queue associated with the
given object handle obj. The object handle can be NULL, which allows de-registration of callbacks without an
object context. The argument cb is the callback handle; it shall be non-NULL, and if the callback has already
been removed from the object instance then a warning is issued.

11.9.5.4 delete_by_name

static void delete_by_name(const std::string& name,
 uvm_callback* cb,
 uvm_component* root);

The member function delete_by_name shall remove the given callback object, cb, associated with one or more
uvm_component callback queues. Argument root specifies the location in the component hierarchy to start
the search for name. See uvm_root::find_all (Section 4.3.3.2) for more details on searching by name.

11.9.6 Iterator interfaces

This set of member functions shall provide an iterator interface for callback queues. A facade class,
uvm_callback_iter is also available, and is the generally preferred way to iterate over callback queues. (See
Section 11.8).

11.9.6.1 get_first

static CB* get_first(int& itr, T* obj);

The member function get_first shall return the first enabled callback of type CB which resides in the queue
for object obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator;
it is being updated with a value that can be supplied to get_next to get the next callback object. If the queue is
empty, then NULL is returned. The iterator class uvm_callback_iter may be used as an alternative, simplified,
iterator interface.

11.9.6.2 get_last

static CB* get_last(int& itr, T* obj);

The member function get_last shall return the last enabled callback of type CB which resides in the queue
for object obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator;
it is being updated with a value that can be supplied to get_prev to get the previous callback object. If the
queue is empty then NULL is returned. The iterator class uvm_callback_iter may be used as an alternative,
simplified, iterator interface.

143
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.9.6.3 get_next

static CB* get_next(int& itr, T* obj);

The member function get_next shall return the next enabled callback of type CB which resides in the queue
for object obj, using iterator itr as the starting point. If object obj is NULL, then the typewide queue for T
is searched.

The iterator is being updated with a value that can be supplied to get_next to get the next callback object. If
no more callbacks exist in the queue, then NULL is returned. The member function get_next shall continue to
return NULL in this case until member function get_first or get_last has been used to reset the iterator. The
iterator class uvm_callback_iter may be used as an alternative, simplified, iterator interface.

11.9.6.4 get_prev

static CB* get_prev(int& itr, T* obj);

The member function get_prev shall return the previous enabled callback of type CB which resides in the
queue for object obj, using iterator itr as the starting point. If object obj is NULL, then the typewide queue for
T is searched. The iterator is being updated with a value that can be supplied to member function get_prev to
get the previous callback object. If no more callbacks exist in the queue, then NULL is returned. The member
function get_prev shall continue to return NULL in this case until member function get_first or get_last has
been used to reset the iterator. The iterator class uvm_callback_iter may be used as an alternative, simplified,
iterator interface.

11.9.7 Debug

11.9.7.1 display

static void display(T* obj = NULL);

The member function display shall display callback information for object obj. If object obj is NULL, then it
displays callback information for all objects of type T, including typewide callbacks.

144
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12. Reporting classes

The UVM-SystemC reporting classes provide an additional facility for issuing reports with consistent
formatting. Users can configure what actions to take and what files to send output to based on report severity,
ID, or both severity and ID. Users can also filter messages based on their verbosity settings. It supports a
component-level reporting mechanism by setting the severity level on a per-instance basis. In addition, some
convenience macros are available for the reporting of information, warnings, errors, or fatal errors.

SystemC has already an extensive and highly configurable message-reporting mechanism using the
sc_core::sc_report_handler class and sc_core::sc_report objects. An application may also use this native
SystemC global-level reporting mechanism where appropriate.

The following reporting classes are defined:
— uvm_report_message: The class which provides the fields that are common to all messages.
— uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.
— uvm_report_handler: The class which acting as implementation for the member functions defined in

the class uvm_report_object.
— uvm_report_server: The class acting as global server that processes all of the reports generated by

the class uvm_report_handler.
— uvm_report_catcher: The class which captures and counts all reports issued by the class

uvm_report_server.

The primary interface to the UVM reporting facility is the class uvm_report_object from which
class uvm_component is derived. The class uvm_report_object delegates most tasks to its internal
uvm_report_handler. If the report handler determines the report is not filtered based the configured verbosity
setting, it sends the report to the central uvm_report_server for formatting and processing.

12.1 uvm_report_message

The class uvm_report_message shall be used to compose a UVM object message. It provides the fields that
are common to all messages. It also has a message element container and provides the APIs necessary to add
integral types, strings and uvm_objects to the container. The report message object can be initialized with the
common fields, and passes through the whole reporting system (i.e. report object, report handler, report server,
report catcher, etc) as an object. The additional elements can be added/deleted to/from the message object
anywhere in the reporting system, and can be printed or recorded along with the common fields.

12.1.1 Class definition

namespace uvm {

 class uvm_report_message : public uvm_object
 {
 public:

 uvm_report_message(const std::string& name = "uvm_report_message");

 // Group: Infrastructure References
 virtual void do_print(const uvm_printer& printer) const;
 virtual uvm_report_object* get_report_object() const;
 virtual void set_report_object(uvm_report_object* ro);
 virtual uvm_report_handler* get_report_handler() const;
 virtual void set_report_handler(uvm_report_handler* rh);
 virtual uvm_report_server* get_report_server() const;
 virtual void set_report_server(uvm_report_server* rs);

 // Group: Message Fields
 virtual uvm_severity get_severity() const;

145
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void set_severity(uvm_severity sev);
 virtual const std::string get_id() const;
 virtual void set_id(const std::string& id);
 virtual const std::string get_message() const;
 virtual void set_message(const std::string& msg);
 virtual int get_verbosity() const;
 virtual void set_verbosity(int ver);
 virtual const std::string get_filename() const;
 virtual void set_filename(const std::string& fname);
 virtual int get_line() const;
 virtual void set_line(int ln);
 virtual const std::string get_context() const;
 virtual void set_context(const std::string& cn);
 virtual uvm_action get_action() const;
 virtual void set_action(uvm_action act);
 virtual UVM_FILE get_file() const;
 virtual void set_file(UVM_FILE fl);
 virtual uvm_report_message_element_container* get_element_container() const;

 virtual void set_report_message(uvm_severity severity,
 const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& filename,
 int line,
 const std::string& context_name);

 // Group: Message Element APIs

 virtual void add_int(const std::string& name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix,
 uvm_action action = (UVM_LOG | UVM_RM_RECORD));

 virtual void add_string(const std::string& name,
 const std::string& value,
 uvm_action action = (UVM_LOG | UVM_RM_RECORD));

 virtual void add_object(const std::string& name,
 uvm_object* obj,
 uvm_action action = (UVM_LOG | UVM_RM_RECORD));

 }; // class uvm_report_message

} // namespace uvm

12.1.2 Constructor

uvm_report_message(const std::string& name = "uvm_report_message");

The constructor shall create a new report message with the given name.

12.1.3 Infrastructure references

12.1.3.1 do_print

virtual void do_print(const uvm_printer& printer) const;

The member function do_print shall provide UVM printer formatted output of the message.

12.1.3.2 get_report_object

virtual uvm_report_object* get_report_object() const;

The member function get_report_object shall return the uvm_report_object that originated the message.

146
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.1.3.3 set_report_object

virtual void set_report_object(uvm_report_object* ro);

The member function set_report_object shall define the uvm_report_object for the message.

12.1.3.4 get_report_handler

virtual uvm_report_handler* get_report_handler() const;

The member function get_report_handler shall return the uvm_report_handler.

12.1.3.5 set_report_handler

virtual void set_report_handler(uvm_report_handler* rh);

The member function set_report_handler shall define the uvm_report_handler.

12.1.3.6 get_report_server

virtual uvm_report_server* get_report_server() const;

The member function get_report_server shall return the uvm_report_server that is responsible for servicing
the message’s actions.

12.1.3.7 set_report_server

virtual void set_report_server(uvm_report_server* rs);

The member function set_report_server shall define the uvm_report_server that is responsible for servicing
the message’s actions.

12.1.4 Message fields

12.1.4.1 get_severity

virtual uvm_severity get_severity() const;

The member function get_severity shall return the severity of the message (UVM_INFO, UVM_WARNING,
UVM_ERROR or UVM_FATAL). The value of this field is determined via the API used (e.g. use of macro’s
UVM_INFO, UVM_WARING, etc.) and is populated for the application.

12.1.4.2 set_severity

virtual void set_severity(uvm_severity sev);

The member function set_severity shall define the severity of the message (UVM_INFO, UVM_WARNING,
UVM_ERROR or UVM_FATAL).

147
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.1.4.3 get_id

virtual const std::string get_id() const;

The member function get_id shall define the id of the message.

12.1.4.4 set_id

virtual void set_id(const std::string& id);

The member function set_id shall return the id of the message.

NOTE—It is recommended that an application follows a consistent convention. Settings in the
uvm_report_handler allow various messaging controls based on this field. (See Section 12.3).

12.1.4.5 get_message

virtual const std::string get_message() const;

The member function get_message shall return the message content as string.

12.1.4.6 set_message

virtual void set_message(const std::string& msg);

The member function set_message shall set the message content given as string argument.

12.1.4.7 get_verbosity

virtual int get_verbosity() const;

The member function get_verbosity shall return the message threshold value. This value is compared against
settings in the uvm_report_handler to determine whether this message should be executed.

12.1.4.8 set_verbosity

virtual void set_verbosity(int ver);

The member function set_verbosity shall define the message threshold value.

12.1.4.9 get_filename

virtual const std::string get_filename() const;

The member function get_filename shall return the filename from which the message originates. This value
is automatically populated by the messaging macros.

12.1.4.10 set_filename

virtual void set_filename(const std::string& fname);

148
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_filename shall define the filename in which the message is created.

12.1.4.11 get_line

virtual int get_line() const;

The member function get_line shall return the line number in the file from which the message originates. This
value is automatically populate by the messaging macros.

12.1.4.12 set_line

virtual void set_line(int ln);

The member function set_line shall define the line number at which the message is created.

12.1.4.13 get_context

virtual const std::string get_context() const;

The member function get_context shall return the context of the message.

12.1.4.14 set_context

virtual void set_context(const std::string& cn);

The member function set_context shall specify the optional user-supplied string that is meant to convey the
context of the message.

12.1.4.15 get_action

virtual uvm_action get_action() const;

The member function get_action shall return the action(s) that the uvm_report_server should perform for
this message.

12.1.4.16 set_action

virtual void set_action(uvm_action act);

The member function set_action shall define the action(s) that the uvm_report_server should perform for
this message.

12.1.4.17 get_file

virtual UVM_FILE get_file() const;

The member function get_file shall return the file handle to the file where the message has been written to,
when the message’s action is UVM_LOG.

149
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.1.4.18 set_file

virtual void set_file(UVM_FILE fl);

The member function set_file shall define the file handle to the file where the message is to be written to, when
the message’s action is UVM_LOG.

12.1.4.19 get_element_container

virtual uvm_report_message_element_container* get_element_container() const;

The member function get_element_container shall return the element container of the message.

12.1.4.20 set_report_message

virtual void set_report_message(uvm_severity severity,
 const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& filename,
 int line,
 const std::string& context_name);

The member function set_report_message shall set all the common fields of the report message.

12.1.5 Message element APIs

12.1.5.1 add_int

virtual void add_int(const std::string& name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix,
 uvm_action action = (UVM_LOG | UVM_RM_RECORD));

The member function add_int shall add an integral type of the name name and value value to the message. The
required size field indicates the size of value. The required radix field determines how to display and record
the field. The optional print/record bit is to specify whether the element is printed/recorded.

12.1.5.2 add_string

virtual void add_string(const std::string& name,
 const std::string& value,
 uvm_action action = (UVM_LOG | UVM_RM_RECORD));

The member function add_string shall add a string of the name name and value value to the message. The
optional print/record bit is to specify whether the element is printed/recorded.

12.1.5.3 add_object

virtual void add_object(const std::string& name,
 uvm_object* obj,
 uvm_action action = (UVM_LOG | UVM_RM_RECORD));

The member function add_object shall add a uvm_object of the name name and reference obj to the message.
The optional print/record bit is to specify whether the element is printed/recorded.

150
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2 uvm_report_object

The class uvm_report_object shall provide the primary interface to the UVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. An application can configure
what actions are taken and what file(s) are output for individual messages from a particular component or for all
messages from all components in the environment. Defaults are applied where there is no explicit configuration.

A report consists of an id string, severity, verbosity level, and the textual message itself. They may optionally
include the filename and line number from which the message came. If the verbosity level of a report is greater
than the configured maximum verbosity level of its report object, it is ignored. If a report passes the verbosity
filter in effect, the report’s action is determined. If the action includes output to a file, the configured file
descriptor(s) are determined.

— Actions can be set for (in increasing priority) severity, id, and (severity, id) pair. They include output to
the screen or log file (UVM_DISPLAY or UVM_LOG respectively), whether the message counters
should be incremented (UVM_COUNT), whether a simulation should be finished (UVM_EXIT) or
stopped (UVM_STOP). The action can also specify if a specific callback should be called as soon as
the reporting occurs (UVM_CALL_HOOK). Actions are of type uvm_action and can take the value
UVM_NO_ACTION, or it can be a bitwise OR of any combination of UVM_DISPLAY, UVM_LOG,
UVM_COUNT, UVM_STOP, UVM_EXIT, and UVM_CALL_HOOK. (See Section 17.4.1).

— Default actions: The following provides the default actions assigned to each severity. These can be
overridden by any of the member function set_report_id_action.
Severity Default action(s)
UVM_INFO UVM_DISPLAY
UVM_WARNING UVM_DISPLAY, UVM_COUNT
UVM_ERROR UVM_DISPLAY, UVM_COUNT
UVM_FATAL UVM_DISPLAY, UVM_COUNT, UVM_EXIT

— File descriptors: These can be set by (in increasing priority) default, severity level, an id, or (severity,
id) pair. File descriptors are of type UVM_FILE. They may refer to more than one file. It is the
application’s responsibility to open and close the files.

— Default file handle: The default file handle is 0, which means that reports are not sent to a file even
if a UVM_LOG attribute is set in the action associated with the report. This can be overridden
by the member function set_report_default_file, set_report_severity_file, set_report_id_file or
set_report_severity_id_file. As soon as the file descriptor is set and the action UVM_LOG is set, the
report is sent to its associated file descriptor.

12.2.1 Class definition

namespace uvm {

 class uvm_report_object : public uvm_object
 {
 public:
 // Constructors
 uvm_report_object();
 explicit uvm_report_object(const std::string& name);

 // Group: Reporting
 bool uvm_report_enabled(int verbosity,
 uvm_severity_type severity = UVM_INFO,
 const std::string& id = "");

 virtual void uvm_report_info(const std::string& id,
 const std::string& message,
 int verbosity = UVM_MEDIUM,
 const std::string& filename = "",
 int line = 0) const;

151
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void uvm_report_warning(const std::string& id,
 const std::string& message,
 int verbosity = UVM_MEDIUM,
 const std::string& filename = "",
 int line = 0) const;

 virtual void uvm_report_error(const std::string& id,
 const std::string& message,
 int verbosity = UVM_LOW,
 const std::string& filename = "",
 int line = 0) const;

 virtual void uvm_report_fatal(const std::string& id,
 const std::string& message,
 int verbosity = UVM_NONE,
 const std::string& filename = "",
 int line = 0) const;

 // Group: Verbosilty Configuration
 int get_report_verbosity_level(uvm_severity_type severity = UVM_INFO,
 const std::string& id = "") const;
 void set_report_verbosity_level(int verbosity_level);
 void set_report_id_verbosity(const std::string& id, int verbosity);
 void set_report_severity_id_verbosity(uvm_severity severity,
 const std::string& id,
 int verbosity);

 // Action configuration
 int get_report_action(uvm_severity severity,
 const std::string& id) const;
 void set_report_severity_action(uvm_severity severity,
 uvm_action action);
 void set_report_id_action(const std::string& id,
 uvm_action action);
 void set_report_severity_id_action(uvm_severity severity,
 const std::string& id,
 uvm_action action);

 // File configuration
 UVM_FILE get_report_file_handle(uvm_severity severity,
 const std::string& id) const;
 void set_report_default_file(UVM_FILE file);
 void set_report_id_file(const std::string& id, UVM_FILE file);
 void set_report_severity_file(uvm_severity severity, UVM_FILE file);
 void set_report_severity_id_file(uvm_severity severity,
 const std::string& id,
 UVM_FILE file);

 // Override Configuration
 void set_report_severity_override(uvm_severity cur_severity,
 uvm_severity new_severity);

 void set_report_severity_id_override(uvm_severity cur_severity,
 const std::string& id,
 uvm_severity new_severity);

 // Group: Report Handler Configuration
 void set_report_handler(uvm_report_handler* handler);
 uvm_report_handler* get_report_handler() const;
 void reset_report_handler();

 }; // class uvm_report_object

} // namespace uvm

12.2.2 Constructors

uvm_report_object();
explicit uvm_report_object(const std::string& name);

The constructors shall create a new report object with the given name. This member function shall also create
a new uvm_report_handler object to which most tasks are delegated.

152
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2.3 Reporting

The member functions uvm_report_info, uvm_report_warning and uvm_report_fatal are the primary
reporting methods in UVM. They ensure a consistent output and central control over where output is directed
and any actions that result. All reporting member functions have the same arguments, although each has a
different default verbosity:

— id: a unique id of type std::string for the report or report group that can be used for identification
and therefore targeted filtering. An application can configure an individual report’s actions and output
file(s) using this id.

— message: the message body, preformatted to a single string of type std::string.
— verbosity: the verbosity of the message, indicating its relative importance. The verbosity shall be

specified as an enumeration of type uvm_verbosity. If the equivalent verbosity value is less than or
equal to the effective verbosity level (see Section 12.2.4.2), then the report is issued, subject to the
configured action and file descriptor settings. Verbosity is ignored for warnings, errors, and fatals.
However, if a warning, error or fatal is demoted to an info message using the uvm_report_catcher,
then the verbosity is taken into account. The predefined uvm_verbosity values are UVM_NONE,
UVM_LOW, UVM_MEDIUM, UVM_HIGH, and UVM_FULL.

— filename (optional): The file from which the report was issued. An application can use the predefined
macros __FILE__ and __LINE__. If specified, it is displayed in the output.

— line (optional): The location from which the report was issued. An application can use the predefined
macro __LINE__. If specified, it is displayed in the output.

12.2.3.1 uvm_report_enabled

bool uvm_report_enabled(int verbosity,
 uvm_severity_type severity = UVM_INFO,
 const std::string& id = "");

The member function uvm_report_enabled shall return true if the configured verbosity for this severity/id is
greater than or equal to the given argument verbosity; otherwise it shall return false.

12.2.3.2 uvm_report_info

virtual void uvm_report_info(const std::string& id,
 const std::string& message,
 int verbosity = UVM_MEDIUM,
 const std::string& filename = "",
 int line = 0) const;

The member function uvm_report_info shall issue an info message using the current messages report object.

12.2.3.3 uvm_report_warning

virtual void uvm_report_warning(const std::string& id,
 const std::string& message,
 int verbosity = UVM_MEDIUM,
 const std::string& filename = "",
 int line = 0) const;

The member function uvm_report_warning shall issue a warning message using the current messages report
object.

153
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2.3.4 uvm_report_error

virtual void uvm_report_error(const std::string& id,
 const std::string& message,
 int verbosity = UVM_LOW,
 const std::string& filename = "",
 int line = 0) const;

The member function uvm_report_error shall issue an error message using the current messages report object.

12.2.3.5 uvm_report_fatal

virtual void uvm_report_fatal(const std::string& id,
 const std::string& message,
 int verbosity = UVM_NONE,
 const std::string& filename = "",
 int line = 0) const;

The member function uvm_report_fatal shall issue a fatal message using the current messages report object.

12.2.4 Verbosity configuration

12.2.4.1 get_report_verbosity_level

int get_report_verbosity_level(uvm_severity_type severity = UVM_INFO,
 const std::string& id = "") const;

The member function get_report_verbosity_level shall get the verbosity level in effect for this object. Reports
issued with verbosity greater than this shall be filtered out. The severity and tag arguments check if the verbosity
level has been modified for specific severity/tag combinations.

12.2.4.2 set_report_verbosity_level

void set_report_verbosity_level(int verbosity_level);

The member function set_report_verbosity_level shall set the maximum verbosity level for reports for this
component. Any report from this component whose verbosity exceeds this maximum is ignored.

12.2.4.3 set_report_id_verbosity

void set_report_id_verbosity(const std::string& id, int verbosity);

The member function set_report_id_verbosity shall associate the specified verbosity with reports of the given
id. A verbosity associated with a particular id takes precedence over a verbosity associated with a severity.

12.2.4.4 set_report_severity_id_verbosity

void set_report_severity_id_verbosity(uvm_severity severity,
 const std::string& id,
 int verbosity);

The member function set_report_severity_id_verbosity shall associate the specified verbosity with reports
of the given severity-id pair. A verbosity associated with a particular severity-id pair takes precedence over a
verbosity associated with id, which take precedence over a verbosity associated with a severity.

154
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2.5 Action configuration

12.2.5.1 get_report_action

int get_report_action(uvm_severity severity,
 const std::string& id) const;

The member function get_report_action shall get the action associated with reports having the given severity
and id.

12.2.5.2 set_report_severity_action

void set_report_severity_action(uvm_severity severity,
 uvm_action action);

The member function set_report_severity_action shall associate the specified action or actions with
the given severity. An action associated with a particular severity-id pair or id, using the member
functions set_report_severity_id_action or set_report_id_action respectively, shall take precedence over
the association set by this member function.

12.2.5.3 set_report_id_action

void set_report_id_action(const std::string& id,
 uvm_action action);

The member function set_report_id_action shall associate the specified action or actions with
the given id. An action associated with a particular severity-id pair, using the member functions
set_report_severity_id_action, shall take precedence over the association set by this member function.

12.2.5.4 set_report_severity_id_action

void set_report_severity_id_action(uvm_severity severity,
 const std::string& id,
 uvm_action action);

The member function set_report_severity_id_action shall associate the specified action or actions with the
given id. An action associated with a particular severity-id pair shall take precedence over an action associated
with id, which takes precedence over an action associated with a severity.

12.2.6 File configuration

12.2.6.1 get_report_file_handle

UVM_FILE get_report_file_handle(uvm_severity severity,
 const std::string& id) const;

The member function get_report_file_handle shall get the file descriptor associated with reports having the
given severity and id.

12.2.6.2 set_report_default_file

void set_report_default_file(UVM_FILE file);

155
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_report_default_file shall configure the report handler to direct some or all of its
output to the default file descriptor of type UVM_FILE. A file associated with a particular severity-id pair
shall take precedence over a FILE associated with id, which shall take precedence over a file associated with
a severity, which shall takes precedence over the association set by this member function.

12.2.6.3 set_report_id_file

void set_report_id_file(const std::string& id, UVM_FILE file);

The member function set_report_id_file shall configure the report handler to direct reports of the given id to
the file descriptor of type UVM_FILE. A file associated with a particular severity-id shall take precedence
over the association set by this member function.

12.2.6.4 set_report_severity_file

void set_report_severity_file(uvm_severity severity, UVM_FILE file);

The member function set_report_severity_file shall configure the report handler to direct reports of the given
severity to the file descriptor of type UVM_FILE. A file associated with a particular severity-id or associated
with a specific id, shall take precedence over the association set by this member function.

12.2.6.5 set_report_severity_id_file

void set_report_severity_id_file(uvm_severity severity,
 const std::string& id,
 UVM_FILE file);

The member function set_report_severity_id_file shall configure the report handler to direct reports of the
given severity-id pair to the given file descriptor of type UVM_FILE. A file associated with a particular
severity-id pair shall take precedence over a file associated with id, which shall take precedence over a file
associated with a severity, which takes precedence over the default file descriptor.

12.2.7 Override configuration

12.2.7.1 set_report_severity_override

void set_report_severity_override(uvm_severity cur_severity,
 uvm_severity new_severity);

The member function set_report_severity_override shall provide the ability to upgrade or downgrade a
message in terms of severity given severity. An upgrade or downgrade for a specific id, using member function
set_report_severity_id_override, shall take precedence over an upgrade or downgrade set by this member
function.

12.2.7.2 set_report_severity_id_override

void set_report_severity_id_override(uvm_severity cur_severity,
 const std::string& id,
 uvm_severity new_severity);

The member function set_report_severity_id_override shall provide the ability to upgrade or downgrade a
message in terms of severity given severity. An upgrade or downgrade for a specific id takes precedence over
an upgrade or downgrade associated with a severity.

156
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2.8 Report handler configuration

12.2.8.1 set_report_handler

void set_report_handler(uvm_report_handler* handler);

The member function set_report_handler shall set the report handler, overwriting the default instance. This
allows more than one component to share the same report handler.

12.2.8.2 get_report_handler

uvm_report_handler* get_report_handler() const;

The member function get_report_handler shall return the underlying report handler to which most reporting
tasks are delegated.

12.2.8.3 reset_report_handler

void reset_report_handler();

The member function reset_report_handler shall reset the underlying report handler to its default
settings. This clears any settings made with the member functions set_report_id_verbosity_hier,
set_report_severity_id_verbosity_hier, set_report_severity_action_hier, set_report_id_action_hier,
set_report_severity_id_action_hier, set_report_default_file_hier, set_report_severity_file_hier,
set_report_id_file_hier, set_report_severity_id_file_hier and set_report_verbosity_level_hier. (See
Section 7.1.9).

12.3 uvm_report_handler

The class uvm_report_handler is the class to which most member functions in uvm_report_object delegate.
It stores the maximum verbosity, actions, and files that affect the way reports are handled.

The report handler is not intended for direct use. See Section 12.2 for information on the UVM reporting
mechanism.

The relationship between class uvm_report_object, which is a base class for uvm_component, and
class uvm_report_handler is typically one to one, but it can be many to one if several objects of type
uvm_report_object are configured to use the same uvm_report_handler. (See Section 12.2.8.1).

The relationship between an object of type uvm_report_handler and an object of type uvm_report_server
is many to one.

12.3.1 Class definition

namespace uvm {

 class uvm_report_handler
 {
 public:
 uvm_report_handler();

 int get_verbosity_level(uvm_severity severity = UVM_INFO,
 const std::string& id = "");

 uvm_action get_action(uvm_severity severity,

157
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 const std::string& id);

 UVM_FILE get_file_handle(uvm_severity severity,
 const std::string& id);

 virtual void report(uvm_severity severity,
 const std::string& name,
 const std::string& id,
 const std::string& message,
 int verbosity_level = UVM_MEDIUM,
 const std::string& filename = "",
 int line = 0,
 uvm_report_object* client = NULL);

 std::string format_action(uvm_action action);

 }; // class uvm_report_handler

} // namespace uvm

12.3.2 Constructor

uvm_report_handler();

The constructor shall create and initialize a new handler object.

12.3.3 Member functions

12.3.4 get_verbosity_level

int get_verbosity_level(uvm_severity severity = UVM_INFO,
 const std::string& id = "");

The member function get_verbosity_level shall return the verbosity associated with the given severity and id.

First, if there is a verbosity associated with the pair (severity, id), return that. Else, if there is a verbosity
associated with the id, return that. Else, return the maximum verbosity setting.

12.3.5 get_action

uvm_action get_action(uvm_severity severity,
 const std::string& id);

The member function get_action shall return the action associated with the given severity and id. First, if there
is an action associated with the pair(severity, id), return that. Else, if there is an action associated with the id,
return that. Else, if there is an action associated with the severity, return that. Else, return the default action
associated with the severity.

12.3.6 get_file_handle

UVM_FILE get_file_handle(uvm_severity severity,
 const std::string& id);

The member function get_file_handle shall return the file descriptor UVM_FILE associated with the given
severity and id. First, if there is a file handle associated with the pair(severity, id), return that. Else, if there
is a file handle associated with the id, return that. Else, if there is a file handle associated with the severity,
return that. Else, return the default file handle.

158
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.3.7 report

virtual void report(uvm_severity severity,
 const std::string& name,
 const std::string& id,
 const std::string& message,
 int verbosity_level = UVM_MEDIUM,
 const std::string& filename = "",
 int line = 0,
 uvm_report_object* client = NULL);

The member function report shall be used by the four core reporting member functions, uvm_report_error,
uvm_report_info, uvm_report_warning, uvm_report_fatal, of class uvm_report_object.

12.3.8 format_action

std::string format_action(uvm_action action);

The member function format_action shall return a string representation of the action, e.g., “DISPLAY”.

12.4 uvm_report_server

The class uvm_report_server shall act as a global server that processes all of the reports generated by a
uvm_report_handler.

The uvm_report_server is an abstract class which declares many of its member functions as pure virtual.
UVM defines the class uvm_default_report_server as its default report server.

12.4.1 Class definition

namespace uvm {

 class uvm_report_server : public uvm_object
 {
 public:

 virtual void set_max_quit_count(int count, bool overridable = true) = 0;
 virtual int get_max_quit_count() const = 0;

 virtual void set_quit_count(int quit_count) = 0;
 virtual int get_quit_count() const = 0;

 virtual void set_severity_count(uvm_severity severity, int count) = 0;
 virtual int get_severity_count(uvm_severity severity) const = 0;

 virtual void set_id_count(const std::string& id, int count) = 0;
 virtual int get_id_count(const std::string& id) const = 0;

 virtual void get_id_set(std::vector<std::string>& q) const = 0;
 virtual void get_severity_set(std::vector<uvm_severity>& q) const = 0;

 void do_copy(const uvm_object& rhs);

 virtual void execute_report_message(uvm_report_message* report_message,
 const std::string& composed_message) = 0;

 virtual std::string compose_report_message(uvm_report_message* report_message,
 const std::string& report_object_name = "") const = 0;

 virtual void report_summarize(UVM_FILE file = 0) const = 0;

 static void set_server(uvm_report_server* server);
 static uvm_report_server* get_server();

 }; // class uvm_report_server

159
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} // namespace uvm

12.4.2 Member functions

12.4.2.1 set_max_quit_count

virtual void set_max_quit_count(int count, bool overridable = true) = 0;

The member function set_max_quit_count shall set the maximum number of COUNT actions that can be
tolerated before a UVM_EXIT action is taken. The default is 0, which specifies no maximum. When argument
overridable is set to false, the set quit count cannot be changed again.

12.4.2.2 get_max_quit_count

virtual int get_max_quit_count() const = 0;

The member function get_max_quit_count shall return the currently configured maximum number of
COUNT actions that can be tolerated before a UVM_EXIT action is taken. The member function shall return
0 if no maximum is set.

12.4.2.3 set_quit_count

virtual void set_quit_count(int quit_count) = 0;

The member function set_quit_count shall set the current number of UVM_QUIT actions already passed
through this uvm_report_server.

12.4.2.4 get_quit_count

virtual int get_quit_count() const = 0;

The member function get_quit_count shall return the current number of UVM_QUIT actions already passed
through this server.

12.4.2.5 set_severity_count

virtual void set_severity_count(uvm_severity severity, int count) = 0;

The member function set_severity_count shall set the counter for the given severity to counter value count.

12.4.2.6 get_severity_count

virtual int get_severity_count(uvm_severity severity) const = 0;

The member function get_severity_count shall return the counter value for the given severity.

12.4.2.7 set_id_count

virtual void set_id_count(const std::string& id, int count) = 0;

The member function set_id_count shall set the counter for reports with the given id.

160
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.4.2.8 get_id_count

virtual int get_id_count(const std::string& id) const = 0;

The member function get_id_count shall return the counter for reports with the given id.

12.4.2.9 get_id_set

virtual void get_id_set(std::vector<std::string>& q) const = 0;

The member function get_id_set shall return the set of id’s already used by this uvm_report_server.

12.4.2.10 get_severity_set

virtual void get_severity_set(std::vector<uvm_severity>& q) const = 0;

The member function get_severity_set shall return the set of severities already used by this
uvm_report_server.

12.4.2.11 do_copy

void do_copy(const uvm_object& rhs);

The member function do_copy shall copy all message statistic severity, id counts to the destination
uvm_report_server. The copy is cummulative, which means only items from the source are transferred,
already existing entries are not deleted, existing entries/counts are overridden when they exist in the source set.

12.4.2.12 execute_report_message

virtual void execute_report_message(uvm_report_message* report_message,
 const std::string& composed_message) = 0;

The member function execute_report_message shall process the provided message per the actions contained
within. An applicatio could overload this member function to customize action processing.

12.4.2.13 compose_report_message

virtual std::string compose_report_message(uvm_report_message* report_message,
 const std::string& report_object_name = "") const = 0;

The member function compose_report_message shall construct the actual string sent to the file or command
line from the severity, component name, report id, and the message itself. An application can overload this
member function to customize report formatting.

12.4.2.14 report_summarize

virtual void report_summarize(UVM_FILE file = 0) const = 0;

The member function report_summarize shall output statistical information on the reports issued by this
central report server. This information is sent to the standard output (stdout) if there is no argument specified
or if the argument file is 0; otherwise the information is send to a file using the argument file as file handle.
The member function uvm_root::run_test shall call this member function at the end of simulation.

161
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.4.2.15 set_server

static void set_server(uvm_report_server* server);

The member function set_server shall set the global report server to use for reporting. The report server is
responsible for formatting messages. This member function is provided as a convenience wrapper around
setting the report server via the member function uvm_coreservice_t::set_report_server.

12.4.2.16 get_server

static uvm_report_server* get_server() = 0;

The member function get_server shall get the global report server. This member function shall always return
a valid handle to a report server. This member function is provided as a convenience wrapper around retrieving
the report server via the member function uvm_coreservice_t::get_report_server.

12.5 uvm_default_report_server

The class uvm_default_report_server shall define the default implementation of the UVM report server.

12.5.1 Class definition

namespace uvm {

 class uvm_default_report_server : public uvm_report_server
 {
 public:

 uvm_default_report_server(const std::string& name = "uvm_default_report_server");

 // Group: Quit count

 void set_max_quit_count(int count, bool overridable = true);
 int get_max_quit_count() const;
 void set_quit_count(int quit_count);
 int get_quit_count() const;
 void incr_quit_count();
 void reset_quit_count();
 bool is_quit_count_reached();

 // Group: Severity count

 void set_severity_count(uvm_severity severity, int count);
 int get_severity_count(uvm_severity severity) const;
 void incr_severity_count(uvm_severity severity);
 void reset_severity_counts();
 virtual void get_severity_set(std::vector<uvm_severity>& q) const;

 // Group: id count

 void set_id_count(const std::string& id, int count);
 int get_id_count(const std::string& id) const;
 void incr_id_count(const std::string& id);
 virtual void get_id_set(std::vector<std::string>& q) const;

 // Group: Message processing

 virtual void execute_report_message(uvm_report_message* report_message,
 const std::string& composed_message);

 virtual std::string compose_report_message(uvm_report_message* report_message,
 const std::string& report_object_name = "") const;

 virtual void report_summarize(UVM_FILE file = 0) const;
 virtual void do_print(const uvm_printer& printer) const;

162
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 }; // class uvm_default_report_server

} // namespace uvm

12.5.2 Constructor

uvm_default_report_server(const std::string& name = "uvm_default_report_server");

The constructor shall create a uvm_report_server object, if not already created. Else, it does nothing.

12.5.3 Quit count

12.5.3.1 set_max_quit_count

void set_max_quit_count(int count, bool overridable = true);

The member function set_max_quit_count shall set the maximum number of COUNT actions that can be
tolerated before a UVM_EXIT action is taken. The default is 0, which specifies no maximum. When argument
overridable is set to false, the set quit count cannot be changed again.

12.5.3.2 get_max_quit_count

int get_max_quit_count() const;

The member function get_max_quit_count shall return the currently configured maximum number of
COUNT actions that can be tolerated before a UVM_EXIT action is taken. The member function shall return
0 if no maximum is set.

12.5.3.3 set_quit_count

void set_quit_count(int quit_count);

The member function set_quit_count shall set the current number of UVM_QUIT actions already passed
through this uvm_report_server.

12.5.3.4 get_quit_count

int get_quit_count() const;

The member function get_quit_count shall return the current number of UVM_QUIT actions already passed
through this server.

12.5.3.5 incr_quit_count

void incr_quit_count();

The member function incr_quit_count shall increase the quit count with one, i.e., the number of COUNT
actions.

163
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.5.3.6 reset_quit_count

void reset_quit_count();

The member function reset_quit_count shall reset the quit count, i.e., the number of COUNT actions, to 0.

12.5.3.7 is_quit_count_reached

bool is_quit_count_reached();

The member function is_quit_count_reached shall return true when the quit counter has reached the
maximum.

12.5.4 Severity count

12.5.4.1 set_severity_count

void set_severity_count(uvm_severity severity, int count);

The member function set_severity_count shall set the counter for the given severity to counter value count.

12.5.4.2 get_severity_count

int get_severity_count(uvm_severity severity) const;

The member function get_severity_count shall return the counter value for the given severity.

12.5.4.3 incr_severity_count

void incr_severity_count(uvm_severity severity);

The member function incr_severity_count shall increase the counter value for the given severity with one.

12.5.4.4 reset_severity_counts

void reset_severity_counts();

The member function reset_severity_counts shall reset all severity counters to 0.

12.5.4.5 get_severity_set

virtual void get_severity_set(std::vector<uvm_severity>& q) const = 0;

The member function get_severity_set shall return the set of severities already used by this
uvm_report_server.

12.5.5 ID count

12.5.5.1 set_id_count

void set_id_count(const std::string& id, int count);

164
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_id_count shall set the counter for reports with the given id.

12.5.5.2 get_id_count

int get_id_count(const std::string& id) const;

The member function get_id_count shall return the counter for reports with the given id.

12.5.5.3 incr_id_count

void incr_id_count(const std::string& id);

The member function incr_id_count shall increase the counter for reports with the given id with one.

12.5.5.4 get_id_set

virtual void get_id_set(std::vector<std::string>& q) const = 0;

The member function get_id_set shall return the set of id’s already used by this uvm_report_server.

12.5.6 Message processing

12.5.6.1 execute_report_message

virtual void execute_report_message(uvm_report_message* report_message,
 const std::string& composed_message);

The member function execute_report_message shall process the provided message per the actions contained
within. An applicatio could overload this member function to customize action processing.

12.5.6.2 compose_report_message

virtual std::string compose_report_message(uvm_report_message* report_message,
 const std::string& report_object_name = "") const;

The member function compose_report_message shall construct the actual string sent to the file or command
line from the severity, component name, report id, and the message itself. An application can overload this
member function to customize report formatting.

12.5.6.3 report_summarize

virtual void report_summarize(UVM_FILE file = 0) const;

The member function report_summarize shall output statistical information on the reports issued by this
central report server. This information is sent to the standard output (stdout) if there is no argument specified
or if the argument file is 0; otherwise the information is send to a file using the argument file as file handle.
The member function uvm_root::run_test shall call this member function at the end of simulation.

12.5.6.4 do_print

virtual void do_print(const uvm_printer& printer) const;

165
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function do_print shall provide UVM printer formatted output of the current configuration.

12.6 uvm_report_catcher

The class uvm_report_catcher shall be used to catch messages issued by the uvm report server. Catchers are
objects of type uvm_callbacks<uvm_report_object, uvm_report_catcher>, so all facilities in the classes
uvm_callback and uvm_callbacks<T, CB> are available for registering catchers and controlling catcher state.

Multiple report catchers can be registered with a report object. The catchers can be registered as default catchers
which catch all reports on all reporters of type uvm_report_object, or catchers can be attached to specific
report objects (i.e. components).

User extensions of uvm_report_catcher need to implement the member function catch in which the action
to be taken on catching the report is specified. The member function catch can return CAUGHT, in which
case further processing of the report is immediately stopped, or return THROW in which case the (possibly
modified) report is passed on to other registered catchers. The catchers are processed in the order in which
they are registered.

On catching a report, the member function catch can modify the severity, id, action, verbosity or the report
string itself before the report is finally issued by the report server. The report can be immediately issued from
within the catcher class by calling the member function issue.

The catcher maintains a count of all reports with severity UVM_FATAL, UVM_ERROR or
UVM_WARNING severity and a count of all reports with severity UVM_FATAL, UVM_ERROR or
UVM_WARNING whose severity was lowered. These statistics are reported in the summary of the
uvm_report_server.

12.6.1 Class definition

namespace uvm {

 class uvm_report_catcher : public uvm_callback
 {
 public:
 typedef enum { UNKNOWN_ACTION, THROW, CAUGHT} action_e;

 uvm_report_catcher(const std::string& name = "uvm_report_catcher");

 // Group: Current Message State
 uvm_report_object* get_client() const;
 uvm_severity get_severity() const;
 int get_verbosity() const;
 std::string get_id() const;
 std::string get_message() const;
 uvm_action get_action() const;
 std::string get_fname() const;
 int get_line() const;

 // Group: Change Message State
 protected:
 void set_severity(uvm_severity severity);
 void set_verbosity(int verbosity);
 void set_id(const std::string& id);
 void set_message(const std::string& message);
 void set_action(uvm_action action);

 // Group: Debug
 static uvm_report_catcher* get_report_catcher(const std::string& name);
 static void print_catcher(UVM_FILE file = 0);

 // Group: Callback interface
 virtual action_e do_catch°() = 0;

166
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 // Group: Reporting
 protected:
 void uvm_report_fatal(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

 void uvm_report_error(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

 void uvm_report_warning(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

 void uvm_report_info(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

 void issue();
 static void summarize_report_catcher(UVM_FILE file);

 }; // class uvm_report_catcher

} // namespace uvm

12.6.2 Constructor

uvm_report_catcher(const std::string& name = "uvm_report_catcher");

The constructor shall create a new report catcher object. The argument name is optional, but should generally
be provided to aid in debugging.

12.6.3 Current message state

12.6.3.1 get_client

uvm_report_object* get_client() const;

The member function get_client shall return the uvm_report_object that has generated the message that is
currently being processed.

12.6.3.2 get_severity

uvm_severity get_severity() const;

The member function get_severity shall return the uvm_severity of the message that is currently being
processed. If the severity was modified by a previously executed report object (which re-threw the message),
then the returned severity is the modified value.

12.6.3.3 get_verbosity

int get_verbosity() const;

167
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_verbosity shall return the verbosity of the message that is currently being processed.
If the verbosity was modified by a previously executed report object (which re-threw the message), then the
returned verbosity is the modified value.

12.6.3.4 get_id

std::string get_id() const;

The member function get_id shall return the string id of the message that is currently being processed. If the
id was modified by a previously executed report object (which re-threw the message), then the returned id is
the modified value.

12.6.3.5 get_message

std::string get_message() const;

The member function get_message shall return the string message of the message that is currently being
processed. If the message was modified by a previously executed report object (which re-threw the message),
then the returned message is the modified value.

12.6.3.6 get_action

uvm_action get_action() const;

The member function get_action shall return the uvm_action of the message that is currently being processed.
If the action was modified by a previously executed report object (which re-threw the message), then the
returned action is the modified value.

12.6.3.7 get_fname

std::string get_fname() const;

The member function get_fname shall return the file name of the message.

12.6.3.8 get_line

int get_line() const;

The member function get_line shall return the line number of the message.

12.6.4 Change message state

12.6.4.1 set_severity

void set_severity(uvm_severity severity);

The member function set_severity shall change the severity of the message to severity. Any other report
catchers will see the modified value.

168
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.6.4.2 set_verbosity

void set_verbosity(int verbosity);

The member function set_severity shall change the verbosity of the message to verbosity. Any other report
catchers will see the modified value.

12.6.4.3 set_id

void set_id(const std::string& id);

The member function set_id shall change the id of the message to id. Any other report catchers will see the
modified value.

12.6.4.4 set_message

void set_message(const std::string& message);

The member function set_message shall change the text of the message to message. Any other report catchers
will see the modified value.

12.6.4.5 set_action

void set_action(uvm_action action);

The member function set_action shall change the action of the message to action. Any other report catchers
will see the modified value.

12.6.5 Debug

12.6.5.1 get_report_catcher

static uvm_report_catcher* get_report_catcher(const std::string& name);

The member function get_report_catcher shall return the first report catcher that has name.

12.6.5.2 print_catcher

static void print_catcher(UVM_FILE file = 0);

The member function print_catcher shall print information about all of the report catchers that are registered.
For finer grained detail, the member function uvm_callbacks<T,CB>::display can be used by calling
uvm_report_cb::display(uvm_report_object).

12.6.6 Callback interface

12.6.6.1 do_catch° (catch†)

virtual action_e do_catch°() = 0

169
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function do_catch° shall be called for each registered report catcher. The member functions in the
current message state interface can be used to access information about the current message being processed
(see Section 12.6.3).

12.6.7 Reporting

12.6.7.1 uvm_report_fatal

void uvm_report_fatal(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

The member function uvm_report_fatal shall issue a fatal message using the current messages report object.
This message shall bypass any message catching callbacks.

12.6.7.2 uvm_report_error

void uvm_report_error(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

The member function uvm_report_error shall issue an error message using the current messages report object.
This message shall bypass any message catching callbacks.

12.6.7.3 uvm_report_warning

void uvm_report_warning(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

The member function uvm_report_warning shall issue a warning message using the current messages report
object. This message shall bypass any message catching callbacks.

12.6.7.4 uvm_report_info

void uvm_report_info(const std::string& id,
 const std::string& message,
 int verbosity,
 const std::string& fname = "",
 int line = 0);

The member function uvm_report_info shall issue an info message using the current messages report object.
This message shall bypass any message catching callbacks.

12.6.7.5 issue

void issue();

The member function issue shall immediately issue the message which is currently being processed. This is
useful if the message is being CAUGHT but should still be emitted. Issuing a message shall update the report
server stats, possibly multiple times if the message is not CAUGHT.

170
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.6.7.6 summarize_report_catcher

static void summarize_report_catcher(UVM_FILE file);

The member function summarize_report_catcher shall print the statistics for the active catchers. It shall be
called automatically by the member function uvm_report_server::summarize.

171
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

13. Macros

UVM-SystemC defines macros for the following functions:
— Component and object registration.
— Reporting.
— Sequence execution.
— Callbacks.

13.1 Component and object registration macros

These macros shall register components and objects with the uvm_factory, using the component registry
uvm_component_registry or uvm_object_registry, respectively. In addition, they shall implement the
member functions get_type and get_type_name to facilitate debugging and factory configuration or overrides.

13.1.1 Macro definitions

namespace uvm {

 #define UVM_OBJECT_UTILS(implementation-defined) implementation-defined
 #define UVM_OBJECT_PARAM_UTILS(implementation-defined) implementation-defined
 #define UVM_COMPONENT_UTILS(implementation-defined) implementation-defined
 #define UVM_COMPONENT_PARAM_UTILS(implementation-defined) implementation-defined

} // namespace uvm

13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS

#define UVM_OBJECT_UTILS(implementation-defined) implementation-defined
#define UVM_OBJECT_PARAM_UTILS(implementation-defined) implementation-defined

The macros UVM_OBJECT_UTILS and UVM_OBJECT_PARAM_UTILS shall implement the following
functionality:

— Implement the virtual member function get_type_name with the following signature:
virtual const std::string get_type_name() const;

This member function shall return the name of the class, which is provided as argument to this macro,
as string.

— Implement the static member function get_type with the following signature:
static uvm_object_registry<classname>* get_type();

This member function shall return the factory proxy object as pointer of type uvm_object_registry.
— Register the class with the factory.

NOTE—An implementation may use the concept of variadic macros to be able to accept a variable number
of macro arguments.

13.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS

#define UVM_COMPONENT_UTILS(implementation-defined) implementation-defined
#define UVM_COMPONENT_PARAM_UTILS(implementation-defined) implementation-defined

172
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The macros UVM_COMPONENT_UTILS and UVM_COMPONENT_PARAM_UTILS shall implement
the following functionality:

— Implement the virtual member function get_type_name with the following signature:
virtual const std::string get_type_name() const;

This member function shall return the name of the class, which is provided as argument to this macro,
as string.

— Implement the static member function get_type with the following signature:
static uvm_component_registry<classname>* get_type();

This member function shall return the factory proxy object as pointer of type
uvm_component_registry.

— Register the class with the factory

NOTE—An implementation may use the concept of variadic macros to be able to accept a variable number
of macro arguments.

13.2 Reporting macros

The report macros shall provide additional functionality to the UVM reporting classes to facilitate efficient
filtering messages based on verbosity, id and severity information, as well as annotating file and line number
information to the reported messages.

13.2.1 Macro definitions

namespace uvm {

 #define UVM_INFO(ID, MSG, VERBOSITY) implementation-defined
 #define UVM_WARNING(ID, MSG) implementation-defined
 #define UVM_ERROR(ID, MSG) implementation-defined
 #define UVM_FATAL(ID, MSG) implementation-defined

} // namespace uvm

13.2.2 UVM_INFO

#define UVM_INFO(ID, MSG, VERBOSITY) implementation-defined

The macro UVM_INFO shall only call member function uvm_report_info if argument VERBOSITY is
lower than the configured verbosity of the associated reporter. Argument ID is given as the message tag and
argument MSG is given as the message text. The file and line number are also sent to the member function
uvm_report_info by means of using the predefined macros __FILE__ and __LINE__.

13.2.3 UVM_WARNING

#define UVM_WARNING(ID, MSG) implementation-defined

The macro UVM_WARNING shall call the member function uvm_report_warning with a verbosity of
UVM_NONE. The message cannot be turned off using the reporter’s verbosity setting, but can be turned off
by setting the action for the message. Argument ID is given as the message tag and argument MSG is given

173
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

as the message text. The file and line number are also sent to the member function uvm_report_warning by
means of using the predefined macros __FILE__ and __LINE__.

13.2.4 UVM_ERROR

#define UVM_ERROR(ID, MSG) implementation-defined

The macro UVM_ERROR shall call the member function uvm_report_error with a verbosity of
UVM_NONE. The message cannot be turned off using the reporter’s verbosity setting, but can be turned off
by setting the action for the message. Argument ID is given as the message tag and argument MSG is given as
the message text. The file and line number are also sent to the member function uvm_report_error by means
of using the predefined macros __FILE__ and __LINE__.

13.2.5 UVM_FATAL

#define UVM_FATAL(ID, MSG) implementation-defined

The macro UVM_FATAL shall call member function uvm_report_fatal with a verbosity of UVM_NONE.
The message cannot be turned off using the reporter’s verbosity setting, but can be turned off by setting the
action for the message. Argument ID is given as the message tag and argument MSG is given as the message
text. The file and line number are also sent to the member function uvm_report_fatal by means of using the
predefined macros __FILE__ and __LINE__.

13.3 Sequence execution macros

The sequence execution macros are shall provide a convenience layer to start sequences or sequence items on
a default sequencer, if not specified, or on another sequencer if specified.

NOTE—It is strongly recommended not to use the sequence execution macros in an application. Instead, for
a sequence item to start, it is recommended to use the member functions start_item (see Section 9.3.7.2) and
finish_item (see Section 9.3.7.3). To start a sequence, it is recommended to use the member function start
(see Section 9.3.4.1).

13.3.1 Macro definitions

namespace uvm {

 #define UVM_DO(SEQ_OR_ITEM) implementation-defined
 #define UVM_DO_PRI(SEQ_OR_ITEM, PRIORITY) implementation-defined
 #define UVM_DO_ON(SEQ_OR_ITEM, SEQR) implementation-defined
 #define UVM_DO_ON_PRI(SEQ_OR_ITEM, SEQR, PRIORITY) implementation-defined
 #define UVM_CREATE(SEQ_OR_ITEM) implementation-defined
 #define UVM_CREATE_ON(SEQ_OR_ITEM, SEQR) implementation-defined

 #define UVM_DECLARE_P_SEQUENCER(SEQR) implementation-defined

} // namespace uvm

13.3.2 UVM_DO

#define UVM_DO(SEQ_OR_ITEM) implementation-defined

The macro UVM_DO shall start the execution of a sequence or sequence item. It takes as an argument
SEQ_OR_ITEM, which is an object of type uvm_sequence_item or object of type uvm_sequence.

174
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

In the case of a sequence, the sub-sequence shall be started using member function uvm_sequence_base::start
with argument call_pre_post set to false. In the case of a sequence item, the item shall be sent to the driver
through the associated sequencer.

NOTE—Randomization is not yet supported in UVM-SystemC.

13.3.3 UVM_DO_PRI

#define UVM_DO_PRI(SEQ_OR_ITEM, PRIORITY) implementation-defined

The macro UVM_DO_PRI shall implement the same functionality as UVM_DO, except that the sequence
item or sequence is executed with the priority specified in the argument PRIORITY.

13.3.4 UVM_DO_ON

#define UVM_DO_ON(SEQ_OR_ITEM, SEQR) implementation-defined

The macro UVM_DO_ON shall implement the same functionality as UVM_DO, except that it also sets the
parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified
argument SEQR.

13.3.5 UVM_DO_ON_PRI

#define UVM_DO_ON_PRI(SEQ_OR_ITEM, SEQR, PRIORITY) implementation-defined

The macro UVM_DO_ON_PRI shall implement the same functionality as UVM_DO_PRI, except that it
also sets the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the
specified argument SEQR.

13.3.6 UVM_CREATE

#define UVM_CREATE(SEQ_OR_ITEM) implementation-defined

The macro UVM_CREATE shall create and register the sequence item or sequence using the factory. It
intentionally does not start the execution.

NOTE—After calling this member function, an application can manually set values and start the execution.

13.3.7 UVM_CREATE_ON

#define UVM_CREATE_ON(SEQ_OR_ITEM, SEQR) implementation-defined

The macro UVM_CREATE_ON shall implement the same functionality as UVM_CREATE, except that it
also sets the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the
specified argument SEQR.

13.3.8 UVM_DECLARE_P_SEQUENCER

#define UVM_DECLARE_P_SEQUENCER(SEQR) implementation-defined

The macro UVM_DECLARE_P_SEQUENCER shall declare a variable p_sequencer whose type is specified
by the argument SEQR.

175
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

13.4 Callback macros

The callback macros shall register and execute callbacks which are derived from class uvm_callbacks.

13.4.1 Macro definitions

namespace uvm {

 #define UVM_REGISTER_CB(T, CB) implementation-defined
 #define UVM_DO_CALLBACKS(T, CB, METHOD) implementation-defined

} // namespace uvm

13.4.2 UVM_REGISTER_CB

#define UVM_REGISTER_CB(T, CB) implementation-defined

The macro UVM_REGISTER_CB shall register the given callback type CB with the given object type T.
If a type-callback pair is not registered, then a warning is issued if an attempt is made to use the pair (add,
delete, etc.).

13.4.3 UVM_DO_CALLBACKS

#define UVM_DO_CALLBACKS(T, CB, METHOD) implementation-defined

The macro UVM_DO_CALLBACKS shall call the given METHOD of all callbacks of type CB registered
with the calling object (i.e. this object), which is or is based on type T.

This macro executes all of the callbacks associated with the calling object (i.e. this object). The macro takes
three arguments:

— CB is the class type of the callback objects to execute. The class type shall have a function signature
that matches the argument METHOD.

— T is the type associated with the callback. Typically, an instance of type T is passed as one the arguments
in the METHOD call.

— METHOD is the method call to invoke, with all required arguments as if they were invoked directly.

176
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14. TLM classes

The TLM classes of UVM-SystemC shall be derived from the SystemC TLM interface definitions as defined
in IEEE Std. 1666-2011. As communication between UVM components is primarily based on TLM-1 message
passing semantics, dedicated ports and exports are defined compliant with these semantics.

The following TLM-1 ports are defined in UVM-SystemC:
— Ports based on TLM-1 blocking interfaces: uvm_blocking_put_port, uvm_blocking_get_port,

uvm_blocking_peek_port, and uvm_blocking_get_peek_port.
— Ports based on TLM-1 non-blocking interfaces: uvm_nonblocking_put_port,

uvm_nonblocking_get_port, uvm_nonblocking_peek_port, and
uvm_nonblocking_get_peek_port.

— Analysis port and export classes: uvm_analysis_port, uvm_analysis_export, and
uvm_analysis_imp.

— Request-response channel class: uvm_tlm_req_rsp_channel.
— Sequencer interface classes: uvm_sqr_if_base, uvm_seq_item_pull_port,

uvm_seq_item_pull_export, and uvm_seq_item_pull_imp.

NOTE 1—UVM-SystemC does not define TLM-1 FIFO and FIFO interface classes. Instead, an application
should use the SystemC FIFO base classes tlm::tlm_fifo or tlm::tlm_analysis_fifo, or FIFO interfaces
tlm::tlm_fifo_debug_if, tlm::tlm_fifo_put_if, and tlm::tlm_fifo_get_if.

NOTE 2—UVM-SystemC does not define the TLM-2.0 blocking and non-blocking transport interfaces, direct
memory interface (DMI), nor a debug transport interface. Instead, an application should use the SystemC
TLM-2.0 interfaces.

14.1 uvm_blocking_put_port

The class uvm_blocking_put_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tlm::tlm_blocking_put_if. As this port class shall be derived from class uvm_port_base,
it inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

14.1.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_blocking_put_port : public uvm_port_base< tlm::tlm_blocking_put_if<T> >
 {
 public:
 // Constructors
 uvm_blocking_put_port();
 uvm_blocking_put_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual void put(const T& val);

 }; // class uvm_blocking_put_port

} // namespace uvm

14.1.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

177
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.1.3 Constructor

uvm_blocking_put_port();
uvm_blocking_put_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking put interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.1.4 Member functions

14.1.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_put_port”.

14.1.4.2 put

virtual void put(const T& val);

The member function put shall send the transaction of type T to the recipient. It shall call the member function
put of the associated interface which is bound to this port.

According to the TLM-1 blocking put semantics, the member function put shall not return until the recipient
has indicated that the transaction object has been processed, by calling member function get or peek.
Subsequent calls to the member function put shall be treated as distinct transaction instances, regardless of
whether or not the same transaction object or message is passed.

14.2 uvm_blocking_get_port

The class uvm_blocking_get_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tlm::tlm_blocking_get_if. As this port class shall be derived from class uvm_port_base,
it inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

14.2.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_blocking_get_port : public uvm_port_base< tlm::tlm_blocking_get_if<T> >
 {
 public:
 // Constructors
 uvm_blocking_get_port();
 uvm_blocking_get_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual void get(T& val);

 }; // class uvm_blocking_get_port

} // namespace uvm

14.2.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

178
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.2.3 Constructor

uvm_blocking_get_port();
uvm_blocking_get_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking get interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.2.4 Member functions

14.2.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_get_port”.

14.2.4.2 get

virtual void get(T& val);

The member function get shall retrieve a transaction of type T from the sender. It shall call the member function
get of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsequent calls to the member
function get shall return a different transaction object. This actually means that a call to get shall consume
the transaction from the sender.

14.3 uvm_blocking_peek_port

The class uvm_blocking_peek_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tlm::tlm_blocking_peek_if. As this port class shall be derived from class uvm_port_base,
it inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

14.3.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_blocking_peek_port : public uvm_port_base< tlm::tlm_blocking_peek_if<T> >
 {
 public:
 // Constructors
 uvm_blocking_peek_port();
 uvm_blocking_peek_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual void peek(T& val) const;

 }; // class uvm_blocking_peek_port

} // namespace uvm

14.3.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

179
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.3.3 Constructor

uvm_blocking_peek_port();
uvm_blocking_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.3.4 Member functions

14.3.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_peek_port”.

14.3.4.2 peek

virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member
function peek of the associated interface which is bound to this port.

According to the TLM-1 blocking peek semantics, the member function peek shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsequent calls to the member
function peek shall return exactly the same transaction object. This actually means that a call to peek shall not
consume the transaction from the sender. A transaction shall only be consumed by means of a call to get.

14.4 uvm_blocking_get_peek_port

The class uvm_blocking_get_peek_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tlm::tlm_blocking_get_peek_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type_name.

14.4.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_blocking_get_peek_port : public uvm_port_base< tlm::tlm_blocking_get_peek_if<T> >
 {
 public:
 // Constructor
 uvm_blocking_get_peek_port();
 uvm_blocking_get_peek_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual void get(T& val);
 virtual void peek(T& val) const;

 }; // class uvm_blocking_get_peek_port

} // namespace uvm

180
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.4.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

14.4.3 Constructor

uvm_blocking_get_peek_port();
uvm_blocking_get_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking get and peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.4.4 Member functions

14.4.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_get_peek_port”.

14.4.4.2 get

virtual void get(T& val);

The member function get shall retrieve a transaction of type T from the sender. It shall call the member function
get of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsequent calls to the member
function get shall return a different transaction object. This actually means that a call to get shall consume
the transaction from the sender.

14.4.4.3 peek

virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member
function peek of the associated interface which is bound to this port.

According to the TLM-1 blocking peek semantics, the member function peek shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsequent calls to the member
function peek shall return exactly the same transaction object. This actually means that a call to peek shall not
consume the transaction from the sender. A transaction shall only be consumed by means of a call to get.

14.5 uvm_nonblocking_put_port

The class uvm_nonblocking_put_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tlm::tlm_nonblocking_put_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type_name.

181
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.5.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_nonblocking_put_port : public uvm_port_base< tlm::tlm_nonblocking_put_if<T> >
 {
 public:
 // Constructors
 uvm_nonblocking_put_port();
 uvm_nonblocking_put_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual bool try_put(const T& val);
 virtual bool can_put() const;

 }; // class uvm_nonblocking_put_port

} // namespace uvm

14.5.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.5.3 Constructor

uvm_nonblocking_put_port();
uvm_nonblocking_put_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking put interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.5.4 Member functions

14.5.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_put_port”.

14.5.4.2 try_put

virtual bool try_put(const T& val);

The member function try_put shall send the transaction of type T to the recipient, if possible. It shall call the
corresponding non-blocking put member function of the associated interface which is bound to this port. If the
recipient is able to respond immediately, then the member function shall return true. Otherwise, the member
function shall return false, and shall not accept or return the next transaction.

14.5.4.3 can_put

virtual bool can_put() const;

The member function can_put shall return true if the recipient is able to respond immediately; otherwise it
shall return false.

182
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.6 uvm_nonblocking_get_port

The class uvm_nonblocking_get_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tlm::tlm_nonblocking_get_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type_name.

14.6.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_nonblocking_get_port : public uvm_port_base< tlm::tlm_nonblocking_get_if<T> >
 {
 public:
 // Constructor
 uvm_nonblocking_get_port();
 uvm_nonblocking_get_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual bool try_get(T& val);
 virtual bool can_get() const;

 }; // class uvm_nonblocking_get_port

} // namespace uvm

14.6.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.6.3 Constructor

uvm_nonblocking_get_port();
uvm_nonblocking_get_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking get interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.6.4 Member functions

14.6.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_get_port”.

14.6.4.2 can_get

virtual bool can_get() const;

The member function can_get shall return true if a new transaction can be provided immediately upon request.
Otherwise it shall return false.

183
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.7 uvm_nonblocking_peek_port

The class uvm_nonblocking_peek_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tlm::tlm_nonblocking_peek_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type_name.

14.7.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_nonblocking_peek_port : public uvm_port_base< tlm::tlm_nonblocking_peek_if<T> >
 {
 public:
 // Constructors
 uvm_nonblocking_peek_port();
 uvm_nonblocking_peek_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual bool try_peek(T& val);
 virtual bool can_peek() const;

 }; // class uvm_nonblocking_peek_port

} // namespace uvm

14.7.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.7.3 Constructor

uvm_nonblocking_peek_port();
uvm_nonblocking_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.7.4 Member functions

14.7.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_peek_port”.

14.7.4.2 try_peek

virtual bool try_peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call
the corresponding non-blocking peek member function of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall
return true. Otherwise, the output argument is not modified and the member function shall return false.

184
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.7.4.3 can_peek

virtual bool can_peek() const;

The member function can_peek shall return true if a new transaction can be provided immediately upon
request. Otherwise it shall return false.

14.8 uvm_nonblocking_get_peek_port

The class uvm_nonblocking_get_peek_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tlm::tlm_nonblocking_get_peek_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type_name.

14.8.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_nonblocking_get_peek_port
 : public uvm_port_base< tlm::tlm_nonblocking_get_peek_if<T> >
 {
 public:
 // Constructors
 uvm_nonblocking_get_peek_port();
 uvm_nonblocking_get_peek_port(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual bool try_get(T& val);
 virtual bool can_get() const;
 virtual bool try_peek(T& val);
 virtual bool can_peek() const;

 }; // class uvm_nonblocking_get_peek_port

} // namespace uvm

14.8.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.8.3 Constructor

uvm_nonblocking_get_peek_port();
uvm_nonblocking_get_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking get and peek interface semantics. If specified,
the argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.8.4 Member functions

14.8.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_get_peek_port”.

185
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.8.4.2 try_get

virtual bool try_get(T& val);

The member function try_get shall retrieve a new transaction of type T. It shall call the corresponding non-
blocking get member function of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall
return true. Otherwise, the output argument is not modified and the member function shall return false.

14.8.4.3 can_get

virtual bool can_get() const;

The member function can_get shall return true if a new transaction can be provided immediately upon request.
Otherwise it shall return false.

14.8.4.4 try_peek

virtual bool try_peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call
the corresponding non-blocking peek member function of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall
return true. Otherwise, the output argument is not modified and the member function shall return false.

14.8.4.5 can_peek

virtual bool can_peek() const;

The member function can_peek shall return true if a new transaction can be provided immediately upon
request. Otherwise it shall return false.

14.9 uvm_analysis_port

The class uvm_analysis_port offers a convenience layer for UVM users and is compatible with the SystemC
tlm::tlm_analysis_port, since it shall be derived from this class. Primary reason to introduce this derived port
class is to offer the UVM specific member function connect as alternative to the SystemC bind and operator()
to connect analysis ports with exports.

14.9.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_analysis_port : public tlm::tlm_analysis_port<T>
 {
 public:
 // Constructors
 uvm_analysis_port();
 uvm_analysis_port(const std::string& name);

 // member functions
 virtual const std::string get_type_name() const;

186
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void connect(tlm::tlm_analysis_if<T>& _if);
 void write(const T& t);

 }; // class uvm_analysis_port

} // namespace uvm

14.9.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis port.

14.9.3 Constructor

uvm_analysis_port();
uvm_analysis_port(const std::string& name);

The constructor shall create a new analysis port. If specified, the argument name shall define the name of the
port. Otherwise, the name of the port is implementation-defined.

NOTE—UVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments
min_size and max_size to specify the minimum and maximum number of interfaces, respectively, that are
connected to this port by the end of elaboration.

14.9.4 Member functions

14.9.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_analysis_port”.

14.9.4.2 connect

virtual void connect(tlm::tlm_analysis_if<T>& _if);

The member function connect shall register the subscriber passed as an argument, so that any call to the
member function write of such analysis port instance shall be passed on to the registered subscriber. Multiple
subscribers may be registered with a single analysis port instance.

NOTE 1—The member function connect implements the same functionality as the SystemC member function
bind.

NOTE 2—There may be zero subscribers registered with any given analysis port instance, in which case calls
to the member function write shall not be propagated.

14.9.4.3 write

void write(const T& t);

The member function write shall call the member function write of every subscriber which is bound to this
analysis port, by passing on the argument as a const reference.

187
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.10 uvm_analysis_export

The class uvm_analysis_export offers a convenience layer for UVM users and is compatible with the SystemC
export type sc_core::sc_export<tlm::tlm_analysis_if<T> > since it shall be derived from this class. Primary
reason to introduce this export class is to offer the member function connect as alternative to the SystemC
bind and operator() to connect analysis ports with exports.

14.10.1 Class definition

namespace uvm {

 template <typename T>
 class uvm_analysis_export : public sc_core::sc_export< tlm::tlm_analysis_if<T> >
 {
 public:
 // Constructors
 uvm_analysis_export();
 uvm_analysis_export(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual void connect(tlm::tlm_analysis_if<T>& _if);

 }; // class uvm_analysis_export

} // namespace uvm

14.10.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis port.

14.10.3 Constructor

uvm_analysis_export();
uvm_analysis_export(const std::string& name);

The constructor shall create a new analysis export. If specified, the argument name shall define the name of
the export. Otherwise, the name of the export is implementation-defined.

NOTE—UVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments
min_size and max_size to specify the minimum and maximum number of interfaces, respectively, that are
connected to this port by the end of elaboration.

14.10.4 Member functions

14.10.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_analysis_export”.

14.10.4.2 connect

virtual void connect(tlm::tlm_analysis_if<T>& _if);

188
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function connect shall register the subscriber passed as an argument, so that any call to the
member function write of such analysis export instance shall be passed on to the registered subscriber. Multiple
subscribers may be registered with a single analysis export instance.

NOTE 1—The member function connect implements the same functionality as the SystemC member function
bind.

NOTE 2—There may be zero subscribers registered with any given analysis export instance, in which case
calls to the member function write shall not be propagated.

14.11 uvm_analysis_imp

The class uvm_analysis_imp shall serve as termination point of analysis port and export connections. It shall
call the member function write of the component type passed as second template argument via its own member
function write, without modification of the value passed to it.

14.11.1 Class definition

namespace uvm {

 template <typename T = int, typename IMP = int>
 class uvm_analysis_imp : public tlm::tlm_analysis_port<T>
 {
 public:
 // Constructors
 uvm_analysis_imp();
 uvm_analysis_imp(const std::string& name);

 // Member functions
 virtual const std::string get_type_name() const;
 virtual void connect(tlm::tlm_analysis_if<T>& _if);
 void write(const T& t);

 }; // class uvm_analysis_imp

} // namespace uvm

14.11.2 Template parameters

The template parameter T specifies the type of transaction to be communicated by the analysis port. The
template parameter IMP specifies the component type which implements the member function write.

14.11.3 Constructors

uvm_analysis_imp();
uvm_analysis_imp(const std::string& name);

The constructor shall create a new analysis implementation. If specified, the argument name shall define the
name of the export. Otherwise, the name of the export is implementation-defined.

14.11.4 Member functions

14.11.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_analysis_imp”.

189
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.11.4.2 connect

virtual void connect(tlm::tlm_analysis_if<T>& _if);

The member function connect shall register the subscriber passed as an argument, so that any call to the
member function write of such analysis implementation instance shall be passed on to the registered subscriber.
Multiple subscribers may be registered with a single analysis export instance.

NOTE—The member function connect implements the same functionality as the SystemC member function
bind.

14.11.4.3 write

void write(const T& t);

The member function write shall shall call the member function write of the associated subscriber which is
specified as second template argument, by passing on the argument as a const reference.

14.12 uvm_tlm_req_rsp_channel

The class uvm_tlm_req_rsp_channel offers a convenience layer for UVM users and is compatible with the
SystemC tlm::tlm_req_rsp_channel, since it shall be derived from this class. It offers some UVM additional
capabilities such as the analysis ports for request and response monitoring.

The class uvm_tlm_req_rsp_channel contains a request FIFO of default type tlm::tlm_fifo<REQ> and
response FIFO of default type tlm::tlm_fifo<RSP>. These FIFOs can be of any size. This channel is
particularly useful for dealing with pipelined protocols where the request and response are not tightly coupled.

14.12.1 Class definition

namespace uvm {

 template < typename REQ,
 typename RSP = REQ,
 typename REQ_CHANNEL = tlm::tlm_fifo<REQ>,
 typename RSP_CHANNEL = tlm::tlm_fifo<RSP> >
 class uvm_tlm_req_rsp_channel
 : public tlm::tlm_req_rsp_channel<REQ, RSP, REQ_CHANNEL, RSP_CHANNEL>
 {
 public:

 // Ports and exports
 uvm_analysis_port<REQ> request_ap;
 uvm_analysis_port<RSP> response_ap;
 sc_core::sc_export< tlm::tlm_fifo_put_if<REQ> > put_request_export;
 sc_core::sc_export< tlm::tlm_fifo_put_if<RSP> > put_response_export;
 sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_request_export;
 sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_response_export;
 sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_peek_request_export;
 sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_peek_response_export;
 sc_core::sc_export< tlm::tlm_master_if<REQ, RSP> > master_export;
 sc_core::sc_export< tlm::tlm_slave_if<REQ, RSP> > slave_export;

 // Constructors
 uvm_tlm_req_rsp_channel(int req_size = 1, int rsp_size = 1);
 uvm_tlm_req_rsp_channel(uvm_component_name name, int req_size = 1, int rsp_size = 1);

 }; // class uvm_tlm_req_rsp_channel

} // namespace uvm

190
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.12.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. The
template parameters REQ_CHANNEL and RSP_CHANNEL specify the type of the request and response
FIFO, respectively. If parameters REQ_CHANNEL or RSP_CHANNEL are not specified, the interface uses
FIFOs of type tlm::tlm_fifo.

14.12.3 Ports and exports

14.12.3.1 request_ap

uvm_analysis_port<REQ> request_ap;

The analysis port request_ap shall send the request transactions, which are passed via the member function
put or nb_put (via any port connected to the export put_request_export), via its member function write, to
all connected analysis exports and imps.

14.12.3.2 response_ap

uvm_analysis_port<RSP> response_ap;

The analysis port response_ap shall send the response transactions, which are passed via the member function
put or nb_put (via any port connected to the export put_response_export), via its member function write,
to all connected analysis exports and imps.

14.12.3.3 put_request_export

sc_core::sc_export< tlm::tlm_fifo_put_if<REQ> > put_request_export;

The export put_request_export shall provide both the blocking and non-blocking put interface member
functions to the request FIFO based on interface tlm::tlm_fifo_put_if, being member functions put, nb_put
and nb_can_put. Any put port variant can connect and send transactions to the request FIFO via this export,
provided the transaction types match.

14.12.3.4 put_response_export

sc_core::sc_export< tlm::tlm_fifo_put_if<RSP> > put_response_export;

The export put_response_export shall provide both the blocking and non-blocking put interface member
functions to the response FIFO based on interface tlm::tlm_fifo_put_if, being put, nb_put and nb_can_put.
Any put port variant can connect and send transactions to the response FIFO via this export, provided the
transaction types match.

14.12.3.5 get_request_export

sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_request_export;

The export get_request_export shall provide both the blocking and non-blocking get and peek interface
member functions to the request FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get, nb_can_get,
peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the request FIFO
via this export, provided the transaction types match.

191
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

NOTE—This member function is functionally equivalent to get_peek_request_export.

14.12.3.6 get_response_export

sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_response_export;

The export get_response_export shall provide both the blocking and non-blocking get and peek interface
member functions to the response FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get,
nb_can_get, peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the
response FIFO via this export, provided the transaction types match.

NOTE—This member function is functionally equivalent to get_peek_response_export.

14.12.3.7 get_peek_request_export

sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_peek_request_export;

The export get_peek_request_export shall provide both the blocking and non-blocking get and peek interface
member functions to the request FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get, nb_can_get,
peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the request FIFO
via this export, provided the transaction types match.

NOTE—This member function is functionally equivalent to get_request_export.

14.12.3.8 get_peek_response_export

sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_peek_response_export;

The export get_peek_response_export shall provide both the blocking and non-blocking get and peek
interface member functions to the response FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get,
nb_can_get, peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the
response FIFO via this export, provided the transaction types match.

NOTE—This member function is functionally equivalent to get_response_export.

14.12.3.9 master_export

sc_core::sc_export< tlm::tlm_master_if<REQ, RSP> > master_export;

The export master_export shall provide a single interface that allows a master to put requests and get or
peek responses. It is a combination of the functionality offered by the exports put_request_export and
get_peek_response_export.

14.12.3.10 slave_export

sc_core::sc_export< tlm::tlm_slave_if<REQ, RSP> > slave_export;

The export slave_export shall provide a single interface that allows a slave to get or peek requests and to
put responses. It is a combination of the functionality offered by the exports get_peek_request_export and
put_response_export.

192
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.12.4 Constructors

uvm_tlm_req_rsp_channel(int req_size = 1, int rsp_size = 1);
uvm_tlm_req_rsp_channel(uvm_component_name name, int req_size = 1, int rsp_size = 1);

The constructor shall create a new TLM-1 interface containing a request and response FIFO. The argument
req_size specifies the size of the request FIFO. The argument rsp_size specifies the size of the response FIFO.
If not specified, default size of these FIFOs is 1. If specified, the argument name shall define the name of the
interface. Otherwise, the name of the interface is implementation-defined.

14.13 uvm_sqr_if_base

The class uvm_sqr_if_base shall define an interface for sequence drivers to communicate with sequencers.
The driver requires the interface via a port, and the sequencer implements it and provides it via an export.

14.13.1 Class definition

namespace uvm {

 template <typename REQ, typename RSP = REQ>
 class uvm_sqr_if_base : public virtual sc_core::sc_interface
 {
 public:
 // Member functions
 virtual void get_next_item(REQ& req) = 0;
 virtual bool try_next_item(REQ& req) = 0;
 virtual void item_done(const RSP& item) = 0;
 virtual void item_done() = 0;
 virtual void put(const RSP& rsp) = 0;
 virtual void get(REQ& req) = 0;
 virtual void peek(REQ& req) = 0;

 protected:
 // Constructor
 uvm_sqr_if_base();

}; // class uvm_sqr_if_base

} // namespace uvm

14.13.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be a derivative of class uvm_sequence_item.

14.13.3 Member functions

14.13.3.1 get_next_item

virtual void get_next_item(REQ& req) = 0;

The member function get_next_item shall retrieve the next available item from a sequence. The call blocks
until an item is available. The following steps occur on this call:

a) Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked
relevant sequence, then re-arbitrate.

b) The chosen sequence returns from member function wait_for_grant (see Section 9.3.7.4).
c) The chosen sequence’s member function uvm_sequence_base::pre_do is called (see Section 9.3.4.4).

193
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

d) The chosen sequence item is randomized.
e) The chosen sequence’s member function uvm_sequence_base::post_do is called (see Section 9.3.4.7).
f) Return with a reference to the item.

Once member function get_next_item is called, the member function item_done needs to be called to indicate
the completion of the request to the sequencer.

14.13.3.2 try_next_item

virtual bool try_next_item(REQ& req) = 0;

The member function try_next_item shall retrieve the next available item from a sequence if one is available.
If available, it shall return true. Otherwise, the member function shall return false. The following steps occur
on this call:

a) Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, the member function returns
false.

b) The chosen sequence returns from member function uvm_sequence_base::wait_for_grant (see
Section 9.3.7.4).

c) The chosen sequence’s member function uvm_sequence_base::pre_do is called (see Section 9.3.4.4).
d) The chosen sequence item is randomized.
e) The chosen sequence uvm_sequence_base::post_do is called (see Section 9.3.4.7).
f) Return with a reference to the item.

Once the member function try_next_item is called, the member function item_done shall be called to indicate
the completion of the request to the sequencer. This removes the request item from the sequencer FIFO.

14.13.3.3 item_done

virtual void item_done(const RSP& item) = 0;
virtual void item_done() = 0;

The member function item_done shall indicate that the request is completed to the sequencer. Any
uvm_sequence_base::wait_for_item_done calls made by a sequence for this item shall return.

The current item is removed from the sequencer FIFO.

If a response item is provided, then it shall be sent back to the requesting sequence. The response item shall have
its sequence ID and transaction ID set correctly, using the member function uvm_sequence_item::set_id_info.

Before the member function item_done is called, any calls to the member function peek retrieves the current
item that was obtained by member function get_next_item. After the member function item_done is called,
member function peek causes the sequencer to arbitrate for a new item.

14.13.3.4 get

virtual void get(REQ& req) = 0;

The member function get shall retrieve the next available item from a sequence. The call blocks until an item
is available. The following steps occur on this call:

194
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

a) Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked
relevant sequence, then re-arbitrate.

b) The chosen sequence returns from member function uvm_sequence_base::wait_for_grant (see
Section 9.3.7.4).

c) The chosen sequence’s member function uvm_sequence_base::pre_do is called (see Section 9.3.4.4).
d) The chosen sequence item is randomized.
e) The chosen sequence’s member function uvm_sequence_base::post_do is called (see Section 9.3.4.7).
f) Indicate item_done to the sequencer.
g) Return with a reference to the item.

When the member function get is called, the member function item_done may not be called. A new item can
be obtained by calling the member function get again, or a response may be sent using either member function
put, or uvm_driver::rsp_port.write().

14.13.3.5 peek

virtual void peek(REQ& req) = 0;

The member function peek shall return the current request item if one is in the sequencer FIFO. If no item
is in the FIFO, then the call blocks until the sequencer has a new request. The following steps shall occur if
the sequencer FIFO is empty:

a) Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked
relevant sequence, then re-arbitrate.

b) The chosen sequence returns from member function uvm_sequence_base::wait_for_grant (see
Section 9.3.7.4).

c) The chosen sequence’s member function uvm_sequence_base::pre_do is called (see Section 9.3.4.4).
d) The chosen sequence item is randomized.
e) The chosen sequence’s member function uvm_sequence_base::post_do is called (see Section 9.3.4.7).

Once a request item has been retrieved and is in the sequencer FIFO, subsequent calls to member function peek
returns the same item. The item stays in the FIFO until either the member function get or item_done is called.

14.13.3.6 put

virtual void put(const RSP& rsp) = 0;

The member function put shall send a response back to the sequence that issued the request. Before the response
is put, it shall have its sequence ID and transaction ID set to match the request. This can be done using the
member function uvm_sequence_item::set_id_info.

This member function shall not block. The response is put into the sequence response queue or it is sent to
the sequence response handler.

14.14 uvm_seq_item_pull_port

The class uvm_seq_item_pull_port shall define the port for use in sequencer-driver communication.

195
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.14.1 Class definition

namespace uvm {

 template <typename REQ, typename RSP = REQ>
 class uvm_seq_item_pull_port : public uvm_port_base< uvm_sqr_if_base<REQ, RSP> >
 {
 public:
 // Constructor
 uvm_seq_item_pull_port(const char* name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_seq_item_pull_port

} // namespace uvm

14.14.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.

14.14.3 Constructor

uvm_seq_item_pull_port(const char *name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise,
the name of the export is implementation-defined.

14.14.4 Member functions

14.14.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_port”.

14.15 uvm_seq_item_pull_export

The class uvm_seq_item_pull_export shall define the export for use in sequencer-driver communication.

14.15.1 Class definition

namespace uvm {

 template <typename REQ, typename RSP = REQ>
 class uvm_seq_item_pull_export : public uvm_export_base< uvm_sqr_if_base<REQ, RSP> >
 {
 public:
 // Constructor
 uvm_seq_item_pull_export(const char* name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_seq_item_pull_export

} // namespace uvm

196
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.15.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.

14.15.3 Constructor

uvm_seq_item_pull_export(const char* name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise,
the name of the export is implementation-defined.

14.15.4 Member functions

14.15.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_export”.

14.16 uvm_seq_item_pull_imp

The class uvm_seq_item_pull_imp shall implement the interface used in sequencer-driver communication.

14.16.1 Class definition

namespace uvm {

 template <typename REQ = int, typename RSP = REQ, typename IMP = int>
 class uvm_seq_item_pull_imp : public uvm_export_base< uvm_sqr_if_base<REQ, RSP> >
 {
 public:
 // Constructor
 uvm_seq_item_pull_imp(const char* name);

 // Member function
 virtual const std::string get_type_name() const;

 }; // class uvm_seq_item_pull_imp

} // namespace uvm

14.16.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. The
template parameter IMP specifies the type of the component implementing the interface.

14.16.3 Member functions

14.16.3.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_imp”.

197
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15. Register abstraction classes

The UVM register abstraction layer defines several base classes that, when properly extended, abstract the
read/write operations to registers and memories in a DUT.

The UVM register abstraction classes are not usable as-is. They only provide generic and introspection
capabilities. They need to be specialized via extensions to provide an abstract view that corresponds to the
actual registers and memories in a design. Due to the large number of registers in a design and the numerous
small details involved in properly configuring the UVM register layer classes, this specialization is normally
done by a model generator. Model generators work from a specification of the registers and memories in a
design and are thus able to provide an up-to-date, correct-by-construction register model. Model generators
are outside the scope of the UVM standard.

15.1 uvm_reg_block

The class uvm_reg_block is the base class for regisiter blocks. A register block represents a design hierarchy.
It can contain registers, register files, memories and sub-blocks. A block has one or more address maps, each
corresponding to a physical interface on the block.

15.1.1 Class definition

namespace uvm {

 class uvm_reg_block : public uvm_object
 {
 public:

 // Constructor
 uvm_reg_block(const std::string& name = "",
 int has_coverage = UVM_NO_COVERAGE);

 // Group: Initialization

 void configure(uvm_reg_block* parent = NULL,
 const std::string& hdl_path = "");

 virtual uvm_reg_map* create_map(const std::string& name,
 uvm_reg_addr_t base_addr,
 unsigned int n_bytes,
 uvm_endianness_e endian,
 bool byte_addressing = true);

 static bool check_data_width(unsigned int width);
 void set_default_map(uvm_reg_map* map);
 uvm_reg_map* get_default_map() const;
 virtual void lock_model();
 bool is_locked() const;

 // Group: Introspection

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_reg_block* get_parent() const;
 static void get_root_blocks(std::vector<uvm_reg_block*>& blks);

 static int find_blocks(std::string name,
 std::vector<uvm_reg_block*>& blks,
 uvm_reg_block* root = NULL,
 uvm_object* accessor = NULL);

 static uvm_reg_block* find_block(const std::string& name,
 uvm_reg_block* root = NULL,
 uvm_object* accessor = NULL);

 virtual void get_blocks(std::vector<uvm_reg_block*>& blks,
 uvm_hier_e hier = UVM_HIER) const;

198
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;

 virtual void get_registers(std::vector<uvm_reg*>& regs,
 uvm_hier_e hier = UVM_HIER) const;

 virtual void get_fields(std::vector<uvm_reg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

 void get_memories(std::vector<uvm_mem*>& mems,
 uvm_hier_e hier = UVM_HIER) const;

 void get_virtual_registers(std::vector<uvm_vreg*>& regs,
 uvm_hier_e hier = UVM_HIER) const;

 void get_virtual_fields(std::vector<uvm_vreg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

 uvm_reg_block* get_block_by_name(const std::string& name) const;
 uvm_reg_map* get_map_by_name(const std::string& name) const;
 uvm_reg* get_reg_by_name(const std::string& name) const;
 uvm_reg_field* get_field_by_name(const std::string& name) const;
 uvm_mem* get_mem_by_name(const std::string& name) const;
 uvm_vreg* get_vreg_by_name(const std::string& name) const;
 uvm_vreg_field* get_vfield_by_name(const std::string& name) const;

 // Group: Coverage

 protected:
 uvm_reg_cvr_t build_coverage(uvm_reg_cvr_t models);
 virtual void add_coverage(uvm_reg_cvr_t models);

 public:
 bool has_coverage(uvm_reg_cvr_t models) const;
 uvm_reg_cvr_t set_coverage(uvm_reg_cvr_t is_on);
 bool get_coverage(uvm_reg_cvr_t is_on = UVM_CVR_ALL) const;

 protected:
 virtual void sample(uvm_reg_addr_t offset,
 bool is_read,
 uvm_reg_map* map);
 public:
 void sample_values();

 // Group: Access

 uvm_path_e get_default_path() const;
 void reset(const std::string& kind = "HARD");
 bool needs_update();

 virtual void update(uvm_status_e status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void mirror(uvm_status_e status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void write_reg_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

199
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void read_reg_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void write_mem_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_addr_t offset,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read_mem_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_addr_t offset,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 // Group: Backdoor

 uvm_reg_backdoor* get_backdoor(bool inherited = true) const;

 void set_backdoor(uvm_reg_backdoor* bkdr,
 const std::string& fname = "",
 int lineno = 0);

 void clear_hdl_path(const std::string& kind = "RTL");
 void add_hdl_path(const std::string& path, const std::string& kind = "RTL");
 bool has_hdl_path(const std::string& kind = "") const;
 void get_hdl_path(std::vector<std::string>& paths, const std::string& kind = "") const;

 void get_full_hdl_path(std::vector<std::string>& paths,
 std::string kind = "",
 const std::string& separator = ".") const;

 void set_default_hdl_path(const std::string& kind);
 std::string get_default_hdl_path() const;
 void set_hdl_path_root(const std::string& path, std::string kind = "RTL");
 bool is_hdl_path_root(std::string kind = "") const;

 // Data members

 uvm_reg_map* default_map;
 uvm_path_e default_path;

 }; // class uvm_reg_block

} // namespace uvm

15.1.2 Constructor

uvm_reg_block(const std::string& name = "",
 int has_coverage = UVM_NO_COVERAGE);

200
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The constructor shall create an instance of a block abstraction class with the specified name. The argument
has_coverage specifies which functional coverage models are present in the extension of the block abstraction
class. Multiple functional coverage models may be specified by adding their symbolic names, as defined by
the uvm_coverage_model_e type.

15.1.3 Initialization

15.1.3.1 configure

void configure(uvm_reg_block* parent = NULL,
 const std::string& hdl_path = "");

The member function configure shall specify the parent block of this block. A block without parent is a root
block. If the block file corresponds to a hierarchical RTL structure, its contribution to the HDL path is specified
as the argument hdl_path. Otherwise, the block does not correspond to a hierarchical RTL structure (e.g. it
is physically flattened) and does not contribute to the hierarchical HDL path of any contained registers or
memories.

15.1.3.2 create_map

virtual uvm_reg_map* create_map(const std::string& name,
 uvm_reg_addr_t base_addr,
 unsigned int n_bytes,
 uvm_endianness_e endian,
 bool byte_addressing = true);

The member function create_map shall create an address map with the specified name, then configures it with
the following properties:

— base_addr: the base address for the map. All registers, memories, and sub-blocks within the map shall
be at offsets to this address.

— n_bytes: the byte-width of the bus on which this map is used
— endian: the endian format. See uvm_endianness_e (Section 15.16.2.4) for possible values.
— byte_addressing: specifies whether consecutive addresses refer are 1 byte apart (true) or n_bytes apart

(false). Default value is true

15.1.3.3 check_data_width

static bool check_data_width(unsigned int width);

The member function check_data_width shall check that the specified data width (in bits) is less than or equal
to the value of UVM_REG_DATA_WIDTH.

NOTE—This member function is designed to be called by a static initializer.

15.1.3.4 set_default_map

void set_default_map(uvm_reg_map* map);

The member function set_default_map shall define the specified address map as the default_map for this
block.

201
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.1.3.5 get_default_map

uvm_reg_map* get_default_map() const;

The member function get_default_map shall return the specified address map for this block.

15.1.3.6 lock_model

virtual void lock_model();

The member function lock_model shall recursively lock an entire register model and build the address maps to
enable the member functions uvm_reg_map::get_reg_by_offset and uvm_reg_map::get_mem_by_offset.
Once locked, no further structural changes, such as adding registers or memories, can be made. It is not possible
to unlock a model.

15.1.3.7 is_locked

bool is_locked() const;

The member function is_locked shall return true if the model is locked, otherwise it shall return false.

15.1.4 Introspection

15.1.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this block.

15.1.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this block. The base of the hierarchical
name is the root block.

15.1.4.3 get_parent

virtual uvm_reg_block* get_parent() const;

The member function get_parent shall return the parent block. If this a top-level block, it shall return NULL.

15.1.4.4 get_root_blocks

static void get_root_blocks(std::vector<uvm_reg_block*>& blks);

The member function get_root_blocks shall return an array of all root blocks.

15.1.4.5 find_blocks

static int find_blocks(std::string name,
 std::vector<uvm_reg_block*>& blks,

202
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_block* root = NULL,
 uvm_object* accessor = NULL);

The member function find_blocks shall search for the blocks whose hierarchical names match the specified
name glob. If a root block is specified, the name of the blocks are relative to that block, otherwise they are
absolute. The member function returns the number of blocks found.

15.1.4.6 find_block

static uvm_reg_block* find_block(const std::string& name,
 uvm_reg_block* root = NULL,
 uvm_object* accessor = NULL);

The member function find_block shall return the first block whose hierarchical names match the specified
name glob. If a root block is specified, the name of the blocks are relative to that block, otherwise they are
absolute. The member function returns the first block found or null otherwise. A warning is issued if more
than one block is found.

15.1.4.7 get_blocks

virtual void get_blocks(std::vector<uvm_reg_block*>& blks,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_blocks shall return the blocks instantiated in this block. If argument hier is set to
true, it recursively includes any subblock.

15.1.4.8 get_maps

virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;

The member function get_maps shall return the address maps instantiated in this block.

15.1.4.9 get_registers

virtual void get_registers(std::vector<uvm_reg*>& regs,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_registers shall return the registers instantiated in this block. If argument hier is set
to true, it recursively includes the registers in the sub-blocks.

Note that registers may be located in different and/or multiple address maps. To get the registers in a specific
address map, use member function uvm_reg_map::get_registers (see Section 15.2.4.13).

15.1.4.10 get_fields

virtual void get_fields(std::vector<uvm_reg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_fields shall return the fields in the registers instantiated in this block. If argument
hier is set to true, it recursively includes the fields of the registers in the sub-blocks.

15.1.4.11 get_memories

void get_memories(std::vector<uvm_mem*>& mems,

203
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_hier_e hier = UVM_HIER) const;

The member function get_memories shall return the memories instantiated in this block. If argument hier is
set to true, it recursively includes the memories in the sub-blocks.

Note that memories may be located in different and/or multiple address maps. To get the memories in a specific
address map, use member function uvm_reg_map::get_memories (see Section 15.2.4.15).

15.1.4.12 get_virtual_registers

void get_virtual_registers(std::vector<uvm_vreg*>& regs,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_virtual_registers shall return the virtual registers instantiated in this block. If
argument hier is set to true, it recursively includes the virtual registers in the sub-blocks.

15.1.4.13 get_virtual_fields

void get_virtual_fields(std::vector<uvm_vreg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_virtual_fields shall return the virtual fields from the virtual registers instantiated
in this block. If argument hier is set to true, it recursively includes the virtual fields in the virtual registers
in the sub-blocks.

15.1.4.14 get_block_by_name

uvm_reg_block* get_block_by_name(const std::string& name) const;

The member function get_block_by_name shall search for the sub-block with the specified simple name. The
argument name is the simple name of the block, not the hierarchical name. If no block with that name is found
in this block, the sub-blocks are searched for a block of that name and the first one to be found is returned. If
no blocks are found, the member function shall return NULL.

15.1.4.15 get_map_by_name

uvm_reg_map* get_map_by_name(const std::string& name) const;

The member function get_map_by_name shall search for an address map with the specified simple name.
The argument name is the simple name of the address map, not the hierarchical name. If no map with that
name is found in this block, the sub-blocks are searched for a map of that name and the first one to be found
is returned. If no address maps are found, the member function shall return NULL.

15.1.4.16 get_reg_by_name

uvm_reg* get_reg_by_name(const std::string& name) const;

The member function get_reg_by_name shall search for a register with the specified simple name. The
argument name is the simple name of the register, not the hierarchical name. If no register with that name is
found in this block, the sub-blocks are searched for a register of that name and the first one to be found is
returned. If no registers are found, the member function shall return NULL.

204
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.1.4.17 get_field_by_name

uvm_reg_field* get_field_by_name(const std::string& name) const;

The member function get_field_by_name shall search for the field with the specified simple name. The
argument name is the simple name of the field, not the hierarchical name. If no field with that name is found
in this block, the sub-blocks are searched for a field of that name and the first one to be found is returned. If
no fields are found, the member function shall return NULL.

15.1.4.18 get_mem_by_name

uvm_mem* get_mem_by_name(const std::string& name) const;

The member function get_mem_by_name shall search for the memory with the specified simple name. The
argument name is the simple name of the memory, not the hierarchical name. If no memory with that name
is found in this block, the sub-blocks are searched for a memory of that name and the first one to be found is
returned. If no memories are found, the member function shall return NULL.

15.1.4.19 get_vreg_by_name

uvm_vreg* get_vreg_by_name(const std::string& name) const;

The member function get_vreg_by_name shall search for the virtual register with the specified simple name.
The argument name is the simple name of the virtual register, not the hierarchical name. If no virtual register
with that name is found in this block, the sub-blocks are searched for a virtual register of that name and the
first one to be found is returned. If no virtual registers are found, the member function shall return NULL.

15.1.4.20 get_vfield_by_name

uvm_vreg_field* get_vfield_by_name(const std::string& name) const;

The member function get_vfield_by_name shall search for the virtual field with the specified simple name.
The argument name is the simple name of the virtual field, not the hierarchical name. If no virtual field with
that name is found in this block, the sub-blocks are searched for a virtual field of that name and the first one
to be found is returned. If no virtual fields are found, the member function shall return NULL.

15.1.5 Coverage

NOTE—Functional coverage is not yet available in UVM-SystemC.

15.1.5.1 build_coverage

protected: uvm_reg_cvr_t build_coverage(uvm_reg_cvr_t models);

The member function build_coverage shall check which of the specified coverage model needs to be built in
this instance of the block abstraction class, as specified by calls to uvm_reg::include_coverage. Models are
specified by adding the symbolic value of individual coverage model as defined in uvm_coverage_model_e.
The member function returns the sum of all coverage models to be built in the block model.

15.1.5.2 add_coverage

protected: virtual void add_coverage(uvm_reg_cvr_t models);

205
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function add_coverage shall specify that additional coverage models are available. Add the
specified coverage model to the coverage models available in this class. models are specified by adding the
symbolic value of individual coverage model as defined in uvm_coverage_model_e. This member function
shall be called only in the constructor of subsequently derived classes.

15.1.5.3 has_coverage

bool has_coverage(uvm_reg_cvr_t models) const;

The member function has_coverage shall return true if the block abstraction class contains a coverage model
for all of the models specified. Models are specified by adding the symbolic value of individual coverage
model as defined in uvm_coverage_model_e.

15.1.5.4 set_coverage

uvm_reg_cvr_t set_coverage(uvm_reg_cvr_t is_on);

The member function set_coverage shall specify the collection of functional coverage measurements for this
block and all blocks, registers, fields and memories within it. The functional coverage measurement is turned on
for every coverage model specified using uvm_coverage_model_e symbolic identifiers. Multiple functional
coverage models can be specified by adding the functional coverage model identifiers. All other functional
coverage models are turned off. The member function returns the sum of all functional coverage models whose
measurements were previously on. This member function can only control the measurement of functional
coverage models that are present in the various abstraction classes, then enabled during construction. See
Section 15.1.5.3 to identify the available functional coverage models.

15.1.5.5 get_coverage

virtual bool get_coverage(uvm_reg_cvr_t is_on = UVM_CVR_ALL) const;

The member function get_coverage shall returns true if measurement for all of the specified functional
coverage models are currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See Section 15.1.5.4 for more details.

15.1.5.6 sample

protected: virtual void sample(uvm_reg_addr_t offset,
 bool is_read,
 uvm_reg_map* map);

The member function sample shall specify the functional coverage measurement method.

This member function is invoked by the block abstraction class whenever an address within one of its address
map is successfully read or written. The specified offset is the offset within the block, not an absolute address.
This member function may be extended by the abstraction class generator to perform the required sampling
in any provided functional coverage model.

15.1.5.7 sample_values

void sample_values();

206
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function sample_values shall specify the functional coverage measurement method for field
values.

This member function is invoked by the user or by the member function uvm_reg_block::sample_values of
the parent block to trigger the sampling of the current field values in the block-level functional coverage model.
It recursively invokes the member functions uvm_reg_block::sample_values and uvm_reg::sample_values
in the blocks and registers in this block. This member function may be extended by the abstraction class
generator to perform the required sampling in any provided field-value functional coverage model. If this
member function is extended, it shall call the member function sample_values of its base class.

15.1.6 Access

15.1.6.1 get_default_path

uvm_path_e get_default_path() const;

The member function get_default_path shall return the default access path for this block.

15.1.6.2 reset

void reset(const std::string& kind = "HARD");

The member function reset shall set the mirror value of all registers in the block and sub-blocks to the reset
value corresponding to the specified reset event (see also Section 15.5.5.4). This member function does not
actually set the value of the registers in the design, only the values mirrored in their corresponding mirror.

15.1.6.3 needs_update

bool needs_update();

The member function needs_update shall check if DUT registers need to be written. If a mirror value has been
modified in the abstraction model without actually updating the actual register (either through randomization
or via the member function uvm_reg::set, the mirror and state of the registers are outdated. The corresponding
registers in the DUT need to be updated. This member function returns true if the state of at least one register in
the block or sub-blocks needs to be updated to match the mirrored values. The mirror values, or actual content
of registers, are not modified. For additional information, see Section 15.1.6.4.

15.1.6.4 update

virtual void update(uvm_status_e status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function update shall perform a batch update of the register. Using the minimum number of write
operations, updates the registers in the design to match the mirrored values in this block and sub-blocks. The
update can be performed using the physical interfaces (front-door access) or back-door accesses. This member
function performs the reverse operation of uvm_reg_block::mirror (see Section 15.1.6.5).

207
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.1.6.5 mirror

virtual void mirror(uvm_status_e status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function mirror shall perform an update the mirrored values. Read all of the registers in this block
and sub-blocks and update their mirror values to match their corresponding values in the design. The mirroring
can be performed using the physical interfaces (front-door access) or back-door accesses. If the check argument
is specified as UVM_CHECK, an error message is issued if the current mirrored value does not match the
actual value in the design. This member function performs the reverse operation of uvm_reg_block::update
(see Section 15.1.6.4).

15.1.6.6 write_reg_by_name

virtual void write_reg_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write_reg_by_name shall write the named register. Equivalent to get_reg_by_name
(see Section 15.1.4.16) followed by uvm_reg::write (see Section 15.4.5.9).

15.1.6.7 read_reg_by_name

virtual void read_reg_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read_reg_by_name shall Read the named register. Equivalent to get_reg_by_name
(see Section 15.1.4.16) followed by uvm_reg::read (see Section 15.4.5.10).

15.1.6.8 write_mem_by_name

virtual void write_mem_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_addr_t offset,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

208
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function write_mem_by_name shall write the named memory. Equivalent to
get_mem_by_name (see Section 15.1.4.18) followed by uvm_mem::write (see Section 15.6.5.1).

15.1.6.9 read_mem_by_name

virtual void read_mem_by_name(uvm_status_e status,
 const std::string& name,
 uvm_reg_addr_t offset,
 uvm_reg_data_t data,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read_mem_by_name shall eead the named memory. Equivalent to get_mem_by_name
(see Section 15.1.4.18) followed by uvm_mem::read (see Section 15.6.5.2).

15.1.7 Backdoor

NOTE—Backdoor access is not yet available in UVM-SystemC.

15.1.7.1 get_backdoor

uvm_reg_backdoor* get_backdoor(bool inherited = true) const;

The member function get_backdoor shall return the user-defined backdoor for all registers in this block, unless
overridden by a backdoor set in a lower-level block or in the register itself.

If no argument is given or argument inherited is set to true, the member function returns the backdoor of the
parent block if none have been specified for this block.

15.1.7.2 set_backdoor

void set_backdoor(uvm_reg_backdoor* bkdr,
 const std::string& fname = "",
 int lineno = 0);

The member function set_backdoor shall specify the user-defined backdoor for all registers in this block.

It defines the backdoor mechanism for all registers instantiated in this block and subblocks, unless overridden
by a definition in a lower-level block or register.

15.1.7.3 clear_hdl_path

void clear_hdl_path(const std::string& kind = "RTL");

The member function clear_hdl_path shall remove any previously specified HDL path to the block instance
for the specified design abstraction.

15.1.7.4 add_hdl_path

void add_hdl_path(const std::string& path, const std::string& kind = "RTL");

209
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function add_hdl_path shall add the specified HDL path to the block instance for the specified
design abstraction. This member function may be called more than once for the same design abstraction if the
block is physically duplicated in the design abstraction.

15.1.7.5 has_hdl_path

bool has_hdl_path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the block instance has a HDL path defined for the
specified design abstraction. If no design abstraction is specified, it uses the default design abstraction specified
for this block or the nearest block ancestor with a specified default design abstraction.

15.1.7.6 get_hdl_path

void get_hdl_path(std::vector<std::string>& paths, const std::string& kind = "") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
in the block instance. It returns only the component of the HDL paths that corresponds to the block, not a full
hierarchical path. If no design abstraction is specified, the default design abstraction for this block is used.

15.1.7.7 get_full_hdl_path

void get_full_hdl_path(std::vector<std::string>& paths,
 std::string kind = "",
 const std::string& separator = ".") const;

The member function get_full_hdl_path shall return the full hierarchical HDL path(s) defined for the specified
design abstraction in the block instance. There may be more than one path returned even if only one path was
defined for the block instance, if any of the parent components have more than one path defined for the same
design abstraction. If no design abstraction is specified, the default design abstraction for each ancestor block
is used to get each incremental path.

15.1.7.8 set_default_hdl_path

void set_default_hdl_path(const std::string& kind);

The member function set_default_hdl_path shall specify the default design abstraction for this block instance.

15.1.7.9 get_default_hdl_path

std::string get_default_hdl_path() const;

The member function get_default_hdl_path shall return the default design abstraction for this block instance.
If a default design abstraction has not been explicitly set for this block instance, it returns the default design
abstraction for the nearest block ancestor. It returns an empty string if no default design abstraction has been
specified.

15.1.7.10 set_hdl_path_root

void set_hdl_path_root(const std::string& path, std::string kind = "RTL");

210
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_hdl_path_root shall specify the specified path as the absolute HDL path to the block
instance for the specified design abstraction. This absolute root path is prepended to all hierarchical paths under
this block. The HDL path of any ancestor block is ignored. This member function overrides any incremental
path for the same design abstraction specified using add_hdl_path.

15.1.7.11 is_hdl_path_root

bool is_hdl_path_root(std::string kind = "") const;

The member function is_hdl_path_root shall return true if an absolute HDL path to the block instance for
the specified design abstraction has been defined. If no design abstraction is specified, the default design
abstraction for this block is used.

15.1.8 Data members (variables)

15.1.8.1 default_map

uvm_reg_map* default_map;

The data member default_map shall define the default address map for this block, to be used when no address
map is specified for a register operation and that register is accessible from more than one address map.

It is also the implicit address map for a block with a single, unnamed address map because it has only one
physical interface.

15.1.8.2 default_path

uvm_path_e default_path;

The data member default_path shall define the default access path for the registers and memories in this block.

15.2 uvm_reg_map

This class uvm_reg_map shall represent an address map. An address map is a collection of registers and
memories accessible via a specific physical interface. Address maps can be composed into higher-level address
maps.

15.2.1 Class definition

namespace uvm {

 class uvm_reg_map : public uvm_object
 {
 public:

 // Constructor
 explicit uvm_reg_map(const std::string& name = "uvm_reg_map");

 // Group: Initialization

 void configure(uvm_reg_block* parent,
 uvm_reg_addr_t base_addr,
 unsigned int n_bytes,
 uvm_endianness_e endian,
 bool byte_addressing = true);

 virtual void add_reg(uvm_reg* rg,

211
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_addr_t offset,
 const std::string& rights = "RW",
 bool unmapped = false,
 uvm_reg_frontdoor* frontdoor = NULL);

 virtual void add_mem(uvm_mem* mem,
 uvm_reg_addr_t offset,
 const std::string& rights = "RW",
 bool unmapped = false,
 uvm_reg_frontdoor* frontdoor = NULL);

 virtual void add_submap(uvm_reg_map* child_map,
 uvm_reg_addr_t offset);

 virtual void set_sequencer(uvm_sequencer_base* sequencer,
 uvm_reg_adapter* adapter = NULL);

 virtual void set_submap_offset(uvm_reg_map* submap,
 uvm_reg_addr_t offset);

 virtual uvm_reg_addr_t get_submap_offset(const uvm_reg_map* submap) const;
 virtual void set_base_addr(uvm_reg_addr_t offset);
 virtual void reset(const std::string& kind = "SOFT");

 // Group: Introspection

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_reg_map* get_root_map() const;
 virtual uvm_reg_block* get_parent() const;
 virtual uvm_reg_map* get_parent_map() const;
 virtual uvm_reg_addr_t get_base_addr(uvm_hier_e hier = UVM_HIER) const;
 virtual unsigned int get_n_bytes(uvm_hier_e hier = UVM_HIER) const;
 virtual unsigned int get_addr_unit_bytes() const;
 virtual uvm_endianness_e get_endian(uvm_hier_e hier = UVM_HIER) const;
 virtual uvm_sequencer_base* get_sequencer(uvm_hier_e hier = UVM_HIER) const;
 virtual uvm_reg_adapter* get_adapter(uvm_hier_e hier = UVM_HIER) const;

 virtual void get_submaps(std::vector&<uvm_reg_map*>& maps,
 uvm_hier_e hier = UVM_HIER) const;

 virtual void get_registers(std::vector&<uvm_reg*>& regs,
 uvm_hier_e hier = UVM_HIER) const;

 virtual void get_fields(std::vector&<uvm_reg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

 virtual void get_memories(std::vector&<uvm_mem*>& mems,
 uvm_hier_e hier = UVM_HIER) const;

 virtual void get_virtual_registers(std::vector&<uvm_vreg*>& vregs,
 uvm_hier_e hier = UVM_HIER) const;

 virtual void get_virtual_fields(std::vector&<uvm_vreg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

 virtual int get_physical_addresses(uvm_reg_addr_t base_addr,
 uvm_reg_addr_t mem_offset,
 unsigned int n_bytes,
 std::vector&<uvm_reg_addr_t>& addr) const;

 virtual uvm_reg* get_reg_by_offset(uvm_reg_addr_t offset,
 bool read = true) const;

 virtual uvm_mem* get_mem_by_offset(uvm_reg_addr_t offset) const;

 // Group: Bus Access

 void set_auto_predict(bool on = true);
 bool get_auto_predict() const;
 void set_check_on_read(bool on = true);
 bool get_check_on_read() const;

 virtual void do_bus_write(uvm_reg_item* rw,
 uvm_sequencer_base* sequencer,
 uvm_reg_adapter* adapter);

212
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void do_bus_read(uvm_reg_item* rw,
 uvm_sequencer_base* sequencer,
 uvm_reg_adapter* adapter);

 virtual void do_write(uvm_reg_item* rw);
 virtual void do_read(uvm_reg_item* rw);

 // Group: Backdoor

 static uvm_reg_map* backdoor();

 }; // class uvm_reg_map

} // namespace uvm

15.2.2 Constructor

explicit uvm_reg_map(const std::string& name = "uvm_reg_map");

The constructor shall create an instance of an address map with the specified name.

15.2.3 Initialization

15.2.3.1 configure

void configure(uvm_reg_block* parent,
 uvm_reg_addr_t base_addr,
 unsigned int n_bytes,
 uvm_endianness_e endian,
 bool byte_addressing = true);

The member function configure shall configure this map with the following properties:
— parent: the block in which this map is created and applied.
— base_addr: the base address for this map. All registers, memories, and sub-blocks shall be at offsets

to this address.
— n_bytes: the byte-width of the bus on which this map is used.
— endian: the endian format, see Section 15.16.2.4.
— byte_addressing: specifies whether the address increment is on a per-byte basis. For example,

consecutive memory locations with n_bytes=4 (32-bit bus) are 4 apart: 0, 4, 8, and so on. Default value
is true.

15.2.3.2 add_reg

virtual void add_reg(uvm_reg* rg,
 uvm_reg_addr_t offset,
 const std::string& rights = "RW",
 bool unmapped = false,
 uvm_reg_frontdoor* frontdoor = NULL);

The member function add_reg shall add the specified register instance rg to this address map.

The register is located at the specified address offset from this maps configured base address.

The rights specify the register’s accessibility via this map. Valid values are “RW”, “RO”, and “WO”.
Whether a register field can be read or written depends on both the field’s configured access policy (see
uvm_reg_field::configure, Section 15.5.3.1) and the register’s rights in the map being used to access the field.

213
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The number of consecutive physical addresses occupied by the register depends on the width of the register
and the number of bytes in the physical interface corresponding to this address map.

If unmapped is set to true, the register does not occupy any physical addresses and the base address is ignored.
Unmapped registers require a user-defined frontdoor to be specified.

A register may be added to multiple address maps if it is accessible from multiple physical interfaces. A register
may only be added to an address map whose parent block is the same as the register’s parent block.

15.2.3.3 add_mem

virtual void add_mem(uvm_mem* mem,
 uvm_reg_addr_t offset,
 const std::string& rights = "RW",
 bool unmapped = false,
 uvm_reg_frontdoor* frontdoor = NULL);

The member function add_mem shall add the specified memory instance to this address map. The memory is
located at the specified base address and has the specified access rights (“RW”, “RO” or “WO”). The number
of consecutive physical addresses occupied by the memory depends on the width and size of the memory and
the number of bytes in the physical interface corresponding to this address map.

If argument unmapped is set to true, the memory does not occupy any physical addresses and the base address
is ignored. Unmapped memories require a user-defined frontdoor to be specified.

A memory may be added to multiple address maps if it is accessible from multiple physical interfaces. A
memory may only be added to an address map whose parent block is the same as the memory’s parent block.

15.2.3.4 add_submap

virtual void add_submap(uvm_reg_map* child_map,
 uvm_reg_addr_t offset);

The member function add_submap shall add the specified address map instance to this address map. The
address map is located at the specified base address. The number of consecutive physical addresses occupied
by the submap depends on the number of bytes in the physical interface that corresponds to the submap, the
number of addresses used in the submap and the number of bytes in the physical interface corresponding to
this address map.

An address map may be added to multiple address maps if it is accessible from multiple physical interfaces.
An address map may only be added to an address map in the grandparent block of the address submap.

15.2.3.5 set_sequencer

virtual void set_sequencer(uvm_sequencer_base* sequencer,
 uvm_reg_adapter* adapter = NULL);

The member function set_sequencer shall set the sequencer and adapter associated with this map. This member
function shall be called before starting any sequences based on uvm_reg_sequence.

15.2.3.6 set_submap_offset

virtual void set_submap_offset(uvm_reg_map* submap,
 uvm_reg_addr_t offset);

214
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_submap_offset shall set the offset of the given submap to offset.

15.2.3.7 get_submap_offset

virtual uvm_reg_addr_t get_submap_offset(const uvm_reg_map* submap) const;

The member function get_submap_offset shall return the offset of the given submap.

15.2.3.8 set_base_addr

virtual void set_base_addr(uvm_reg_addr_t offset);

The member function set_base_addr shall set the base address of this map.

15.2.3.9 reset

virtual void reset(const std::string& kind = "SOFT");

The member function reset shall set the mirror value of all registers in this address map and all of its submaps
to the reset value corresponding to the specified reset event (see also Section 15.5.5.4). Does not actually set
the value of the registers in the design, only the values mirrored in their corresponding mirror. Note that, unlike
the other member functions reset, the default reset event for this member functions is “SOFT”.

15.2.4 Introspection

15.2.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this address map.

15.2.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this address map. The base of the
hierarchical name is the root block.

15.2.4.3 get_root_map

virtual uvm_reg_map* get_root_map() const;

The member function get_root_map shall return the top-most address map where this address map is
instantiated. It corresponds to the externally-visible address map that can be accessed by the verification
environment.

15.2.4.4 get_parent

virtual uvm_reg_block* get_parent() const;

The member function get_parent shall return the block that is the parent of this address map.

215
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.2.4.5 get_parent_map

virtual uvm_reg_map* get_parent_map() const;

The member function get_parent_map shall return the address map in which this address map is mapped. The
member function returns NULL if this is a top-level address map.

15.2.4.6 get_base_addr

virtual uvm_reg_addr_t get_base_addr(uvm_hier_e hier = UVM_HIER) const;

The member function get_base_addr shall return the base offset address for this map. If this map is the root
map, the base address is that set with the argument base_addr to uvm_reg_block::create_map. If this map is
a submap of a higher-level map, the base address is offset given this submap by the parent map. See Section
15.2.3.6.

15.2.4.7 get_n_bytes

virtual unsigned int get_n_bytes(uvm_hier_e hier = UVM_HIER) const;

The member function get_n_bytes shall return the width in bytes of the bus associated with this map. If the
argument hier is UVM_HIER, it returns the effective bus width relative to the system level. The effective bus
width is the narrowest bus width from this map to the top-level root map. Each bus access shall be limited
to this bus width.

15.2.4.8 get_addr_unit_bytes

virtual unsigned int get_addr_unit_bytes() const;

The member function get_addr_unit_bytes shall return the number of bytes in the smallest addressable unit
in the map. It shall returns 1 if the address map was configured using byte-level addressing, otherwise it shall
return get_n_bytes (see Section 15.2.4.7).

15.2.4.9 get_endian

virtual uvm_endianness_e get_endian(uvm_hier_e hier = UVM_HIER) const;

The member function get_endian shall return the endianness of the bus associated with this map (see Section
15.16.2.4). If argument hier is set to UVM_HIER, it shall return the system-level endianness.

15.2.4.10 get_sequencer

virtual uvm_sequencer_base* get_sequencer(uvm_hier_e hier = UVM_HIER) const;

The member function get_sequencer shall return the sequencer for the bus associated with this map. If
argument hier is set to UVM_HIER, it shall get the sequencer for the bus at the system-level. (See Section
15.2.3.5).

15.2.4.11 get_adapter

virtual uvm_reg_adapter* get_adapter(uvm_hier_e hier = UVM_HIER) const;

216
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_adapter shall return the bus adapter for the bus associated with this map. If argument
hier is set to UVM_HIER, it shall get the adapter for the bus used at the system-level. (See Section 15.2.3.5).

15.2.4.12 get_submaps

virtual void get_submaps(std::vector&<uvm_reg_map*>& maps,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_submaps shall return the address maps instantiated in this address map. If argument
hier is set to UVM_HIER, it recursively includes the address maps in the sub-maps.

15.2.4.13 get_registers

virtual void get_registers(std::vector&<uvm_reg*>& regs,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_registers shall return the registers instantiated in this address map. If argument hier
is set to UVM_HIER, it recursively includes the registers in the sub-maps.

15.2.4.14 get_fields

virtual void get_fields(std::vector&<uvm_reg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_fields shall return the fields in the registers instantiated in this address map. If
argument hier is set to UVM_HIER, it recursively includes the fields of the registers in the sub-maps.

15.2.4.15 get_memories

virtual void get_memories(std::vector&<uvm_mem*>& mems,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_memories shall return the memories instantiated in this address map. If argument
hier is set to UVM_HIER, it recursively includes the memories in the sub-maps.

15.2.4.16 get_virtual_registers

virtual void get_virtual_registers(std::vector&<uvm_vreg*>& vregs,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_virtual_registers shall return the virtual registers instantiated in this address map.
If argument hier is set to UVM_HIER, it recursively includes the virtual registers in the sub-maps.

15.2.4.17 get_virtual_fields

virtual void get_virtual_fields(std::vector&<uvm_vreg_field*>& fields,
 uvm_hier_e hier = UVM_HIER) const;

The member function get_virtual_fields shall return the virtual fields from the virtual registers instantiated
in this address map. If argument hier is set to UVM_HIER, it recursively includes the virtual fields in the
virtual registers in the sub-maps.

217
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.2.4.18 get_physical_addresses

virtual int get_physical_addresses(uvm_reg_addr_t base_addr,
 uvm_reg_addr_t mem_offset,
 unsigned int n_bytes,
 std::vector&<uvm_reg_addr_t>& addr) const;

The member function get_physical_addresses shall translate a local address into external addresses.

It shall identify the sequence of addresses that need to be accessed physically to access the specified number of
bytes at the specified address within this address map. It returns the number of bytes of valid data in each access.

Argument addr shall return a list of address in little endian order, with the granularity of the toplevel address
map.

A register is specified using a base address with mem_offset as 0. A location within a memory is specified
using the base address of the memory and the index of the location within that memory.

15.2.4.19 get_reg_by_offset

virtual uvm_reg* get_reg_by_offset(uvm_reg_addr_t offset,
 bool read = true) const;

The member function get_reg_by_offset shall return the register mapped at the given offset. It shall identify
the register located at the specified offset within this address map for the specified type of access. The member
function shall return NULL if no such register is found.

The model needs to be locked using member function uvm_reg_block::lock_model to enable this
functionality (see Section 15.1.3.6).

15.2.4.20 get_mem_by_offset

virtual uvm_mem* get_mem_by_offset(uvm_reg_addr_t offset) const;

The member function get_mem_by_offset shall return the memory mapped at the given offset. It shall identify
the memory located at the specified offset within this address map. The offset may refer to any memory location
in that memory. The member function shall return NULL if no such memory is found.

The model needs to be locked using member function uvm_reg_block::lock_model to enable this
functionality (see Section 15.1.3.6).

15.2.5 Bus access

15.2.5.1 set_auto_predict

void set_auto_predict(bool on = true);

The member function set_auto_predict shall specify the auto-predict mode for this map.

When the argument on is set to true, the register model shall automatically update its mirror (what it thinks
should be in the DUT) immediately after any bus read or write operation via this map.

218
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Before a uvm_reg::write (see Section 15.4.5.9) or uvm_reg::read (see Section 15.4.5.10) operation returns,
the register’s member function uvm_reg::predict (see Section 15.4.5.15) is called to update the mirrored value
in the register.

When the argument on is set to false, bus reads and writes via this map do not automatically update the
mirror. For real-time updates to the mirror in this mode, an application shall connect a uvm_reg_predictor
(see Section 16.5) instance to the bus monitor. The predictor takes observed bus transactions from the bus
monitor, looks up the associated uvm_reg register given the address, then calls that register’s member function
uvm_reg::predict. While more complex, this mode shall capture all register read/write activity, including that
not directly descendant from calls to uvm_reg::write and uvm_reg::read.

By default, auto-prediction is turned off.

15.2.5.2 get_auto_predict

bool get_auto_predict() const;

The member function get_auto_predict shall return the auto-predict mode setting for this map.

15.2.5.3 set_check_on_read

void set_check_on_read(bool on = true);

The member function set_check_on_read shall specify the check-on-read mode for his map and all of its
submaps.

When the argument on is set to true, the register model shall automatically check any value read
back from a register or field against the current value in its mirror and report any discrepancy. This
effectively combines the functionality of the member functions uvm_reg::read (see Section 15.4.5.10) and
uvm_reg::mirror(UVM_CHECK) (see Section 15.4.5.14). This mode is useful when the register model is
used passively.

When the argument on is set to false, no check is made against the mirrored value.

At the end of the read operation, the mirror value is updated based on the value that was read regardless of
this mode setting.

By default, auto-prediction is turned off.

15.2.5.4 get_check_on_read

bool get_check_on_read() const;

The member function get_check_on_read shall return the check-on-read mode setting for this map.

15.2.5.5 do_bus_write

virtual void do_bus_write(uvm_reg_item* rw,
 uvm_sequencer_base* sequencer,
 uvm_reg_adapter* adapter);

The member function do_bus_write shall perform a bus write operation.

219
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.2.5.6 do_bus_read

virtual void do_bus_read(uvm_reg_item* rw,
 uvm_sequencer_base* sequencer,
 uvm_reg_adapter* adapter);

The member function do_bus_read shall perform a bus read operation.

15.2.5.7 do_write

virtual void do_write(uvm_reg_item* rw);

The member function do_write shall perform a write operation.

15.2.5.8 do_read

virtual void do_read(uvm_reg_item* rw);

The member function do_read shall perform a read operation.

15.2.6 Backdoor

NOTE—Backdoor access is not yet available in UVM-SystemC.

15.2.6.1 backdoor

static uvm_reg_map* backdoor();

The member function backdoor shall return the backdoor pseudo-map singleton. This pseudo-map is used to
specify or configure the backdoor instead of a real address map.

15.3 uvm_reg_file

The class uvm_reg_file defines the abstraction base class for a register file. A register file is a collection of
register files and registers used to create regular repeated structures.

15.3.1 Class definition

namespace uvm {

 class uvm_reg_file : public uvm_object
 {
 public:

 // Constructor
 explicit uvm_reg_file(const std::string& name = "");

 // Group: Initialization

 void configure(uvm_reg_block* blk_parent,
 uvm_reg_file* regfile_parent,
 const std::string& hdl_path = "");

 // Group: Introspection

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_reg_block* get_parent() const;

220
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual uvm_reg_file* get_regfile() const;

 // Group: Backdoor

 void clear_hdl_path(const std::string& kind = "RTL");
 void add_hdl_path(const std::string& path, const std::string& kind = "RTL");
 bool has_hdl_path(const std::string& kind = "") const;
 void get_hdl_path(std::vector<std::string>& paths, const std::string& kind = "") const;

 void get_full_hdl_path(std::vector<std::string>& paths,
 const std::string& kind = "",
 const std::string& separator = ".") const;

 void set_default_hdl_path(const std::string& kind);
 std::string get_default_hdl_path() const;

 }; // class uvm_reg_file

} // namespace uvm

15.3.2 Constructor

uvm_reg_block(const std::string& name = "",
 int has_coverage = UVM_NO_COVERAGE);

The constructor shall create an instance of a register file abstraction class with the specified name.

15.3.3 Initialization

15.3.3.1 configure

void configure(uvm_reg_block* blk_parent,
 uvm_reg_file* regfile_parent,
 const std::string& hdl_path = "");

The member function configure shall specify the parent block and register file of the register file instance. If
the register file is instantiated in a block, regfile_parent is specified as NULL. If the register file is instantiated
in a register file, blk_parent shall be the block parent of that register file and regfile_parent is specified as
that register file.

If the register file corresponds to a hierarchical RTL structure, its contribution to the HDL path is specified
as the hdl_path. Otherwise, the register file does not correspond to a hierarchical RTL structure (e.g. it is
physically flattened) and does not contribute to the hierarchical HDL path of any contained registers.

15.3.4 Introspection

15.3.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this register file.

15.3.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this register file. The base of the
hierarchical name is the root block.

221
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.3.4.3 get_parent

virtual uvm_reg_block* get_parent() const;

The member function get_parent shall return the parent block.

15.3.4.4 get_regfile

virtual uvm_reg_file* get_regfile() const;

The member function get_regfile shall return the parent register file. It returns NULL if this register file is
instantiated in a block.

15.3.5 Backdoor

NOTE—Backdoor access is not yet available in UVM-SystemC.

15.3.5.1 clear_hdl_path

void clear_hdl_path(const std::string& kind = "RTL");

The member function clear_hdl_path shall remove any previously specified HDL path to the register file
instance for the specified design abstraction.

15.3.5.2 add_hdl_path

void add_hdl_path(const std::string& path, const std::string& kind = "RTL");

The member function add_hdl_path shall add the specified HDL path to the register file instance for the
specified design abstraction. This member function may be called more than once for the same design
abstraction if the register file is physically duplicated in the design abstraction.

15.3.5.3 has_hdl_path

bool has_hdl_path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the register file instance has a HDL path defined for
the specified design abstraction. If no design abstraction is specified, it uses the default design abstraction
specified for the nearest enclosing register file or block If no design abstraction is specified, the default design
abstraction for this register file is used.

15.3.5.4 get_hdl_path

void get_hdl_path(std::vector<std::string>& paths, const std::string& kind = "") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
in the register file instance. If no design abstraction is specified, it uses the default design abstraction specified
for the nearest enclosing register file or block. It returns only the component of the HDL paths that corresponds
to the register file, not a full hierarchical path If no design abstraction is specified, the default design abstraction
for this register file is used.

222
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.3.5.5 get_full_hdl_path

void get_full_hdl_path(std::vector<std::string>& paths,
 const std::string& kind = "",
 const std::string& separator = ".") const;

The member function get_full_hdl_path shall return the full hierarchical HDL path(s) defined for the specified
design abstraction in the register file instance. If no design abstraction is specified, uses the default design
abstraction specified for the nearest enclosing register file or block. There may be more than one path returned
even if only one path was defined for the register file instance, if any of the parent components have more
than one path defined for the same design abstraction. If no design abstraction is specified, the default design
abstraction for each ancestor register file or block is used to get each incremental path.

15.3.5.6 set_default_hdl_path

void set_default_hdl_path(const std::string& kind);

The member function set_default_hdl_path shall specify the default design abstraction for this register file
instance.

15.3.5.7 get_default_hdl_path

std::string get_default_hdl_path() const;

The member function get_default_hdl_path shall return the default design abstraction for this register file
instance. If a default design abstraction has not been explicitly set for this register file instance, it returns the
default design abstraction for the nearest register file or block ancestor. It returns an empty string if no default
design abstraction has been specified.

15.4 uvm_reg

The class uvm_reg defines the register abstraction base class. A register represents a set of fields that are
accessible as a single entity. A register may be mapped to one or more address maps, each with different access
rights and policy.

15.4.1 Class definition

namespace uvm {

 class uvm_reg : public uvm_object
 {
 public:

 uvm_reg(const std::string& name,
 unsigned int,
 int has_coverage);

 // Group: Initialization

 void configure(uvm_reg_block* blk_parent,
 uvm_reg_file* regfile_parent = NULL,
 const std::string& hdl_path = "");

 void set_offset(uvm_reg_map* map,
 uvm_reg_addr_t offset,
 bool unmapped = false);

 // Group: Introspection

223
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_reg_block* get_parent() const;
 virtual uvm_reg_file* get_regfile() const;
 virtual int get_n_maps() const;
 bool is_in_map(uvm_reg_map* map) const;
 virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;
 virtual std::string get_rights(uvm_reg_map* map = NULL) const;
 virtual unsigned int get_n_bits() const;
 virtual unsigned int get_n_bytes() const;
 static unsigned int get_max_size();
 virtual void get_fields(std::vector<uvm_reg_field*>& fields) const;
 virtual uvm_reg_field* get_field_by_name(const std::string& name) const;
 virtual uvm_reg_addr_t get_offset(uvm_reg_map* map = NULL) const;
 virtual uvm_reg_addr_t get_address(const uvm_reg_map* map = NULL) const;

 virtual int get_addresses(std::vector<uvm_reg_addr_t>& addr,
 const uvm_reg_map* map = NULL) const;

 // Group: Access

 virtual void set(uvm_reg_data_t value,
 const std::string& fname = "",
 int lineno = 0);

 virtual uvm_reg_data_t get(const std::string& fname = "",
 int lineno = 0) const;

 virtual uvm_reg_data_t get_mirrored_value(const std::string& fname = "",
 int lineno = 0) const;

 virtual bool needs_update() const;
 virtual void reset(const std::string& kind = "HARD");
 virtual uvm_reg_data_t get_reset(const std::string& kind = "HARD") const;

 virtual bool has_reset(const std::string& kind = "HARD",
 bool do_delete = false);

 virtual void set_reset(uvm_reg_data_t value,
 const std::string& kind = "HARD");

 virtual void write(uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read(uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void poke(uvm_status_e& status,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void peek(uvm_status_e& status,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

224
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void update(uvm_status_e& status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void mirror(uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual bool predict(uvm_reg_data_t value,
 uvm_reg_byte_en_t be = -1,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_path_e path = UVM_FRONTDOOR,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",
 int lineno = 0);

 bool is_busy() const;

 // Group: Frontdoor

 void set_frontdoor(uvm_reg_frontdoor* ftdr,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",
 int lineno = 0);

 uvm_reg_frontdoor* get_frontdoor(uvm_reg_map* map = NULL) const;

 // Group: Backdoor

 void set_backdoor(uvm_reg_backdoor* bkdr,
 const std::string& fname = "",
 int lineno = 0);

 uvm_reg_backdoor* get_backdoor(bool inherited = true) const;

 void clear_hdl_path(const std::string& kind = "RTL");

 void add_hdl_path(std::vector<uvm_hdl_path_slice> slices,
 const std::string& kind = "RTL");

 void add_hdl_path_slice(const std::string& name,
 int offset,
 int size,
 bool first = false,
 const std::string& kind = "RTL");

 bool has_hdl_path(const std::string& kind = "") const;

 void get_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "") const;

 void get_hdl_path_kinds(std::vector<std::string>& kinds) const;

 void get_full_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "",
 const std::string& separator = ".") const;

 virtual void backdoor_read(uvm_reg_item* rw);

 virtual void backdoor_write(uvm_reg_item* rw);

 virtual void backdoor_watch();

 // Group: Coverage

 static void include_coverage(const std::string& scope,

225
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_cvr_t models,
 uvm_object* accessor = NULL);

 protected:
 uvm_reg_cvr_t build_coverage(uvm_reg_cvr_t models);
 virtual void add_coverage(uvm_reg_cvr_t models);

 public:
 virtual bool has_coverage(uvm_reg_cvr_t models) const;
 virtual uvm_reg_cvr_t set_coverage(uvm_reg_cvr_t is_on);
 virtual bool get_coverage(uvm_reg_cvr_t is_on) const;

 protected:
 virtual void sample(uvm_reg_data_t data,
 uvm_reg_data_t byte_en,
 bool is_read,
 uvm_reg_map* map);

 public:
 virtual void sample_values();

 // Group: Callbacks

 virtual void pre_write(uvm_reg_item* rw);
 virtual void post_write(uvm_reg_item* rw);
 virtual void pre_read(uvm_reg_item* rw);
 virtual void post_read(uvm_reg_item* rw);

 }; // class uvm_reg

} // namespace uvm

15.4.2 Constructor

uvm_reg(const std::string& name,
 unsigned int,
 int has_coverage);

The constructor shall create an instance of a register abstraction class with the specified name. The argument
n_bits specifies the total number of bits in the register. Not all bits need to be implemented. This value is
usually a multiple of 8. The argument has_coverage specifies which functional coverage models are present
in the extension of the register abstraction class. Multiple functional coverage models may be specified by
adding their symbolic names, as defined by the uvm_coverage_model_e type (see Section 15.16.2.9).

15.4.3 Initialization

15.4.3.1 configure

void configure(uvm_reg_block* blk_parent,
 uvm_reg_file* regfile_parent = NULL,
 const std::string& hdl_path = "");

The member function configure shall specify the parent block of this register. It may also set a parent register
file for this register using argument regfile_parent.

If the register is implemented in a single HDL variable, its name is specified as the hdl_path. Otherwise, if
the register is implemented as a concatenation of variables (usually one per field), then the HDL path shall be
specified using the member functions add_hdl_path or add_hdl_path_slice.

15.4.3.2 set_offset

void set_offset(uvm_reg_map* map,
 uvm_reg_addr_t offset,
 bool unmapped = false);

226
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_offset shall specify the offset of a register within an address map. It shall use the
member function uvm_reg_map::add_reg (see Section 15.2.3.2). This member function is used to modify
that offset dynamically.

Modifying the offset of a register makes the register model diverge from the specification that was used to
create it.

15.4.4 Introspection

15.4.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this register.

15.4.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this register. The base of the
hierarchical name is the root block.

15.4.4.3 get_parent

virtual uvm_reg_block* get_parent() const;

The member function get_parent shall return the parent block.

15.4.4.4 get_regfile

virtual uvm_reg_file* get_regfile() const;

The member function get_regfile shall return the parent register file. It returns NULL if this register file is
instantiated in a block.

15.4.4.5 get_n_maps

virtual int get_n_maps() const;

The member function get_n_maps shall return the number of address maps this register is mapped in.

15.4.4.6 is_in_map

bool is_in_map(uvm_reg_map* map) const;

The member function is_in_map shall return true if this register is in the specified address map, otherwise
return false.

15.4.4.7 get_maps

virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;

227
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_maps shall return all of the address maps where this register is mapped.

15.4.4.8 get_rights

virtual std::string get_rights(uvm_reg_map* map = NULL) const;

The member function get_rights shall return the accessibility (“RW, “RO”, or “WO”) of this register in the
given map.

If no address map is specified and the register is mapped in only one address map, that address map is used. If
the register is mapped in more than one address map, the default address map of the parent block is used.

Whether a register field can be read or written depends on both the field’s configured access policy (see Section
15.5.3.1) and the register’s accessibility rights in the map being used to access the field.

If an address map is specified and the register is not mapped in the specified address map, an error message
is issued and “RW” is returned.

15.4.4.9 get_n_bits

virtual unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in bits, of this register.

15.4.4.10 get_n_bytes

virtual unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the width, in bytes, of this register. Rounds up to next whole
byte if register is not a multiple of 8.

15.4.4.11 get_max_size

static unsigned int get_max_size();

The member function get_max_size shall return the maximum width, in bits, of all registers.

15.4.4.12 get_fields

virtual void get_fields(std::vector<uvm_reg_field*>& fields) const;

The member function get_fields shall return the fields in this register. Fields are ordered from least-significant
position to most-significant position within the register.

15.4.4.13 get_field_by_name

virtual uvm_reg_field* get_field_by_name(const std::string& name) const;

The member function get_field_by_name shall return the named field in this register. The member function
shall find a field with the specified name in this register and returns its abstraction class. If no fields are found,
it returns NULL.

228
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.4.14 get_offset

virtual uvm_reg_addr_t get_offset(uvm_reg_map* map = NULL) const;

The member function get_offset shall return the offset of this register in an address map. If no address map
is specified and the register is mapped in only one address map, that address map is used. If the register is
mapped in more than one address map, the default address map of the parent block is used. If an address map
is specified and the register is not mapped in the specified address map, an error message is issued.

15.4.4.15 get_address

virtual uvm_reg_addr_t get_address(const uvm_reg_map* map = NULL) const;

The member function get_address shall return the base external physical address of this register if accessed
through the specified address map.

If no address map is specified and the register is mapped in only one address map, that address map is used. If
the register is mapped in more than one address map, the default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address map, an error message
is issued.

15.4.4.16 get_addresses

virtual int get_addresses(std::vector<uvm_reg_addr_t>& addr,
 const uvm_reg_map* map = NULL) const;

The member function get_addresses shall identify the external physical address(es) of a memory location.
It computes all of the external physical addresses that needs to be accessed to completely read or write the
specified location in this memory. The addressed are specified in little endian order. Returns the number of
bytes transferred on each access. If no address map is specified and the memory is mapped in only one address
map, that address map is used. If the memory is mapped in more than one address map, the default address
map of the parent block is used. If an address map is specified and the memory is not mapped in the specified
address map, an error message is issued.

15.4.5 Access

15.4.5.1 set

virtual void set(uvm_reg_data_t value,
 const std::string& fname = "",
 int lineno = 0);

The member function set shall specify the desired value of the fields in the register to the specified value. It does
not actually set the value of the register in the design, only the desired value in its corresponding abstraction
class in the register model. The member function uvm_reg::update is used to update the actual register with
the mirrored value or member function uvm_reg::write is used to set the actual register and its mirrored value.

Unless this member function is used, the desired value is equal to the mirrored value.

See Section 15.5.5.1 for more details on the effect of setting mirror values on fields with different access
policies.

229
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

To modify the mirrored field values to a specific value, and thus use the mirrored as a scoreboard for the register
values in the DUT, the member function uvm_reg::predict is used (see Section 15.4.5.15).

15.4.5.2 get

virtual uvm_reg_data_t get(const std::string& fname = "",
 int lineno = 0) const;

The member function get shall return the desired value of the fields in the register. It does not actually read
the value of the register in the design, only the desired value in the abstraction class. Unless set to a different
value using the uvm_reg::set (see Section 15.4.5.1), the desired value and the mirrored value are identical.

Use the member function uvm_reg::read (see Section 15.4.5.10) or uvm_reg::peek (see Section 15.4.5.12)
to get the actual register value.

If the register contains write-only fields, the desired/mirrored value for those fields are the value last written and
assumed to reside in the bits implementing these fields. Although a physical read operation would something
different for these fields, the returned value is the actual content.

15.4.5.3 get_mirrored_value

virtual uvm_reg_data_t get_mirrored_value(const std::string& fname = "",
 int lineno = 0) const;

The member function get_mirrored_value shall return the mirrored value of the fields in the register. It does
not actually read the value of the register in the design.

If the register contains write-only fields, the desired/mirrored value for those fields are the value last written and
assumed to reside in the bits implementing these fields. Although a physical read operation would something
different for these fields, the returned value is the actual content.

15.4.5.4 needs_update

virtual bool needs_update() const;

The member function needs_update shall return true if any of the fields need updating (see Section 15.5.5.8).
Use the uvm_reg::update to actually update the DUT register (see Section 15.4.5.13).

15.4.5.5 reset

virtual void reset(const std::string& kind = "HARD");

The member function reset shall set the desired and mirror value of the fields in this register to the reset value
for the specified reset kind. See Section 15.5.5.4 for more details.

Also resets the semaphore that prevents concurrent access to the register. This semaphore shall be explicitly
reset if a thread accessing this register array was killed in before the access was completed.

15.4.5.6 get_reset

virtual uvm_reg_data_t get_reset(const std::string& kind = "HARD") const;

The member function get_reset shall return the reset value for this register for the specified reset kind.

230
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.5.7 has_reset

virtual bool has_reset(const std::string& kind = "HARD",
 bool do_delete = false);

The member function has_reset shall check if any field in the register has a reset value specified for the
specified reset kind. If argument do_delete is set to true, it removes the reset value, if any.

15.4.5.8 set_reset

virtual void set_reset(uvm_reg_data_t value,
 const std::string& kind = "HARD");

The member function set_reset shall specify or modify the reset value for all the fields in the register
corresponding to the cause specified by kind.

15.4.5.9 write

virtual void write(uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write shall write the specifed value in the DUT register that corresponds to this
abstraction class instance using the specified access path. If the register is mapped in more than one address
map, an address map shall be specified if a physical access is used (front-door access). If a back-door access
path is used, the effect of writing the register through a physical access is mimicked. For example, read-only
bits in the registers shall not be written.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

15.4.5.10 read

virtual void read(uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read shall read and return value from the DUT register that corresponds to this
abstraction class instance using the specified access path. If the register is mapped in more than one address
map, an address map shall be specified if a physical access is used (front-door access). If a back-door access
path is used, the effect of reading the register through a physical access is mimicked. For example, clear-on-
read bits in the registers shall be set to zero.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

231
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.5.11 poke

virtual void poke(uvm_status_e& status,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function poke shall deposit the specified value in the DUT register corresponding to this
abstraction class instance, as-is, using a back-door access. Uses the HDL path for the design abstraction
specified by kind.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

15.4.5.12 peek

virtual void peek(uvm_status_e& status,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function peek shall read the current value from this register. It samples the value in the DUT
register corresponding to this abstraction class instance using a back-door access. The register value is sampled,
not modified. Uses the HDL path for the design abstraction specified by kind.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

15.4.5.13 update

virtual void update(uvm_status_e& status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function update shall update the content of the register in the design to match the desired value.
This member function performs the reverse operation of uvm_reg::mirror (see Section 15.4.5.14). Write this
register if the DUT register is out-of-date with the desired/mirrored value in the abstraction class, as determined
by the member function uvm_reg::needs_update (see Section 15.4.5.4).

The update can be performed using the using the physical interfaces (frontdoor) or uvm_reg::poke (see Section
15.4.5.11) (backdoor) access. If the register is mapped in multiple address maps and physical access is used
(front-door), an address map shall be specified.

15.4.5.14 mirror

virtual void mirror(uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,

232
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function mirror shall read the register and optionally compared the readback value with the
current mirrored value if argument check is UVM_CHECK. The mirrored value shall be updated using the
member function uvm_reg::predict (see Section 15.4.5.15) based on the readback value.

The mirroring can be performed using the physical interfaces (frontdoor) or uvm_reg::peek (see Section
15.4.5.12) (backdoor).

If argument check is specified as UVM_CHECK, an error message is issued if the current mirrored value does
not match the readback value. Any field whose check has been disabled with uvm_reg_field::set_compare
(see Section 15.5.5.14) shall not be considered in the comparison.

If the register is mapped in multiple address maps and physical access is used (frontdoor access), an address
map shall be specified. If the register contains write-only fields, their content is mirrored and optionally checked
only if a UVM_BACKDOOR access path is used to read the register.

15.4.5.15 predict

virtual bool predict(uvm_reg_data_t value,
 uvm_reg_byte_en_t be = -1,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_path_e path = UVM_FRONTDOOR,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function predict shall update the mirrored and desired value for this register.

It predicts the mirror (and desired) value of the fields in the register based on the specified observed value on
a specified address map, or based on a calculated value. See Section 15.4.5.15 for more details.

The member function returns true if the prediction was successful for each field in the register.

15.4.5.16 is_busy

bool is_busy() const;

The member function is_busy shall returns true if register is currently being read or written.

15.4.6 Frontdoor

15.4.6.1 set_frontdoor

void set_frontdoor(uvm_reg_frontdoor* ftdr,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function set_frontdoor shall specify a user-defined frontdoor for this register.

By default, registers are mapped linearly into the address space of the address maps that instantiate them. If
registers are accessed using a different mechanism, a user-defined access mechanism needs to be defined and

233
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

associated with the corresponding register abstraction class. If the register is mapped in multiple address maps,
an address map needs to be specified.

15.4.6.2 get_frontdoor

uvm_reg_frontdoor* get_frontdoor(uvm_reg_map* map = NULL) const;

The member function get_frontdoor shall return the user-defined frontdoor for this register.

If the member function returns NULL, no user-defined frontdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_reg::set_frontdoor.

If the register is mapped in multiple address maps, an address map needs to be specified.

15.4.7 Backdoor

NOTE—Backdoor access is not yet available in UVM-SystemC.

15.4.7.1 set_backdoor

void set_backdoor(uvm_reg_backdoor* bkdr,
 const std::string& fname = "",
 int lineno = 0);

The member function set_backdoor shall specify a user-defined backdoor for this register.

By default, registers are accessed via the built-in string-based DPI routines if an HDL path has been specified
using the member function uvm_reg::configure or uvm_reg::add_hdl_path.

If this default mechanism is not suitable (e.g. because the register is not implemented in HDL), a user-defined
access mechanism needs to be defined and associated with the corresponding register abstraction class.

A user-defined backdoor is required if active update of the mirror of this register abstraction class, based on
observed changes of the corresponding DUT register, is used.

15.4.7.2 get_backdoor

uvm_reg_backdoor* get_backdoor(bool inherited = true) const;

The member function get_backdoor shall return the user-defined backdoor for this register.

If the member function returns NULL, no user-defined backdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_reg::set_backdoor.

If no argument is specified or the argument inherited is set to true, the member function returns the backdoor
of the parent block if none have been specified for this register.

15.4.7.3 clear_hdl_path

void clear_hdl_path(const std::string& kind = "RTL");

The member function clear_hdl_path shall remove any previously specified HDL path to the register instance
for the specified design abstraction.

234
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.7.4 add_hdl_path

void add_hdl_path(std::vector<uvm_hdl_path_slice> slices,
 const std::string& kind = "RTL");

The member function add_hdl_path shall add the specified HDL path to the register instance for the specified
design abstraction. This member function may be called more than once for the same design abstraction if the
register is physically duplicated in the design abstraction. If the register is implemented using a single HDL
variable, The array should specify a single slice with its offset and size specified as -1.

15.4.7.5 add_hdl_path_slice

void add_hdl_path_slice(const std::string& name,
 int offset,
 int size,
 bool first = false,
 const std::string& kind = "RTL");

The member function add_hdl_path_slice shall append the specified HDL slice to the HDL path of the register
instance for the specified design abstraction. If the argument first is set to true, it starts the specification of a
duplicate HDL implementation of the register.

15.4.7.6 has_hdl_path

bool has_hdl_path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the register instance has a HDL path defined for the
specified design abstraction. If no design abstraction is specified, it shall use the default design abstraction
specified for the parent block.

15.4.7.7 get_hdl_path

void get_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
in the register instance. It returns only the component of the HDL paths that corresponds to the register, not a
full hierarchical path. If no design abstraction is specified, the default design abstraction for the parent block
is used.

15.4.7.8 get_hdl_path_kinds

void get_hdl_path_kinds(std::vector<std::string>& kinds) const;

The member function get_hdl_path_kinds shall return the design abstractions for which HDL paths have
been defined.

15.4.7.9 get_full_hdl_path

void get_full_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "",
 const std::string& separator = ".") const;

235
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_full_hdl_path shall return the full hierarchical HDL path(s) defined for the specified
design abstraction in the register instance. There may be more than one path returned even if only one path
was defined for the register instance, if any of the parent components have more than one path defined for the
same design abstraction. If no design abstraction is specified, the default design abstraction for each ancestor
block is used to get each incremental path.

15.4.7.10 backdoor_read

virtual void backdoor_read(uvm_reg_item* rw);

The member function backdoor_read shall offer user-defined backdoor read access. The member function
overrides the default string-based DPI backdoor access read for this register type.

15.4.7.11 backdoor_write

virtual void backdoor_write(uvm_reg_item* rw);

The member function backdoor_write shall offer user-defined backdoor write access. The member function
overrides the default string-based DPI backdoor access write for this register type.

15.4.7.12 backdoor_watch

virtual void backdoor_watch();

The member function backdoor_watch shall offer a user-defined DUT register change monitor. The member
function watches the DUT register corresponding to this abstraction class instance for any change in value and
return when a value-change occurs. There is no default implementation provided for this member function.

15.4.8 Coverage

NOTE—Functional coverage is not yet available in UVM-SystemC.

15.4.8.1 include_coverage

static void include_coverage(const std::string& scope,
 uvm_reg_cvr_t models,
 uvm_object* accessor = NULL);

The member function include_coverage shall specify which coverage model that needs to be included in
various block, register or memory abstraction class instances.

Yhe coverage models are specified by OR’ing or adding the uvm_coverage_model_e coverage model
identifiers corresponding to the coverage model to be included.

The argument scope specifies a hierarchical name or pattern identifying a block, memory or register abstraction
class instances. Any block, memory or register whose full hierarchical name matches the specified scope shall
have the specified functional coverage models included in them. The argument scope can be specified as a
POSIX regular expression or simple pattern. See Section 10.5.6 for more details.

The specification of which coverage model to include in which abstraction class is stored in a uvm_reg_cvr_t
resource in the uvm_resource_db resource database, in the “uvm_reg::” scope namespace.

236
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.8.2 build_coverage

protected: uvm_reg_cvr_t build_coverage(uvm_reg_cvr_t models);

The member function build_coverage shall check which of the specified coverage model are built in this
instance of the register abstraction class, as specified by calls to uvm_reg::include_coverage. models are
specified by adding the symbolic value of individual coverage model as defined in uvm_coverage_model_e.
The member function returns the sum of all coverage models to be built in the register model.

15.4.8.3 add_coverage

protected: virtual void add_coverage(uvm_reg_cvr_t models);

The member function add_coverage shall specify that additional coverage models are available. Add the
specified coverage model to the coverage models available in this class. models are specified by adding the
symbolic value of individual coverage model as defined in uvm_coverage_model_e. This member function
shall be called only in the constructor of subsequently derived classes.

15.4.8.4 has_coverage

virtual bool has_coverage(uvm_reg_cvr_t models) const;

The member function has_coverage shall return true if the register abstraction class contains a coverage model
for all of the models specified. models are specified by adding the symbolic value of individual coverage model
as defined in uvm_coverage_model_e.

15.4.8.5 set_coverage

virtual uvm_reg_cvr_t set_coverage(uvm_reg_cvr_t is_on);

The member function set_coverage shall specify the collection of functional coverage measurements for
this register. The functional coverage measurement is turned on for every coverage model specified using
uvm_coverage_model_e symbolic identifiers. Multiple functional coverage models can be specified by
adding the functional coverage model identifiers. All other functional coverage models are turned off. The
member function returns the sum of all functional coverage models whose measurements were previously on.

This member function can only control the measurement of functional coverage models that are present in the
register abstraction classes, then enabled during construction. See Section 15.4.8.4 to identify the available
functional coverage models.

15.4.8.6 get_coverage

virtual bool get_coverage(uvm_reg_cvr_t is_on) const;

The member function get_coverage shall returns true if measurement for all of the specified functional
coverage models are currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See Section 15.4.8.5 for more details.

237
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.8.7 sample

protected: virtual void sample(uvm_reg_data_t data,
 uvm_reg_data_t byte_en,
 bool is_read,
 uvm_reg_map* map);

The member function sample shall specify the Functional coverage measurement method.

This member function is invoked by the register abstraction class whenever it is read or written with the
specified data via the specified address map. It is invoked after the read or write operation has completed but
before the mirror has been updated. The member function may be extended by the abstraction class generator
to perform the required sampling in any provided functional coverage model.

15.4.8.8 sample_values

virtual void sample_values();

The member function sample_values shall specify the functional coverage measurement method for field
values.

This member function is invoked by the application or by the member function
uvm_reg_block::sample_values of the parent block to trigger the sampling of the current field values in the
register-level functional coverage model.

This member function may be extended by the abstraction class generator to perform the required sampling
in any provided field-value functional coverage model.

15.4.9 Callbacks

15.4.9.1 pre_write

virtual void pre_write(uvm_reg_item* rw);

The member function pre_write shall be called before register write.

If the specified data value, access path or address map are modified, the updated data value, access path or
address map shall be used to perform the register operation. If the status is modified to anything other than
UVM_IS_OK, the operation is aborted.

The registered callback member functions are invoked after the invocation of this member function. All register
callbacks are executed before the corresponding field callbacks.

15.4.9.2 post_write

virtual void post_write(uvm_reg_item* rw);

The member function post_write shall be called after register write.

If the specified status is modified, the updated status shall be returned by the register operation.

The registered callback member functions are invoked before the invocation of this member function. All
register callbacks are executed before the corresponding field callbacks.

238
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.9.3 pre_read

virtual void pre_read(uvm_reg_item* rw);

The member function pre_read shall be called before register read.

If the specified access path or address map are modified, the updated access path or address map shall be used
to perform the register operation. If the status is modified to anything other than UVM_IS_OK, the operation
is aborted.

The registered callback member functions are invoked after the invocation of this member function. All register
callbacks are executed before the corresponding field callbacks.

15.4.9.4 post_read

virtual void post_read(uvm_reg_item* rw);

The member function post_read shall be called after register read.

If the specified readback data or status is modified, the updated readback data or status shall be returned by
the register operation.

The registered callback member functions are invoked before the invocation of this member function. All
register callbacks are executed before the corresponding field callbacks.

15.5 uvm_reg_field

The class uvm_reg_field defines the field abstraction class. A field represents a set of bits that behave
consistently as a single entity. A field is contained within a single register, but may have different access
policies depending on the address map use the access the register (thus the field).

15.5.1 Class definition

namespace uvm {

 class uvm_reg_field : public uvm_object
 {
 public:

 // Constructor
 uvm_reg_field(const std::string& name = "uvm_reg_field");

 // Group: Initialization

 void configure(uvm_reg* parent,
 unsigned int size,
 unsigned int lsb_pos,
 const std::string& access,
 bool is_volatile, // changed icm UVM-SV
 uvm_reg_data_t reset,
 bool has_reset,
 bool is_rand,
 bool individually_accessible);

 // Group: Introspection

 virtual const std::string get_name();
 virtual const std::string get_full_name() const;
 virtual uvm_reg* get_parent() const;
 virtual unsigned int get_lsb_pos() const;

239
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual unsigned int get_n_bits() const;
 static unsigned int get_max_size();
 virtual std::string set_access(const std::string& mode);
 static bool define_access(std::string name);
 virtual std::string get_access(uvm_reg_map* map = NULL) const;
 virtual bool is_known_access(uvm_reg_map* map = NULL) const;
 virtual void set_volatility(bool is_volatile);
 virtual bool is_volatile() const;

 // Group: Access

 virtual void set(uvm_reg_data_t value,
 const std::string& fname = "",
 int lineno = 0);

 virtual uvm_reg_data_t get(const std::string& fname = "",
 int lineno = 0) const;

 virtual uvm_reg_data_t get_mirrored_value(const std::string& fname = "",
 int lineno = 0) const;

 virtual void reset(const std::string& kind = "HARD");
 virtual uvm_reg_data_t get_reset(const std::string& kind = "HARD") const;

 virtual bool has_reset(const std::string& kind = "HARD",
 bool do_delete = 0);

 virtual void set_reset(uvm_reg_data_t value,
 const std::string& kind = "HARD");

 virtual bool needs_update() const;

 virtual void write(uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read(uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void poke(uvm_status_e& status,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void peek(uvm_status_e& status,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void mirror(uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

240
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 void set_compare(uvm_check_e check = UVM_CHECK);
 uvm_check_e get_compare() const;

 bool is_indv_accessible(uvm_path_e path,
 uvm_reg_map* local_map) const;

 bool predict(uvm_reg_data_t value,
 uvm_reg_byte_en_t be = -1,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_path_e path = UVM_FRONTDOOR,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",
 int lineno = 0);

 // Group: Callbacks

 virtual void pre_write(uvm_reg_item* rw);
 virtual void post_write(uvm_reg_item* rw);
 virtual void pre_read(uvm_reg_item* rw);
 virtual void post_read(uvm_reg_item* rw);

 }; // class uvm_reg_field

} // namespace uvm

15.5.2 Constructor

uvm_reg_field(const std::string& name = "uvm_reg_field");

The constructor shall create a new field instance with the specified name. This constructor shall not be used
directly. The factory member function uvm_reg_field::type_id::create should be used instead.

15.5.3 Initialization

15.5.3.1 configure

void configure(uvm_reg* parent,
 unsigned int size,
 unsigned int lsb_pos,
 const std::string& access,
 bool is_volatile, // changed icm UVM-SV
 uvm_reg_data_t reset,
 bool has_reset,
 bool is_rand,
 bool individually_accessible);

The member function configure shall specify the parent register of this field, its size in bits, the position of
its least-significant bit within the register relative to the least-significant bit of the register, its access policy,
volatility, “HARD” reset value, whether the field value is actually reset (the reset value is ignored if false),
whether the field value may be randomized and whether the field is the only one to occupy a byte lane in
the register.

See Section 15.5.4.7 for a specification of the pre-defined field access policies.

If the field access policy is a pre-defined policy and not one of “RW”, “WRC”, “WRS”, “WO”, “W1”, or
“WO1”, the value of argument is_rand is ignored and the rand_mode for the field instance is turned off since
it cannot be written.

241
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.5.4 Introspection

15.5.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this field.

15.5.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this field. The base of the hierarchical
name is the root block.

15.5.4.3 get_parent

virtual uvm_reg* get_parent() const;

The member function get_parent shall return the parent register.

15.5.4.4 get_lsb_pos

virtual unsigned int get_lsb_pos() const;

The member function get_lsb_pos shall return the index of the least significant bit of the field in the register
that instantiates it. An offset of 0 indicates a field that is aligned with the least-significant bit of the register.

15.5.4.5 get_n_bits

virtual unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in number of bits, of the field.

15.5.4.6 get_max_size

static unsigned int get_max_size();

The member function get_max_size shall return the width, in number of bits, of the largest field.

15.5.4.7 set_access

virtual std::string set_access(const std::string& mode);

The member function set_access shall modify the access policy of the field to the specified one and return
the previous access policy.

The pre-defined access policies are as follows. The effect of a read operation are applied after the current value
of the field is sampled. The read operation shall return the current value, not the value affected by the read
operation (if any).

242
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Table 15.1—Access policies

”RO” W: no effect, R: no effect
”RW” W: as-is, R: no effect
”RC” W: no effect, R: clears all bits
”RS” W: no effect, R: sets all bits
”WRC” W: as-is, R: clears all bits
”WRS” W: as-is, R: sets all bits
”WC” W: clears all bits, R: no effect
”WS” W: sets all bits, R: no effect
”WSRC” W: sets all bits, R: clears all bits
”WCRS” W: clears all bits, R: sets all bits
”W1C” W: 1/0 clears/no effect on matching bit, R: no effect
”W1S” W: 1/0 sets/no effect on matching bit, R: no effect
”W1T” W: 1/0 toggles/no effect on matching bit, R: no effect
”W0C” W: 1/0 no effect on/clears matching bit, R: no effect
”W0S” W: 1/0 no effect on/sets matching bit, R: no effect
”W0T” W: 1/0 no effect on/toggles matching bit, R: no effect
”W1SRC” W: 1/0 sets/no effect on matching bit, R: clears all bits
”W1CRS” W: 1/0 clears/no effect on matching bit, R: sets all bits
”W0SRC” W: 1/0 no effect on/sets matching bit, R: clears all bits
”W0CRS” W: 1/0 no effect on/clears matching bit, R: sets all bits
”WO” W: as-is, R: error
”WOC” W: clears all bits, R: error
”WOS” W: sets all bits, R: error
”W1” W: first one after HARD reset is as-is, other W have no effects, R: no effect
”WO1” W: first one after HARD reset is as-is, other W have no effects, R: error
”NOACCESS” W: no effect, R: no effect

Modifying the access of a field shall make the register model diverge from the specification that was used
to create it.

15.5.4.8 define_access

static bool define_access(std::string name);

The member function define_access shall specify a new access policy value.

Because field access policies are specified using string values, there is no mechnaism to verify if a specific
access value is valid or not. To help catch typing errors, user-defined access values needs to be defined using
this member function to avoid begin reported as an invalid access policy.

The name of field access policies are always converted to all uppercase.

The member function shall return true if the new access policy was not previously defined. It shall return false
otherwise, but does not issue an error message.

15.5.4.9 get_access

virtual std::string get_access(uvm_reg_map* map = NULL) const;

The member function get_access shall return the access policy of the field. It returns the current access policy
of the field when written and read through the specified address map. If the register containing the field is

243
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

mapped in multiple address map, an address map shall be specified. The access policy of a field from a specific
address map may be restricted by the register’s access policy in that address map. For example, a RW field
may only be writable through one of the address maps and read-only through all of the other maps. If the field
access contradicts the map’s access value (field access of WO, and map access value of RO, etc), the member
functions return value is NOACCESS.

15.5.4.10 is_known_access

virtual bool is_known_access(uvm_reg_map* map = NULL) const;

The member function is_known_access shall return true if the current access policy of the field, when written
and read through the specified address map, is a built-in access policy. Otherwise it shall return false.

15.5.4.11 set_volatility

virtual void set_volatility(bool is_volatile);

The member function set_volatility shall specify the volatility of the field to the specified one. Modifying the
volatility of a field shall make the register model diverge from the specification that was used to create it.

15.5.4.12 is_volatile

virtual bool is_volatile() const;

The member function is_volatile shall return true if the value of the register is not predictable because it may
change between consecutive accesses. This typically indicates a field whose value is updated by the DUT. The
nature or cause of the change is not specified. The member function returns false if the value of the register
is not modified between consecutive accesses.

NOTE—UVM uses the IP-XACT definition of “volatility” as defined in IEEE Std. 1685-20146.

15.5.5 Access

15.5.5.1 set

virtual void set(uvm_reg_data_t value,
 const std::string& fname = "",
 int lineno = 0);

The member function set shall specify the desired value of the field to the specified value modified by the field
access policy. It does not actually set the value of the field in the design, only the desired value in the abstraction
class. Use the member function uvm_reg::update (see Section 15.4.5.13) to update the actual register with
the desired value or the member function uvm_reg_field::write (see Section 15.5.5.9) to actually write the
field and update its mirrored value.

The final desired value in the mirror is a function of the field access policy and the set value, just like a normal
physical write operation to the corresponding bits in the hardware. As such, this member function (when
eventually followed by a call to uvm_reg::update) is a zero-time functional replacement for the member
function uvm_reg_field::write. For example, the desired value of a read-only field is not modified by this

6 IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows, https://
standards.ieee.org/standard/1685-2014.html

244
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

https://standards.ieee.org/standard/1685-2014.html
https://standards.ieee.org/standard/1685-2014.html

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

member function and the desired value of a write-once field can only be set if the field has not yet been written
to using a physical (for example, front-door) write operation.

Use the uvm_reg_field::predict (see Section 15.5.5.17) to modify the mirrored value of the field.

15.5.5.2 get

virtual uvm_reg_data_t get(const std::string& fname = "",
 int lineno = 0) const;

The member function get shall return the desired value of the field. It does not actually read the value of the
field in the design, only the desired value in the abstraction class. Unless set to a different value using the
uvm_reg_field::set, the desired value and the mirrored value are identical.

Use the member function uvm_reg_field::read or uvm_reg_field::peek to get the actual field value.

If the field is write-only, the desired/mirrored value is the value last written and assumed to reside in the bits
implementing it. Although a physical read operation would something different, the returned value is the actual
content.

15.5.5.3 get_mirrored_value

virtual uvm_reg_data_t get_mirrored_value(const std::string& fname = "",
 int lineno = 0) const;

The member function get_mirrored_value shall return the mirrored value of the field. It does not actually
read the value of the field in the design, only the mirrored value in the abstraction class.

If the field is write-only, the desired/mirrored value is the value last written and assumed to reside in the bits
implementing it. Although a physical read operation would something different, the returned value is the actual
content.

15.5.5.4 reset

virtual void reset(const std::string& kind = "HARD");

The member function reset shall set the desired and mirror value of the field to the reset event specified by
kind. If the field does not have a reset value specified for the specified reset kind the field is unchanged.

It does not actually reset the value of the field in the design, only the value mirrored in the field abstraction class.

Write-once fields can be modified after a “HARD” reset operation.

15.5.5.5 get_reset

virtual uvm_reg_data_t get_reset(const std::string& kind = "HARD") const;

The member function get_reset shall return the reset value for this field for the specified reset kind. It returns
the current field value if no reset value has been specified for the specified reset event.

15.5.5.6 has_reset

virtual bool has_reset(const std::string& kind = "HARD",

245
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 bool do_delete = false);

The member function has_reset shall return true if this field has a reset value specified for the specified reset
kind. If argument do_delete is set to true, it removes the reset value, if any.

15.5.5.7 set_reset

virtual void set_reset(uvm_reg_data_t value,
 const std::string& kind = "HARD");

The member function set_reset shall specify or modify the reset value for this field corresponding to the cause
specified by argument kind.

15.5.5.8 needs_update

virtual bool needs_update() const;

The member function needs_update shall check if the abstract model contains different desired and mirrored
values. If a desired field value has been modified in the abstraction class without actually updating the field in
the DUT, the state of the DUT (more specifically what the abstraction class thinks the state of the DUT is) is
outdated. This member function shall return true if the state of the field in the DUT needs to be updated to match
the desired value. The mirror values or actual content of DUT field are not modified. Use the uvm_reg::update
(see Section 15.4.5.13) to actually update the DUT field.

15.5.5.9 write

virtual void write(uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);;

The member function write shall write the specified value in the DUT field that corresponds to this abstraction
class instance using the specified access path. If the register containing this field is mapped in more than one
address map, an address map shall be specified if a physical access is used (front-door access). If a back-door
access path is used, the effect of writing the field through a physical access is mimicked. For example, read-
only bits in the field shall not be written.

The mirrored value shall be updated using the member function uvm_reg_field::predict (see Section
15.5.5.17).

If a front-door access is used, and if the field is the only field in a byte lane and if the physical interface
corresponding to the address map used to access the field support byte-enabling, then only the field is written.
Otherwise, the entire register containing the field is written, and the mirrored values of the other fields in the
same register are used in a best-effort not to modify their value.

If a backdoor access is used, a peek-modify-poke process is used, in a best-effort not to modify the value of
the other fields in the register.

246
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.5.5.10 read

virtual void read(uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read shall read and return value from the DUT field that corresponds to this abstraction
class instance using the specified access path. If the register containing this field is mapped in more than one
address map, an address map shall be specified if a physical access is used (front-door access). If a back-door
access path is used, the effect of reading the field through a physical access is mimicked. For example, clear-
on-read bits in the field shall be set to zero.

The mirrored value shall be updated using the member function uvm_reg_field::predict (see Section
15.5.5.17).

If a front-door access is used, and if the field is the only field in a byte lane and if the physical interface
corresponding to the address map used to access the field support byte-enabling, then only the field is read.
Otherwise, the entire register containing the field is read, and the mirrored values of the other fields in the
same register are updated.

If a backdoor access is used, the entire containing register is peeked and the mirrored value of the other fields
in the register is updated.

15.5.5.11 poke

virtual void poke(uvm_status_e& status,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function poke shall deposit the specified value in the DUT field corresponding to this abstraction
class instance, as-is, using a back-door access. A peek-modify-poke process is used in a best-effort not to
modify the value of the other fields in the register.

The mirrored value shall be updated using the member function uvm_reg_field::predict (see Section
15.5.5.17).

15.5.5.12 peek

virtual void peek(uvm_status_e& status,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function peek shall read the current value from this field. It samples the value in the DUT field
corresponding to this abstraction class instance using a back-door access. The field value is sampled, not
modified. It uses the HDL path for the design abstraction specified by kind.

247
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The entire containing register is peeked and the mirrored value of the other fields in the register are updated
using the uvm_reg_field::predict (see Section 15.5.5.17).

15.5.5.13 mirror

virtual void mirror(uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function mirror shall read the field and optionally compared the readback value with the current
mirrored value if check is UVM_CHECK. The mirrored value shall be updated using the member function
predict based on the readback value.

The argument path specifies whether to mirror using the UVM_FRONTDOOR by using member function
read or UVM_BACKDOOR by using member function peek.

If argument check is specified as UVM_CHECK, an error message is issued if the current mirrored value does
not match the readback value, unless set_compare was used disable the check.

If the containing register is mapped in multiple address maps and physical access is used (front-door access),
an address map shall be specified. For write-only fields, their content is mirrored and optionally checked only
if a UVM_BACKDOOR access path is used to read the field.

15.5.5.14 set_compare

void set_compare(uvm_check_e check = UVM_CHECK);

The member function set_compare shall specify the comparison policy during a mirror update. The field value
is checked against its mirror only when both the argument check in uvm_reg_block::mirror (see Section
15.1.6.5), uvm_reg::mirror (see Section 15.4.5.14), or uvm_reg_field::mirror (see Section 15.5.5.13) and
the comparison policy for the field is UVM_CHECK.

15.5.5.15 get_compare

uvm_check_e get_compare() const;

The member function get_compare shall return the comparison policy for this field.

15.5.5.16 is_indv_accessible

bool is_indv_accessible(uvm_path_e path,
 uvm_reg_map* local_map) const;

The member function is_indv_accessible shall return true if this field can be written individually, i.e. without
affecting other fields in the containing register. Otherwise it shall return false.

15.5.5.17 predict

bool predict(uvm_reg_data_t value,

248
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_byte_en_t be = -1,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_path_e path = UVM_FRONTDOOR,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function predict shall update the mirrored and desired value for this field. It predicts the mirror
and desired value of the field based on the specified observed value on a bus using the specified address map.

If argument kind is specified as UVM_PREDICT_READ, the value was observed in a read transaction on
the specified address map or backdoor (if path is UVM_BACKDOOR). If argument kind is specified as
UVM_PREDICT_WRITE, the value was observed in a write transaction on the specified address map or
backdoor (if path is UVM_BACKDOOR). If argument kind is specified as UVM_PREDICT_DIRECT, the
value was computed and is updated as-is, without regard to any access policy. For example, the mirrored value
of a read-only field is modified by this member function if kind is specified as UVM_PREDICT_DIRECT.

This member function does not allow an update of the mirror (or desired) when the register containing this
field is busy executing a transaction because the results are unpredictable and indicative of a race condition
in the testbench.

This member function returns true if the prediction was successful.

15.5.6 Callbacks

15.5.6.1 pre_write

virtual void pre_write(uvm_reg_item* rw);

The member function pre_write shall be called before field write.

If the specified data value, access path or address map are modified, the updated data value, access path or
address map shall be used to perform the register operation. If the status is modified to anything other than
UVM_IS_OK, the operation is aborted.

The field callback methods are invoked after the callback methods on the containing register. The registered
callback member functions are invoked after the invocation of this member function.

15.5.6.2 post_write

virtual void post_write(uvm_reg_item* rw);

The member function post_write shall be called after field write.

If the specified status is modified, the updated status shall be returned by the register operation.

The field callback member functions are invoked after the callback methods on the containing register. The
registered callback member functions are invoked before the invocation of this member function.

15.5.6.3 pre_read

virtual void pre_read(uvm_reg_item* rw);

The member function pre_read shall be called before field read.

249
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If the access path or address map in the rw argument are modified, the updated access path or address map
shall be used to perform the register operation. If the status is modified to anything other than UVM_IS_OK,
the operation is aborted.

The field callback member functions are invoked after the callback member functions on the containing
register. The registered callback member functions are invoked after the invocation of this member function.

15.5.6.4 post_read

virtual void post_read(uvm_reg_item* rw);

The member function post_read shall be called after field read.

If the specified readback data or status in the argument rw is modified, the updated readback data or status
shall be returned by the register operation.

The field callback member functions are invoked after the callback member functions on the containing
register. The registered callback methods are invoked before the invocation of this member function.

15.6 uvm_mem

The class uvm_mem defines the memory abstraction base class. A memory is a collection of contiguous
locations. A memory may be accessible via more than one address map.

Unlike registers, memories are not mirrored because of the potentially large data space: tests that walk the
entire memory space would negate any benefit from sparse memory modelling techniques. Rather than relying
on a mirror, it is recommended that backdoor access be used instead.

15.6.1 Class definition

namespace uvm {

 class uvm_mem : public uvm_object
 {
 public:

 typedef enum {UNKNOWNS, ZEROES, ONES, ADDRESS, VALUE, INCR, DECR} init_e;

 // Constructor
 explicit uvm_mem(const std::string& name,
 unsigned long size,
 unsigned int n_bits,
 const std::string& access = "RW",
 int has_coverage = UVM_NO_COVERAGE);

 // Group: Initialization

 void configure(uvm_reg_block* parent,
 const std::string& hdl_path = "");

 void set_offset(uvm_reg_map* map,
 uvm_reg_addr_t offset,
 bool unmapped = 0);

 // Group: Introspection

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_reg_block* get_parent() const;
 virtual int get_n_maps() const;
 bool is_in_map(uvm_reg_map* map) const;
 virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;

250
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual std::string get_rights(const uvm_reg_map* map = NULL) const;
 virtual std::string get_access(const uvm_reg_map* map = NULL) const;
 unsigned long get_size() const;
 unsigned int get_n_bytes() const;
 unsigned int get_n_bits() const;
 static unsigned int get_max_size();
 virtual void get_virtual_registers(std::vector<uvm_vreg*>& regs) const;
 virtual void get_virtual_fields(std::vector<uvm_vreg_field*>& fields) const;
 virtual uvm_vreg* get_vreg_by_name(const std::string& name) const;
 virtual uvm_vreg_field* get_vfield_by_name(const std::string& name) const;

 virtual uvm_vreg* get_vreg_by_offset(uvm_reg_addr_t offset,
 const uvm_reg_map* map = NULL) const;

 virtual uvm_reg_addr_t get_offset(uvm_reg_addr_t offset = 0,
 const uvm_reg_map* map = NULL) const;

 virtual uvm_reg_addr_t get_address(uvm_reg_addr_t offset = 0,
 const uvm_reg_map* map = NULL) const;

 virtual int get_addresses(std::vector<uvm_reg_addr_t>& addr,
 const uvm_reg_map* map = NULL,
 uvm_reg_addr_t offset = 0) const;

 // Group: HDL Access

 virtual void write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void burst_write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t> value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void burst_read(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t>& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void poke(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,

251
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 const std::string& fname = "",
 int lineno = 0);

 virtual void peek(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 // Group: Frontdoor

 void set_frontdoor(uvm_reg_frontdoor* ftdr,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",
 int lineno = 0);

 uvm_reg_frontdoor* get_frontdoor(const uvm_reg_map* map = NULL) const;

 // Group: Backdoor

 void set_backdoor(uvm_reg_backdoor* bkdr,
 const std::string& fname = "",
 int lineno = 0);

 uvm_reg_backdoor* get_backdoor(bool inherited = true);
 void clear_hdl_path(const std::string& kind = "RTL");

 void add_hdl_path(std::vector<uvm_hdl_path_slice> slices,
 const std::string& kind = "RTL");

 void add_hdl_path_slice(const std::string& name,
 int offset,
 int size,
 bool first = false,
 const std::string& kind = "RTL");

 bool has_hdl_path(const std::string& kind = "") const;

 void get_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "") const;

 void get_full_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "",
 const std::string& separator = ".") const;

 void get_hdl_path_kinds(std::vector<std::string>& kinds) const;

 protected:
 virtual void backdoor_read(uvm_reg_item* rw);

 public:
 virtual void backdoor_write(uvm_reg_item* rw);

 // Group: Callbacks

 virtual void pre_write(uvm_reg_item* rw);
 virtual void post_write(uvm_reg_item* rw);
 virtual void pre_read(uvm_reg_item* rw);
 virtual void post_read(uvm_reg_item* rw);

 // Group: Coverage

 protected:
 uvm_reg_cvr_t build_coverage(uvm_reg_cvr_t models);
 virtual void add_coverage(uvm_reg_cvr_t models);

 public:
 virtual bool has_coverage(uvm_reg_cvr_t models) const;
 virtual uvm_reg_cvr_t set_coverage(uvm_reg_cvr_t is_on);
 virtual bool get_coverage(uvm_reg_cvr_t is_on);

 protected:
 virtual void sample(uvm_reg_addr_t offset,
 bool is_read,

252
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_map* map);

 // Data members
 uvm_mem_mam* mam;

 }; // class uvm_mem

} // namespace uvm

15.6.2 Constructor

explicit uvm_mem(const std::string& name,
 unsigned long size,
 unsigned int n_bits,
 const std::string& access = "RW",
 int has_coverage = UVM_NO_COVERAGE);

The constructor shall create an instance of a memory abstraction class with the specified name.

The argument size specifies the total number of memory locations. The argument n_bits specifies the total
number of bits in each memory location. access specifies the access policy of this memory and may be one
of “RW for RAMs and “RO” for ROMs. The argument has_coverage specifies which functional coverage
models are present in the extension of the register abstraction class. Multiple functional coverage models may
be specified by adding their symbolic names, as defined by the uvm_coverage_model_e type (see Section
15.16.2.9).

15.6.3 Initialization

15.6.3.1 configure

void configure(uvm_reg_block* parent,
 const std::string& hdl_path = "");

The member function configure shall specify the parent block of this memory. If this memory is implemented
in a single HDL variable, its name is specified as the hdl_path. Otherwise, if the memory is implemented as a
concatenation of variables (usually one per bank), then the HDL path needs to be specified using the member
function add_hdl_path or add_hdl_path_slice.

15.6.3.2 set_offset

void set_offset(uvm_reg_map* map,
 uvm_reg_addr_t offset,
 bool unmapped = 0);

The member function set_offset shall specify the offset of a memory within an address map. It shall use the
member function uvm_reg_map::add_reg (see Section 15.2.3.3). This member function is used to modify
that offset dynamically.

Modifying the offset of a register makes the register model diverge from the specification that was used to
create it.

15.6.4 Introspection

15.6.4.1 get_name

virtual const std::string get_name() const;

253
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_name shall return the simple object name of this memory.

15.6.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this memory. The base of the
hierarchical name is the root block.

15.6.4.3 get_parent

virtual uvm_reg_block* get_parent() const;

The member function get_parent shall return the parent block.

15.6.4.4 get_n_maps

virtual int get_n_maps() const;

The member function get_n_maps shall return the number of address maps this memory is mapped in.

15.6.4.5 is_in_map

bool is_in_map(uvm_reg_map* map) const;

The member function is_in_map shall return true if this memory is in the specified address map, otherwise
return false.

15.6.4.6 get_maps

virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;

The member function get_maps shall return all of the address maps where this memory is mapped.

15.6.4.7 get_rights

virtual std::string get_rights(uvm_reg_map* map = NULL) const;

The member function get_rights shall return the accessibility (“RW, “RO”, or “WO”) of this memory in the
given map.

The access rights of a memory is always “RW”, unless it is a shared memory with access restriction in a
particular address map. If no address map is specified and the memory is mapped in only one address map,
that address map is used. If the memory is mapped in more than one address map, the default address map of
the parent block is used. If an address map is specified and the memory is not mapped in the specified address
map, an error message is issued and “RW” is returned.

15.6.4.8 get_access

virtual std::string get_access(const uvm_reg_map* map = NULL) const;

254
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_access shall return the access policy of the memory when written and read via an
address map.

If the memory is mapped in more than one address map, an address map shall be specified. If access restrictions
are present when accessing a memory through the specified address map, the access mode returned takes the
access restrictions into account. For example, a read-write memory accessed through a domain with read-only
restrictions would return “RO”.

15.6.4.9 get_size

unsigned long get_size() const;

The member function get_size shall return the number of unique memory locations in this memory.

15.6.4.10 get_n_bytes

unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the width, in number of bytes, of each memory location.

15.6.4.11 get_n_bits

unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in number of bits, of each memory location.

15.6.4.12 get_max_size

static unsigned int get_max_size();

The member function get_max_size shall return the maximum width, in number of bits, of all memories.

15.6.4.13 get_virtual_registers

virtual void get_virtual_registers(std::vector<uvm_vreg*>& regs) const;

The member function get_virtual_registers shall return the virtual registers in this memory. The order in
which the virtual registers are located in the vector is not specified.

15.6.4.14 get_virtual_fields

virtual void get_virtual_fields(std::vector<uvm_vreg_field*>& fields) const;

The member function get_virtual_fields shall return the virtual fields in the memory. The order in which the
virtual fields are located in the vector is not specified.

15.6.4.15 get_vreg_by_name

virtual uvm_vreg* get_vreg_by_name(const std::string& name) const;

255
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_vreg_by_name shall search for the virtual register with the specified name
implemented in this memory and shall return its abstraction class instance. If no virtual register with the
specified name is found, the member function returns NULL.

15.6.4.16 get_vfield_by_name

virtual uvm_vreg_field* get_vfield_by_name(const std::string& name) const;

The member function get_vfield_by_name shall search for the virtual field with the specified name
implemented in this memory and shall return its abstraction class instance. If no virtual field with the specified
name is found, the member function returns NULL.

15.6.4.17 get_vreg_by_offset

virtual uvm_vreg* get_vreg_by_offset(uvm_reg_addr_t offset,
 const uvm_reg_map* map = NULL) const;

The member function get_vreg_by_offset shall search for the virtual register implemented in this memory at
the specified offset in the specified address map and returns its abstraction class instance. If no virtual register
at the offset is found, it returns NULL.

15.6.4.18 get_offset

virtual uvm_reg_addr_t get_offset(uvm_reg_addr_t offset = 0,
 const uvm_reg_map* map = NULL) const;

The member function get_offset shall return the base offset of the specified location in this memory in an
address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.
If an address map is specified and the memory is not mapped in the specified address map, an error message
is issued.

15.6.4.19 get_address

virtual uvm_reg_addr_t get_address(uvm_reg_addr_t offset = 0,
 const uvm_reg_map* map = NULL) const;

The member function get_address shall return the base external physical address of the specified location in
this memory if accessed through the specified address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.
If an address map is specified and the memory is not mapped in the specified address map, an error message
is issued.

15.6.4.20 get_addresses

virtual int get_addresses(std::vector<uvm_reg_addr_t>& addr,
 const uvm_reg_map* map = NULL,
 uvm_reg_addr_t offset = 0) const;

256
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_addresses shall return the base external physical address of the specified location
in this memory if accessed through the specified address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.
If an address map is specified and the memory is not mapped in the specified address map, an error message
is issued.

15.6.5 HDL access

15.6.5.1 write

virtual void write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write shall write the specified value in the memory location that corresponds to this
abstraction class instance at the specified offset using the specified access path. If the memory is mapped in
more than one address map, an address map needs to be specified if a physical access is used (front-door
access). If a back-door access path is used, the effect of writing the memory through a physical access is
mimicked. For example, a read-only memory will remain unchanged.

15.6.5.2 read

virtual void read(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read shall read and return value from the memory location that corresponds to this
abstraction class instance at the specified offset using the specified access path. If the memory is mapped in
more than one address map, an address map needs to be specified if a physical access is used (front-door
access).

15.6.5.3 burst_write

virtual void burst_write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t> value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

257
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function burst_write shall burst-write the specified values in the memory locations beginning
at the specified offset. If the memory is mapped in more than one address map, an address map needs to be
specified if not using the backdoor. If a back-door access path is used, the effect of writing the register through
a physical access is mimicked. For example, a read-only memory will remain unchanged.

15.6.5.4 burst_read

virtual void burst_read(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t>& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function burst_read shall burst-read into values the data the memory locations beginning at the
specified offset. If the memory is mapped in more than one address map, an address map needs to be specified
if not using the backdoor. If a back-door access path is used, the effect of writing the register through a physical
access is mimicked. For example, a read-only memory will remain unchanged.

15.6.5.5 poke

virtual void poke(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function poke shall deposit the specified value in the DUT memory location corresponding to
this abstraction class instance at the specified offset, as-is, using a back-door access. It uses the HDL path for
the design abstraction specified by kind.

15.6.5.6 peek

virtual void peek(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function peek shall read and return the current value in the DUT memory location corresponding
to this abstraction class instance at the specified offset using a back-door access. The memory location value
is sampled, not modified. It uses the HDL path for the design abstraction specified by kind.

15.6.6 Frontdoor

15.6.6.1 set_frontdoor

void set_frontdoor(uvm_reg_frontdoor* ftdr,
 uvm_reg_map* map = NULL,
 const std::string& fname = "",

258
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 int lineno = 0);

The member function set_frontdoor shall specify a user-defined frontdoor for this memory.

By default, memories are mapped linearly into the address space of the address maps that instantiate them.
If memories are accessed using a different mechanism, a user-defined access mechanism needs to be defined
and associated with the corresponding memory abstraction class. If the memory is mapped in multiple address
maps, an address map needs to be specified.

15.6.6.2 get_frontdoor

uvm_reg_frontdoor* get_frontdoor(const uvm_reg_map* map = NULL) const;

The member function get_frontdoor shall return the user-defined frontdoor for this memory.

If the member function returns NULL, no user-defined frontdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_mem::set_frontdoor.

If the memory is mapped in multiple address maps, an address map needs to be specified.

15.6.7 Backdoor

NOTE—Backdoor access is not yet available in UVM-SystemC.

15.6.7.1 set_backdoor

void set_backdoor(uvm_reg_backdoor* bkdr,
 const std::string& fname = "",
 int lineno = 0);

The member function set_backdoor shall specify a user-defined backdoor for this memory.

By default, memories are accessed via the built-in string-based DPI routines if an HDL path has been specified
using the member function uvm_mem::configure or uvm_mem::add_hdl_path.

If this default mechanism is not suitable (e.g. because the memory is not implemented in HDL), a user-defined
access mechanism needs to be defined and associated with the corresponding memory abstraction class.

15.6.7.2 get_backdoor

uvm_reg_backdoor* get_backdoor(bool inherited = true) const;

The member function get_backdoor shall return the user-defined backdoor for this memory.

If the member function returns NULL, no user-defined backdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_mem::set_backdoor.

If no argument is specified or the argument inherited is set to true, the member function returns the backdoor
of the parent block if none have been specified for this memory.

15.6.7.3 clear_hdl_path

void clear_hdl_path(const std::string& kind = "RTL");

259
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function clear_hdl_path shall remove any previously specified HDL path to the memory instance
for the specified design abstraction.

15.6.7.4 add_hdl_path

void add_hdl_path(std::vector<uvm_hdl_path_slice> slices,
 const std::string& kind = "RTL");

The member function add_hdl_path shall add the specified HDL path to the memory instance for the specified
design abstraction. This member function may be called more than once for the same design abstraction if the
memory is physically duplicated in the design abstraction.

15.6.7.5 add_hdl_path_slice

void add_hdl_path_slice(const std::string& name,
 int offset,
 int size,
 bool first = false,
 const std::string& kind = "RTL");

The member function add_hdl_path_slice shall append the specified HDL slice to the HDL path of the
memory instance for the specified design abstraction. If the argument first is set to true, it starts the specification
of a duplicate HDL implementation of the memory.

15.6.7.6 has_hdl_path

bool has_hdl_path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the memory instance has a HDL path defined for the
specified design abstraction. If no design abstraction is specified, it shall use the default design abstraction
specified for the parent block.

15.6.7.7 get_hdl_path

void get_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
in the memory instance. It returns only the component of the HDL paths that corresponds to the memory, not
a full hierarchical path. If no design abstraction is specified, the default design abstraction for the parent block
is used.

15.6.7.8 get_full_hdl_path

void get_full_hdl_path(std::vector<uvm_hdl_path_concat>& paths,
 const std::string& kind = "",
 const std::string& separator = ".") const;

The member function get_full_hdl_path shall return the full hierarchical HDL path(s) defined for the specified
design abstraction in the memory instance. There may be more than one path returned even if only one path
was defined for the memory instance, if any of the parent components have more than one path defined for the
same design abstraction. If no design abstraction is specified, the default design abstraction for each ancestor
block is used to get each incremental path.

260
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.6.7.9 get_hdl_path_kinds

void get_hdl_path_kinds(std::vector<std::string>& kinds) const;

The member function get_hdl_path_kinds shall return the design abstractions for which HDL paths have
been defined.

15.6.7.10 backdoor_read

protected: virtual void backdoor_read(uvm_reg_item* rw);

The member function backdoor_read shall offer user-defined backdoor read access. The member function
overrides the default string-based DPI backdoor access read for this memory type.

15.6.7.11 backdoor_write

virtual void backdoor_write(uvm_reg_item* rw);

The member function backdoor_write shall offer user-defined backdoor write access. The member function
overrides the default string-based DPI backdoor access write for this memory type.

15.6.8 Callbacks

15.6.8.1 pre_write

virtual void pre_write(uvm_reg_item* rw);

The member function pre_write shall be called before memory write.

If the offset, value, access path or address map are modified, the updated offset, data value, access path or
address map shall be used to perform the memory operation. If the status is modified to anything other than
UVM_IS_OK, the operation is aborted.

The registered callback member functions are invoked after the invocation of this member function.

15.6.8.2 post_write

virtual void post_write(uvm_reg_item* rw);

The member function post_write shall be called after register write.

If the status is modified, the updated status shall be returned by the memory operation.

The registered callback member functions are invoked before the invocation of this member function.

15.6.8.3 pre_read

virtual void pre_read(uvm_reg_item* rw);

The member function pre_read shall be called before register read.

261
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If the offset, access path or address map are modified, the updated offset, access path or address map shall
be used to perform the memory operation. If the status is modified to anything other than UVM_IS_OK, the
operation is aborted.

The registered callback member functions are invoked after the invocation of this member function.

15.6.8.4 post_read

virtual void post_read(uvm_reg_item* rw);

The member function post_read shall be called after memory read.

If the specified readback data or status is modified, the updated readback data or status shall be returned by
the memory operation.

The registered callback member functions are invoked before the invocation of this member function.

15.6.9 Coverage

NOTE—Functional coverage is not yet available in UVM-SystemC.

15.6.9.1 build_coverage

protected: uvm_reg_cvr_t build_coverage(uvm_reg_cvr_t models);

The member function build_coverage shall check which of the specified coverage model need to be built in
this instance of the memory abstraction class, as specified by calls to uvm_reg::include_coverage. models are
specified by adding the symbolic value of individual coverage model as defined in uvm_coverage_model_e.
The member function returns the sum of all coverage models to be built in the memory model.

15.6.9.2 add_coverage

protected: virtual void add_coverage(uvm_reg_cvr_t models);

The member function add_coverage shall specify that additional coverage models are available. Add the
specified coverage model to the coverage models available in this class. models are specified by adding the
symbolic value of individual coverage model as defined in uvm_coverage_model_e. This member function
shall be called only in the constructor of subsequently derived classes.

15.6.9.3 has_coverage

virtual bool has_coverage(uvm_reg_cvr_t models) const;

The member function has_coverage shall return true if the memory abstraction class contains a coverage
model for all of the models specified. models are specified by adding the symbolic value of individual coverage
model as defined in uvm_coverage_model_e.

15.6.9.4 set_coverage

virtual uvm_reg_cvr_t set_coverage(uvm_reg_cvr_t is_on);

262
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_coverage shall specify the collection of functional coverage measurements for
this memory. The functional coverage measurement is turned on for every coverage model specified using
uvm_coverage_model_e symbolic identifiers. Multiple functional coverage models can be specified by
adding the functional coverage model identifiers. All other functional coverage models are turned off. The
member function returns the sum of all functional coverage models whose measurements were previously on.

This member function can only control the measurement of functional coverage models that are present in the
memory abstraction classes, then enabled during construction. See Section 15.6.9.3 to identify the available
functional coverage models.

15.6.9.5 get_coverage

virtual bool get_coverage(uvm_reg_cvr_t is_on) const;

The member function get_coverage shall returns true if measurement for all of the specified functional
coverage models are currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See Section 15.6.9.4 for more details.

15.6.9.6 sample

protected: virtual void sample(uvm_reg_addr_t offset,
 bool is_read,
 uvm_reg_map* map);

The member function sample shall specify the functional coverage measurement method.

This member function is invoked by the memory abstraction class whenever an address within one of its
address map is successfully read or written. The specified offset is the offset within the memory, not an absolute
address. The member function may be extended by the abstraction class generator to perform the required
sampling in any provided functional coverage model.

15.7 uvm_reg_indirect_data

The class uvm_reg_indirect_data defines the abstraction class for indirect data access.

The class shall model the behavior of a register used to indirectly access a register array, indexed by a second
address register. This class shall not be instantiated directly. A type-specific class extension shall be used to
provide a factory-enabled constructor and specify the n_bits and coverage models.

15.7.1 Class definition

namespace uvm {

 class uvm_reg_indirect_data : public uvm_reg
 {
 public:

 uvm_reg_indirect_data(const std::string& name,
 unsigned int n_bits,
 int has_cover);

 void configure(uvm_reg* idx,
 std::vector<uvm_reg*> reg_a,
 uvm_reg_block* blk_parent,
 uvm_reg_file* regfile_parent = NULL);

263
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 }; // class uvm_reg_indirect_data

} // namespace uvm

15.7.2 Constructor

uvm_reg_indirect_data(const std::string& name,
 unsigned int n_bits,
 int has_cover);

The constructor shall create an instance of this class. The argument n_bits shall match the number of bits in
the indirect register array.

15.7.3 Member functions

15.7.3.1 configure

void configure(uvm_reg* idx,
 std::vector<uvm_reg*> reg_a,
 uvm_reg_block* blk_parent,
 uvm_reg_file* regfile_parent = NULL);

The member function configure shall configure the indirect data register. The argument idx register specifies
the index, in the reg_a register array, of the register to access. The idx needs to be written first. A read or write
operation to this register shall subsequently read or write the indexed register in the register array. The number
of bits in each register in the register array shall be equal to the number of bits of this register.

15.8 uvm_reg_fifo

The class uvm_reg_fifo defines a special register to model a DUT FIFO accessed via write/read, where writes
push to the FIFO and reads pop from it. Backdoor access is not enabled, as it is not yet possible to force
complete FIFO state, i.e. the write and read indexes used to access the FIFO data.

15.8.1 Class definition

namespace uvm {

 class uvm_reg_fifo : public uvm_reg
 {
 public:

 // Constructor
 uvm_reg_fifo(const std::string& name,
 unsigned int size,
 unsigned int n_bits,
 int has_cover);

 // Group: Initialization

 void set_compare(uvm_check_e check = UVM_CHECK);

 // Group: Introspection

 unsigned int size();
 unsigned int capacity();

 // Group: Access

 virtual void write(uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,

264
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read(uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void set(uvm_reg_data_t value,
 const std::string& fname = "",
 int lineno = 0);

 virtual void update(uvm_status_e& status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void mirror(uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual uvm_reg_data_t get(const std::string& fname = "",
 int lineno = 0) const;

 virtual void do_predict(uvm_reg_item* rw,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_reg_byte_en_t be = -1);

 // Group: Special overrides

 virtual void pre_write(uvm_reg_item* rw);
 virtual void pre_read(uvm_reg_item* rw);

 // Data members

 std::vector<uvm_reg_data_t> fifo;

 }; // class uvm_reg_fifo

} // namespace uvm

15.8.2 Constructor

uvm_reg_fifo(const std::string& name,
 unsigned int size,
 unsigned int n_bits,
 int has_cover);

The constructor shall create an instance of a FIFO register with the specified name, having size elements of
n_bits each.

265
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.8.3 Initialization

15.8.3.1 set_compare

void set_compare(uvm_check_e check = UVM_CHECK);

The member function set_compare shall specify the comparison policy during a mirror (read) of the DUT
FIFO. The DUT read value is checked against its mirror only when both the check argument in the mirror
call and the comparison policy for the field is UVM_CHECK.

15.8.4 Introspection

15.8.4.1 size

unsigned int size();

The member function size shall return the number of entries currently in the FIFO.

15.8.4.2 capacity

unsigned int capacity();

The member function capacity shall return the maximum number of entries, or depth, of the FIFO.

15.8.5 Access

15.8.5.1 write

virtual void write(uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write shall write the given value to the DUT FIFO. If auto-prediction is enabled, the
written value is also pushed to the abstract FIFO before the call returns. If auto-prediction is not enabled (via
uvm_reg_map::set_auto_predict), the value is pushed to abstract FIFO only when the write operation is
observed on the target bus. This mode requires using the uvm_reg_predictor class. If the write is via an update
operation, the abstract FIFO already contains the written value and is thus not affected by either prediction
mode.

15.8.5.2 read

virtual void read(uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

266
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function read shall reads and return the next value out of the DUT FIFO. If auto-prediction is
enabled, the frontmost value in abstract FIFO is popped.

15.8.5.3 set

virtual void set(uvm_reg_data_t value,
 const std::string& fname = "",
 int lineno = 0);

The member function set shall write the given value to the abstract FIFO. An application may call this member
function several times before an update as a means of preloading the DUT FIFO. Calls to set to a full FIFO
are ignored. An application should call update to update the DUT FIFO with the set values.

15.8.5.4 update

virtual void update(uvm_status_e& status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function update shall write all values preloaded using the member function set to the DUT. An
application should call update after set before any blocking statements, else other reads/writes to the DUT
FIFO may cause the mirror to become out of sync with the DUT.

15.8.5.5 mirror

virtual void mirror(uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function mirror shall read the next value out of the DUT FIFO. If auto-prediction is enabled,
the frontmost value in abstract FIFO is popped. If the check argument is set and comparison is enabled with
set_compare.

15.8.5.6 get

virtual uvm_reg_data_t get(const std::string& fname = "",
 int lineno = 0) const;

The member function get shall return the next value from the abstract FIFO, but does not pop it. It is used to
get the expected value in a mirror operation.

15.8.5.7 do_predict

virtual void do_predict(uvm_reg_item* rw,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_reg_byte_en_t be = -1);

267
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function do_predict shall update the abstract (mirror) FIFO based on write and read operations.
When autoprediction is on, this member function is called before each read, write, peek, or poke operation
returns. When auto-prediction is off, this member function is called by a uvm_reg_predictor upon receipt and
conversion of an observed bus operation to this register.

If a write prediction, the observed write value is pushed to the abstract FIFO as long as it is not full and the
operation did not originate from an update. If a read prediction, the observed read value is compared with the
frontmost value in the abstract FIFO if set_compare enabled comparison and the FIFO is not empty.

15.8.6 Special overrides

15.8.6.1 pre_write

virtual void pre_write(uvm_reg_item* rw);

The member function pre_write shall be called before a FIFO write or update.

It is an error to attempt a write to a full FIFO or a write while an update is still pending. An update is pending
after one or more calls to set. If an application allows the DUT to write to a full FIFO, the application should
override pre_write as appropriate.

15.8.6.2 pre_read

virtual void pre_read(uvm_reg_item* rw);

The member function pre_read shall be called before register read or update.

It aborts the operation if the internal FIFO is empty. If in an application the DUT does not behave this way,
the application should override pre_read as appropriate.

15.8.7 Data members

15.8.7.1 fifo

std::vector<uvm_reg_data_t> fifo;

The data memberfifo shall define the abstract representation of the FIFO, with the constrained to be no larger
than the size parameter. This data member is public to enable subtypes to add constraints on it and randomize.

15.9 uvm_vreg

The class uvm_vreg shall define the virtual register abstraction base class. A virtual register represents a set of
fields that are logically implemented in consecutive memory locations. All virtual register accesses eventually
turn into memory accesses. A virtual register array may be implemented on top of any memory abstraction
class and possibly dynamically resized and/or relocated.

15.9.1 Class definition

namespace uvm {

 class uvm_vreg : public uvm_object
 {
 public:

268
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 // Constructor
 explicit uvm_vreg(const std::string& name, unsigned int n_bits);

 // Group: Initialization

 void configure(uvm_reg_block* parent,
 uvm_mem* mem = NULL,
 unsigned long size = 0,
 uvm_reg_addr_t offset = 0,
 unsigned int incr = 0);

 virtual bool implement(unsigned long n,
 uvm_mem* mem = NULL,
 uvm_reg_addr_t offset = 0,
 unsigned int incr = 0);

 virtual uvm_mem_region* allocate(unsigned long n,
 uvm_mem_mam* mam);

 virtual uvm_mem_region* get_region() const;
 virtual void release_region();

 // Group: Introspection

 virtual const std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_reg_block* get_parent() const;
 virtual uvm_mem* get_memory() const;
 virtual int get_n_maps() const;
 bool is_in_map(uvm_reg_map* map) const;
 virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;
 virtual std::string get_rights(uvm_reg_map* map = NULL) const;
 virtual std::string get_access(uvm_reg_map* map = NULL) const;
 virtual unsigned int get_size() const;
 virtual unsigned int get_n_bytes() const;
 virtual unsigned int get_n_memlocs() const;
 virtual unsigned int get_incr() const;
 virtual void get_fields(std::vector<uvm_vreg_field*>& fields) const;
 virtual uvm_vreg_field* get_field_by_name(const std::string& name) const;
 virtual uvm_reg_addr_t get_offset_in_memory(unsigned long idx) const;

 virtual uvm_reg_addr_t get_address(unsigned long idx,
 const uvm_reg_map* map = NULL) const;

 // Group: HDL Access

 virtual void write(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void poke(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void peek(unsigned long idx,
 uvm_status_e& status,

269
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_data_t& value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 void reset(const std::string& kind = "HARD");

 // Group: Callbacks

 virtual void pre_write(unsigned long idx,
 uvm_reg_data_t& wdat,
 uvm_path_e& path,
 uvm_reg_map*& map);

 virtual void post_write(unsigned long idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

 virtual void pre_read(unsigned long idx,
 uvm_path_e& path,
 uvm_reg_map*& map);

 virtual void post_read(unsigned long idx,
 uvm_reg_data_t& rdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

 }; // class uvm_vreg

} // namespace uvm

15.9.2 Constructor

explicit uvm_vreg(const std::string& name, unsigned int n_bits);

The constructor shall reate an instance of a virtual register abstraction class with the specified name. The
argument n_bits specifies the total number of bits in a virtual register. Not all bits need to be mapped to a
virtual field. This value is usually a multiple of 8.

15.9.3 Initialization

15.9.3.1 configure

void configure(uvm_reg_block* parent,
 uvm_mem* mem = NULL,
 unsigned long size = 0,
 uvm_reg_addr_t offset = 0,
 unsigned int incr = 0);

The member function configure shall specify the parent block of this virtual register array. If one of the other
parameters are specified, the virtual register is assumed to be dynamic and can be later (re-)implemented using
the member function uvm_vreg::implement. If argument mem is specified, then the virtual register array is
assumed to be statically implemented in the memory corresponding to the specified memory abstraction class
and size, offset and incr also needs to be specified. Static virtual register arrays cannot be reimplemented.

15.9.3.2 implement

virtual bool implement(unsigned long n,
 uvm_mem* mem = NULL,
 uvm_reg_addr_t offset = 0,
 unsigned int incr = 0);

270
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function implement shall implement an array of virtual registers of the specified size, in the
specified memory and offset. If an offset increment is specified, each virtual register is implemented at the
specified offset increment from the previous one. If an offset increment of 0 is specified, virtual registers are
packed as closely as possible in the memory.

If no memory is specified, the virtual register array is in the same memory, at the same base offset using the
same offset increment as originally implemented. Only the number of virtual registers in the virtual register
array is modified.

The initial value of the newly-implemented or relocated set of virtual registers is whatever values are currently
stored in the memory now implementing them.

The member function shall return true if the memory can implement the number of virtual registers at the
specified base offset and offset increment. Returns FALSE otherwise.

The memory region used to implement a virtual register array is reserved in the memory allocation manager
associated with the memory to prevent it from being allocated for another purpose.

15.9.3.3 allocate

virtual uvm_mem_region* allocate(unsigned long n,
 uvm_mem_mam* mam);

The member function allocate shall implement a virtual register array of the specified size in a
randomly allocated region of the appropriate size in the address space managed by the specified memory
allocation manager. If a memory allocation policy is specified, it is passed to the member function
uvm_mem_mam::request_region.

The initial value of the newly-implemented or relocated set of virtual registers is whatever values are currently
stored in the memory region now implementing them.

The meber function shall return a reference to a uvm_mem_region memory region descriptor if the memory
allocation manager was able to allocate a region that can implement the virtual register array with the specified
allocation policy. Otherwise it shall returns NULL.

A region implementing a virtual register array shall not be released using the member
function uvm_mem_mam::release_region. It shall be released using the member function
uvm_vreg::release_region.

15.9.3.4 get_region

virtual uvm_mem_region* get_region() const;

The member function get_region shall return a reference to the uvm_mem_region memory region descriptor
that implements the virtual register array. The member function shall return NULL if the virtual registers
array is not currently implemented. A region implementing a virtual register array shall not be released using
the member function uvm_mem_mam::release_region, but shall be released using the member function
uvm_vreg::release_region.

15.9.3.5 release_region

virtual void release_region();

271
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function release_region shall release the memory region used to implement a virtual register array
and return it to the pool of available memory that can be allocated by the memory’s default allocation manager.
The virtual register array is subsequently considered as unimplemented and can no longer be accessed.

Statically-implemented virtual registers cannot be released.

15.9.4 Introspection

15.9.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this register.

15.9.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this register. The base of the
hierarchical name is the root block.

15.9.4.3 get_parent

virtual uvm_reg_block* get_parent() const;

The member function get_parent shall return the parent block.

15.9.4.4 get_memory

virtual uvm_mem* get_memory() const;

The member function get_memory shall return the memory where the virtual register array is implemented.

15.9.4.5 get_n_maps

virtual int get_n_maps() const;

The member function get_n_maps shall return the number of address maps this virtual register array is mapped
in.

15.9.4.6 is_in_map

bool is_in_map(uvm_reg_map* map) const;

The member function is_in_map shall return true if this virtual register array is in the specified address map,
otherwise return false.

15.9.4.7 get_maps

virtual void get_maps(std::vector<uvm_reg_map*>& maps) const;

272
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_maps shall return all of the address maps where this virtual register array is mapped.

15.9.4.8 get_rights

virtual std::string get_rights(uvm_reg_map* map = NULL) const;

The member function get_rights shall return the accessibility (“RW, “RO”, or “WO”) of this virtual register
array.

The access rights of a virtual register array is always “RW”, unless it is implemented in a shared memory with
access restriction in a particular address map. If no address map is specified and the memory is mapped in only
one address map, that address map is used. If the memory is mapped in more than one address map, the default
address map of the parent block is used. If an address map is specified and the memory is not mapped in the
specified address map, an error message is issued and “RW” is returned.

15.9.4.9 get_access

virtual std::string get_access(const uvm_reg_map* map = NULL) const;

The member function get_access shall return the access policy of the virtual register array when written and
read via an address map.

If the memory implementing the virtual register array is mapped in more than one address map, an address
map needs to be specified. If access restrictions are present when accessing a memory through the specified
address map, the access mode returned takes the access restrictions into account. For example, a read-write
memory accessed through a domain with read-only restrictions would return “RO”.

15.9.4.10 get_size

unsigned int get_size() const;

The member function get_size shall return the size of the virtual register array.

15.9.4.11 get_n_bytes

unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the width, in bytes, of a virtual register.

The width of a virtual register is always a multiple of the width of the memory locations used to implement it.
For example, a virtual register containing two 1-byte fields implemented in a memory with 4-bytes memory
locations is 4-byte wide.

15.9.4.12 get_n_memlocs

virtual unsigned int get_n_memlocs() const;

The member function get_n_memlocs shall return the number of memory locations used by a single virtual
register.

273
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.9.4.13 get_incr

virtual unsigned int get_incr() const;

The member function get_incr shall return the number of memory locations between two individual virtual
registers in the same array.

15.9.4.14 get_fields

virtual void get_fields(std::vector<uvm_vreg_field*>& fields) const;

The member function get_fields shall return the virtual fields in this virtual register. Fields are ordered from
least-significant position to most-significant position within the register.

15.9.4.15 get_field_by_name

virtual uvm_vreg_field* get_field_by_name(const std::string& name) const;

The member function get_field_by_name shall return the named virtual field in this virtual register. The
member function shall find a virtual field with the specified name in this register and returns its abstraction
class. If no fields are found, it returns NULL.

15.9.4.16 get_offset_in_memory

virtual uvm_reg_addr_t get_offset_in_memory(unsigned long idx) const;

The member function get_offset_in_memory shall return the base offset of the specified virtual register, in
the overall address space of the memory that implements the virtual register array.

15.9.4.17 get_address

virtual uvm_reg_addr_t get_address(unsigned long idx,
 const uvm_reg_map* map = NULL) const;

The member function get_address shall return the base external physical address of the specified virtual
register if accessed through the specified address map.

If no address map is specified and the memory implementing the virtual register array is mapped in only one
address map, that address map is used. If the memory is mapped in more than one address map, the default
address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address map, an error message
is issued.

15.9.5 HDL access

15.9.5.1 write

virtual void write(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,

274
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write shall write the specified value in the DUT memory location(s) that implements
the virtual register array that corresponds to this abstraction class instance using the specified access path.

If the memory implementing the virtual register array is mapped in more than one address map, an address
map shall be specified if a physical access is used (front-door access).

The operation is eventually mapped into set of memory-write operations at the location where the virtual
register specified by idx in the virtual register array is implemented.

15.9.5.2 read

virtual void read(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read shall read from the DUT memory location(s) that implements the virtual register
array that corresponds to this abstraction class instance using the specified access path and return the readback
value.

If the memory implementing the virtual register array is mapped in more than one address map, an address
map shall be specified if a physical access is used (front-door access).

The operation is eventually mapped into set of memory-read operations at the location where the virtual register
specified by idx in the virtual register array is implemented.

15.9.5.3 poke

virtual void poke(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function poke shall deposit the specified value in the DUT memory location(s) that implements
the virtual register array that corresponds to this abstraction class instance using the memory backdoor access.

The operation is eventually mapped into set of memory-poke operations at the location where the virtual
register specified by idx in the virtual register array is implemented.

15.9.5.4 peek

virtual void peek(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",

275
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 int lineno = 0);

The member function peek shall sample the current value in a virtual register.

It samples the DUT memory location(s) that implements the virtual register array that corresponds to this
abstraction class instance using the memory backdoor access, and return the sampled value. The operation is
eventually mapped into set of memory-peek operations at the location where the virtual register specified by
idx in the virtual register array is implemented.

15.9.5.5 reset

void reset(const std::string& kind = "HARD");

The member function reset shall reset the semaphore that prevents concurrent access to the virtual register.
This semaphore shall be explicitly reset if a thread accessing this virtual register array was killed in before
the access was completed

15.9.6 Callbacks

15.9.6.1 pre_write

virtual void pre_write(unsigned long idx,
 uvm_reg_data_t& wdat,
 uvm_path_e& path,
 uvm_reg_map*& map);

The member function pre_write shall be called before virtual register write.

If the specified data value, access path or address map are modified, the updated data value, access path or
address map shall be used to perform the virtual register operation. The registered callback methods are invoked
after the invocation of this member function. All register callbacks are executed after the corresponding field
callbacks The pre-write virtual register and field callbacks are executed before the corresponding pre-write
memory callbacks.

15.9.6.2 post_write

virtual void post_write(unsigned long idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

The member function post_write shall be called after virtual register write.

If the specified status is modified, the updated status shall be returned by the virtual register operation. The
registered callback methods are invoked before the invocation of this member function. All register callbacks
are executed before the corresponding field callbacks The post-write virtual register and field callbacks are
executed after the corresponding post-write memory callbacks.

15.9.6.3 pre_read

virtual void pre_read(unsigned long idx,
 uvm_path_e& path,
 uvm_reg_map*& map);

276
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function pre_read shall be called before virtual register read.

If the specified access path or address map are modified, the updated access path or address map shall be
used to perform the register operation. The registered callback methods are invoked after the invocation of
this member function. All register callbacks are executed after the corresponding field callbacks The pre-read
virtual register and field callbacks are executed before the corresponding pre-read memory callbacks.

15.9.6.4 post_read

virtual void post_read(unsigned long idx,
 uvm_reg_data_t& rdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

The member function post_read shall be called after virtual register read.

If the specified readback data or status is modified, the updated readback data or status shall be returned by the
register operation. The registered callback methods are invoked before the invocation of this member function.
All register callbacks are executed before the corresponding field callbacks The post-read virtual register and
field callbacks are executed after the corresponding post-read memory callbacks.

15.10 uvm_vreg_cbs

The class uvm_vreg_cbs shall define virtual register facade class.

15.10.1 Member functions

15.10.1.1 pre_write

virtual void pre_write(uvm_vreg* rg,
 unsigned long idx,
 uvm_reg_data_t& wdat,
 uvm_path_e& path,
 uvm_reg_map*& map);

The member function pre_write shall be called before virtual register write.

The registered callback methods are invoked after the invocation of the member function
uvm_vreg::pre_write. All virtual register callbacks are executed after the corresponding virtual field callbacks
The pre-write virtual register and field callbacks are executed before the corresponding pre-write memory
callbacks.

The written value wdat, access path and address map, if modified, modifies the actual value, access path or
address map used in the virtual register operation.

15.10.1.2 post_write

virtual void post_write(uvm_vreg* rg,
 unsigned long idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

The member function post_write shall be called after virtual register write.

277
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The registered callback methods are invoked before the invocation of the member function
uvm_reg::post_write. All register callbacks are executed before the corresponding virtual field callbacks
The post-write virtual register and field callbacks are executed after the corresponding post-write memory
callbacks.

The status of the operation, if modified, modifies the actual returned status.

15.10.1.3 pre_read

virtual void pre_read(uvm_vreg* rg,
 unsigned long idx,
 uvm_path_e& path,
 uvm_reg_map*& map);

The member function pre_read shall be called before virtual register read.

The registered callback methods are invoked after the invocation of the member function uvm_reg::pre_read.
All register callbacks are executed after the corresponding virtual field callbacks The pre-read virtual register
and field callbacks are executed before the corresponding pre-read memory callbacks.

The access path and address map, if modified, modifies the actual access path or address map used in the
register operation.

15.10.1.4 post_read

virtual void post_read(uvm_vreg* rg,
 unsigned idx,
 uvm_reg_data_t& rdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

The member function post_read shall be called after virtual register read.

The registered callback methods are invoked before the invocation of the member function
uvm_reg::post_read. All register callbacks are executed before the corresponding virtual field callbacks The
post-read virtual register and field callbacks are executed after the corresponding post-read memory callbacks.

The readback value rdat and the status of the operation, if modified, modifies the actual returned readback
value and status.

15.11 uvm_vreg_field

The class uvm_vreg_field shall define the virtual field abstraction class. A virtual field represents a set of
adjacent bits that are logically implemented in consecutive memory locations.

15.11.1 Class definition

namespace uvm {

 class uvm_vreg_field : public uvm_object
 {
 public:

 // Constructor
 explicit uvm_vreg_field(const std::string& name = "uvm_vreg_field");

278
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 // Group: Initialization

 void configure(uvm_vreg* parent,
 unsigned int size,
 unsigned int lsb_pos);

 // Group: Introspection

 virtual cnst std::string get_name() const;
 virtual const std::string get_full_name() const;
 virtual uvm_vreg* get_parent() const;
 virtual unsigned int get_lsb_pos_in_register() const;
 virtual unsigned int get_n_bits() const;
 virtual std::string get_access(uvm_reg_map* map = NULL) const;

 // Group: HDL access

 virtual void write(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void poke(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void peek(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 // Group: Callbacks

 virtual void pre_write(unsigned long idx,
 uvm_reg_data_t& wdat,
 uvm_path_e& path,
 uvm_reg_map*& map);

 virtual void post_write(unsigned long idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

 virtual void pre_read(unsigned long idx,
 uvm_path_e& path,
 uvm_reg_map*& map);

 virtual void post_read(unsigned long idx,
 uvm_reg_data_t& rdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

 }; // class uvm_vreg_field

279
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} // namespace uvm

15.11.2 Constructor

 explicit uvm_vreg_field(const std::string& name = "uvm_vreg_field");

The constructor shall reate an instance of a virtual field instance with the specified name. The constructor shall
not be called directly. An application shall use the uvm_vreg_field::type_id::create member function instead.

15.11.3 Initialization

15.11.3.1 configure

void configure(uvm_vreg* parent,
 unsigned int size,
 unsigned int lsb_pos);

The member function configure shall specify the parent virtual register of this virtual field, its size in bits,
and the position of its least-significant bit lsb_pos within the virtual register relative to the least-significant
bit of the virtual register.

15.11.4 Introspection

15.11.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this this virtual field.

15.11.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this virtual field. The base of the
hierarchical name is the root block.

15.11.4.3 get_parent

virtual uvm_reg_block* get_parent() const;

The member function get_parent shall return the parent virtual register.

15.11.4.4 get_lsb_pos_in_register

virtual unsigned int get_lsb_pos_in_register() const;

The member function get_lsb_pos_in_register shall return the index of the least significant bit of the virtual
field in the virtual register that instantiates it. An offset of 0 indicates a field that is aligned with the least-
significant bit of the register.

280
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.11.4.5 get_n_bits

virtual unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in bits, of the virtual field.

15.11.4.6 get_access

virtual std::string get_access(const uvm_reg_map* map = NULL) const;

The member function get_access shall return the access policy of the virtual field register when written and
read via an address map.

If the memory implementing the virtual field is mapped in more than one address map, an address map shall be
specified. If access restrictions are present when accessing a memory through the specified address map, the
access mode returned takes the access restrictions into account. For example, a read-write memory accessed
through an address map with read-only restrictions would return “RO”.

15.11.5 HDL access

15.11.5.1 write

virtual void write(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write shall write the specified value in the DUT memory location(s) that implements
the virtual field that corresponds to this abstraction class instance using the specified access path.

If the memory implementing the virtual register array containing this virtual field is mapped in more than one
address map, an address map shall be specified if a physical access is used (front-door access).

The operation is eventually mapped into memory read-modify-write operations at the location where the virtual
register specified by idx in the virtual register array is implemented. If a backdoor is available for the memory
implementing the virtual field, it shall be used for the memory-read operation.

15.11.5.2 read

virtual void read(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read shall read from the DUT memory location(s) that implements the virtual field that
corresponds to this abstraction class instance using the specified access path, and return the readback value.

281
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If the memory implementing the virtual register array containing this virtual field is mapped in more than one
address map, an address map shall be specified if a physical access is used (front-door access).

The operation is eventually mapped into memory read operations at the location(s) where the virtual register
specified by idx in the virtual register array is implemented.

15.11.5.3 poke

virtual void poke(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function poke shall deposit the specified value in the DUT memory location(s) that implements
the virtual field that corresponds to this abstraction class instance using the specified access path.

The operation is eventually mapped into memory peek-modify-poke operations at the location where the virtual
register specified by idx in the virtual register array is implemented.

15.11.5.4 peek

virtual void peek(unsigned long idx,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function peek shall sample from the DUT memory location(s) that implements the virtual field
that corresponds to this abstraction class instance using the specified access path, and return the readback value.

If the memory implementing the virtual register array containing this virtual field is mapped in more than one
address map, an address map shall be specified if a physical access is used (front-door access).

The operation is eventually mapped into memory peek operations at the location(s) where the virtual register
specified by idx in the virtual register array is implemented.

15.11.6 Callbacks

15.11.6.1 pre_write

virtual void pre_write(unsigned long idx,
 uvm_reg_data_t& wdat,
 uvm_path_e& path,
 uvm_reg_map*& map);

The member function pre_write shall be called before virtual field write.

If the specified data value, access path or address map are modified, the updated data value, access path or
address map shall be used to perform the virtual register operation.

The virtual field callback member functions are invoked before the callback member functions on the
containing virtual register. The registered callback member functions are invoked after the invocation of this

282
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

member function. The pre-write virtual register and field callbacks are executed before the corresponding pre-
write memory callbacks.

15.11.6.2 post_write

virtual void post_write(unsigned long idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

The member function post_write shall be called after virtual field write.

If the specified status is modified, the updated status shall be returned by the virtual register operation.

The virtual field callback member functions are invoked after the callback member functions on the containing
virtual register. The registered callback member functions are invoked before the invocation of this member
function. The post-write virtual register and field callbacks are executed after the corresponding post-write
memory callbacks.

15.11.6.3 pre_read

virtual void pre_read(unsigned long idx,
 uvm_path_e& path,
 uvm_reg_map*& map);

The member function pre_read shall be called before virtual field read.

If the specified access path or address map are modified, the updated access path or address map shall be used
to perform the virtual register operation.

The virtual field callback member functions are invoked after the callback member functions on the containing
virtual register. The registered callback member functions are invoked after the invocation of this member
function. The pre-read virtual register and field callbacks are executed before the corresponding pre-read
memory callbacks

15.11.6.4 post_read

virtual void post_read(unsigned long idx,
 uvm_reg_data_t& rdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

The member function post_read shall be called after virtual register read.

If the specified readback data rdat or status is modified, the updated readback data or status shall be returned
by the virtual register operation.

The virtual field callback member functions are invoked after the callback member functions on the containing
virtual register. The registered callback member functions are invoked before the invocation of this member
function. The post-read virtual register and field callbacks are executed after the corresponding post-read
memory callbacks.

283
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.12 uvm_vreg_field_cbs

The class uvm_vreg_field_cbs shall define virtual fields facade class.

15.12.1 Class definition

namespace uvm {

 class uvm_vreg_field_cbs : public uvm_callback
 {
 public:
 virtual void pre_write(uvm_vreg_field* field,
 unsigned long idx,
 uvm_reg_data_t& wdat,
 uvm_path_e& path,
 uvm_reg_map*& map);

 virtual void post_write(uvm_vreg_field* field,
 unsigned long idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

 virtual void pre_read(uvm_vreg_field* field,
 unsigned long idx,
 uvm_path_e& path,
 uvm_reg_map*& map);

 virtual void post_read(uvm_vreg_field* field,
 unsigned long idx,
 uvm_reg_data_t& rdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

 }; // class uvm_vreg_field_cbs

} // namespace uvm

15.12.2 Member functions

15.12.2.1 pre_write

virtual void pre_write(uvm_vreg_field* field,
 unsigned long idx,
 uvm_reg_data_t& wdat,
 uvm_path_e& path,
 uvm_reg_map*& map);

The member function pre_write shall be called before virtual field write.

The registered callback member functions are invoked before the invocation of the virtual register pre-write
callbacks and after the invocation of the member function uvm_vreg_field::pre_write.

The written value wdat, access path and address map, if modified, modifies the actual value, access path or
address map used in the register operation.

15.12.2.2 post_write

virtual void post_write(uvm_vreg_field* field,
 unsigned long idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map* map,

284
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_status_e& status);

The member function post_write shall be called after virtual field write.

The registered callback member functions are invoked after the invocation of the virtual register post-write
callbacks and before the invocation of the member function uvm_vreg_field::post_write.

The status of the operation, if modified, modifies the actual returned status.

15.12.2.3 pre_read

virtual void pre_read(uvm_vreg_field* field,
 unsigned long idx,
 uvm_path_e& path,
 uvm_reg_map*& map);

The member function pre_read shall be called before virtual field read.

The registered callback member functions are invoked after the invocation of the virtual register pre-read
callbacks and after the invocation of the member function uvm_vreg_field::pre_read.

The access path and address map, if modified, modifies the actual access path or address map used in the
register operation.

15.12.2.4 post_read

virtual void post_read(uvm_vreg_field* field,
 unsigned long idx,
 uvm_reg_data_t& rdat,
 uvm_path_e path,
 uvm_reg_map* map,
 uvm_status_e& status);

The member function post_read shall be called after virtual field read.

The registered callback member functions are invoked after the invocation of the virtual register post-read
callbacks and before the invocation of the member function uvm_vreg_field::post_read.

The readback value rdat and the status of the operation, if modified, modifies the actual returned readback
value and status.

15.13 uvm_reg_cbs

The class uvm_reg_cbs shall define the facade class for field, register, memory and backdoor access callback
member functions.

15.13.1 Class definition

namespace uvm {

 class uvm_reg_cbs : public uvm_callback
 {
 public:

 virtual void pre_write(uvm_reg_item* rw);
 virtual void post_write(uvm_reg_item* rw);
 virtual void pre_read(uvm_reg_item* rw);

285
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void post_read(uvm_reg_item* rw);

 virtual void post_predict(uvm_reg_field* fld,
 uvm_reg_data_t previous,
 uvm_reg_data_t value,
 uvm_predict_e kind,
 uvm_path_e path,
 uvm_reg_map* map);

 virtual void encode(std::vector<uvm_reg_data_t>& data);
 virtual void decode(std::vector<uvm_reg_data_t>& data);

 }; // class uvm_reg_cbs

} // namespace uvm

15.13.2 Member functions

15.13.2.1 pre_write

virtual void pre_write(uvm_reg_item* rw);

The member function pre_write shall be called before a write operation.

All registered pre_write callback member functions are invoked after the invocation of the member function
pre_write of associated object (uvm_reg, uvm_reg_field, uvm_mem, or uvm_reg_backdoor). If the element
being written is a uvm_reg, all pre_write callback member functions are invoked before the contained
uvm_reg_fields.

— Backdoor: uvm_reg_backdoor::pre_write, uvm_reg_cbs::pre_write callbacks for backdoor.
— Register: uvm_reg::pre_write, uvm_reg_cbs::pre_write callbacks for reg, then for each field:

uvm_reg_field::pre_write, uvm_reg_cbs::pre_write callbacks for field.
— RegField: uvm_reg_field::pre_write, uvm_reg_cbs::pre_write callbacks for field
— Memory: uvm_mem::pre_write, uvm_reg_cbs::pre_write callbacks for mem.

The argument rw holds information about the operation.
— Modifying the value modifies the actual value written.
— For memories, modifying the offset modifies the offset used in the operation.
— For non-backdoor operations, modifying the access path or address map modifies the actual path or

map used in the operation.

If the rw.status is modified to anything other than UVM_IS_OK, the operation is aborted. See Section 16.1
for details on rw information.

15.13.2.2 post_write

virtual void post_write(uvm_reg_item* rw);

The member function post_write shall be called after a write operation.

All registered post_write callback member functions are invoked before the invocation of the member function
post_write of the associated object (uvm_reg, uvm_reg_field, uvm_mem, or uvm_reg_backdoor). If the
element being written is a uvm_reg, all post_write callback member functions are invoked before the
contained uvm_reg_fields.

— Backdoor: uvm_reg_cbs::post_write callbacks for backdoor, uvm_reg_backdoor::post_write.

286
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— Register uvm_reg_cbs::post_write callbacks for reg, uvm_reg::post_write, then for each field:
uvm_reg_cbs::post_write callbacks for field, uvm_reg_field::post_read.

— RegField uvm_reg_cbs::post_write callbacks for field, uvm_reg_field::post_write.
— Memory uvm_reg_cbs::post_write callbacks for mem, uvm_mem::post_write.

The argument rw holds information about the operation.
— Modifying the status member modifies the returned status.
— Modifying the value or offset members has no effect, as the operation has already completed.

See Section 16.1 for details on rw information.

15.13.2.3 pre_read

virtual void pre_read(uvm_reg_item* rw);

The member function pre_read shall be called before a read operation.

All registered pre_read callback member functions are invoked after the invocation of the pre_read
member function of associated object (uvm_reg, uvm_reg_field, uvm_mem, or uvm_reg_backdoor). If the
element being read is a uvm_reg, all pre_read callback member functions are invoked before the contained
uvm_reg_fields.

— Backdoor: uvm_reg_backdoor::pre_read, uvm_reg_cbs::pre_read callbacks for backdoor.
— Register: uvm_reg::pre_read, uvm_reg_cbs::pre_read callbacks for reg, then for each field:

uvm_reg_field::pre_read, uvm_reg_cbs::pre_read callbacks for field.
— RegField: uvm_reg_field::pre_read, uvm_reg_cbs::pre_read callbacks for field.
— Memory: uvm_mem::pre_read, uvm_reg_cbs::pre_read callbacks for mem.

The argument rw holds information about the operation.
— The value member of rw is not used has no effect if modified.
— For memories, modifying the offset modifies the offset used in the operation.
— For non-backdoor operations, modifying the access path or address map modifies the actual path or

map used in the operation.

If the rw.status is modified to anything other than UVM_IS_OK, the operation is aborted.

See Section 16.1 for details on rw information.

15.13.2.4 post_read

virtual void post_read(uvm_reg_item* rw);

The member function post_read shall be called after a read operation.

All registered post_read callback member functions are invoked before the invocation of the member function
post_read of the associated object (uvm_reg, uvm_reg_field, uvm_mem, or uvm_reg_backdoor). If the
element being read is a uvm_reg, all post_read callback member functions are invoked before the contained
uvm_reg_fields.

— Backdoor uvm_reg_cbs::post_read callbacks for backdoor, uvm_reg_backdoor::post_read.

287
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— Register: uvm_reg_cbs::post_read callbacks for reg, uvm_reg::post_read, then for each field:
uvm_reg_cbs::post_read callbacks for field, uvm_reg_field::post_read.

— RegField: uvm_reg_cbs::post_read callbacks for field, uvm_reg_field::post_read.
— Memory: uvm_reg_cbs::post_read callbacks for mem, uvm_mem::post_read.
—

The argument rw holds information about the operation.
— Modifying the readback value or status modifies the actual returned value and status.
— Modifying the value or offset members has no effect, as the operation has already completed.

See Section 16.1 for details on rw information.

15.13.2.5 post_predict

virtual void post_predict(uvm_reg_field* fld,
 uvm_reg_data_t previous,
 uvm_reg_data_t value,
 uvm_predict_e kind,
 uvm_path_e path,
 uvm_reg_map* map);

The member function post_predict shall be called by the member function uvm_reg_field::predict after a
successful UVM_PREDICT_READ or UVM_PREDICT_WRITE prediction. The argument previous is the
previous value in the mirror and the argument value is the latest predicted value. Any change to value shall
modify the predicted mirror value.

15.13.2.6 encode

virtual void encode(std::vector<uvm_reg_data_t>& data);

The member function encode shall encode the data.

The registered callback member functions are invoked in order of registration after all the member functions
pre_write have been called. The encoded data is passed through each invocation in sequence. This allows the
member functions pre_write to deal with clear-text data.

By default, the data is not modified.

15.13.2.7 decode

virtual void decode(std::vector<uvm_reg_data_t>& data);

The member function decode shall decode the data.

The registered callback member functions are invoked in reverse order of registration before all the member
functions post_read are called. The decoded data is passed through each invocation in sequence. This allows
the member functions post_read to deal with clear-text data.

The reversal of the invocation order is to allow the decoding of the data to be performed in the opposite order
of the encoding with both operations specified in the same callback extension.

By default, the data is not modified.

288
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.14 uvm_mem_mam

The class uvm_mem_mam manages the exclusive allocation of consecutive memory locations called regions.
The regions can subsequently be accessed like little memories of their own, without knowing in which memory
or offset they are actually located.

The memory allocation manager should be used by any application-level process that requires reserved space
in the memory, such as DMA buffers.

A region shall remain reserved until it is explicitly released.

15.14.1 Class definition

namespace uvm {

 class uvm_mem_mam
 {
 public:

 // Constructor

 explicit uvm_mem_mam(const std::string& name,
 uvm_mem_mam_cfg* cfg,
 uvm_mem* mem = NULL);

 // Group: Initialization

 uvm_mem_mam_cfg* reconfigure(uvm_mem_mam_cfg* cfg = NULL);

 // Group: Memory Management

 uvm_mem_region* reserve_region(unsigned long start_offset,
 unsigned int n_bytes,
 const std::string& fname = "",
 int lineno = 0);

 uvm_mem_region* request_region(unsigned int n_bytes,
 uvm_mem_mam_policy* alloc = NULL,
 const std::string& fname = "",
 int lineno = 0);

 void release_region(uvm_mem_region* region);
 void release_all_regions();

 // Group: Introspection

 std::string convert2string();
 uvm_mem_region* for_each(bool reset = false);
 uvm_mem* get_memory() const;

 // Data members

 uvm_mem_mam_policy* default_alloc;

 // Type definitions

 typedef enum { GREEDY, THRIFTY } alloc_mode_e;
 typedef enum { BROAD, NEARBY } locality_e;

 }; // class uvm_mem_mam

} // namespace uvm

15.14.2 Constructor

explicit uvm_mem_mam(const std::string& name,
 uvm_mem_mam_cfg* cfg,
 uvm_mem* mem = NULL);

289
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The constructor shall create an instance of a memory allocation manager with the specified name and
configuration cfg. This instance manages all memory region allocation within the address range specified in
the configuration descriptor.

If a reference to a memory abstraction class is provided, the memory locations within the regions can
be accessed through the region descriptor, using the member functions uvm_mem_region::read and
uvm_mem_region::write.

15.14.3 Initialization

15.14.3.1 reconfigure

uvm_mem_mam_cfg* reconfigure(uvm_mem_mam_cfg* cfg = NULL);

The member function reconfigure shall modify the maximum and minimum addresses of the address space
managed by the allocation manager, allocation mode, or locality. The number of bytes per memory location
cannot be modified once an allocation manager has been constructed. All currently allocated regions shall fall
within the new address space.

The member function shall return the previous configuration.

If no new configuration is specified, it shall return the current configuration.

15.14.4 Memory management

15.14.4.1 reserve_region

uvm_mem_region* reserve_region(unsigned long start_offset,
 unsigned int n_bytes,
 const std::string& fname = "",
 int lineno = 0);

The member function reserve_region shall reserve a memory region of the specified number of bytes starting
at the specified offset. A descriptor of the reserved region is returned. If the specified region cannot be reserved,
the member function shall return NULL.

It shall not be possible to reserve a region because it overlaps with an already-allocated region or it lies outside
the address range managed by the memory manager.

Regions can be reserved to create “holes” in the managed address space.

15.14.4.2 request_region

uvm_mem_region* request_region(unsigned int n_bytes,
 uvm_mem_mam_policy* alloc = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function request_region shall request and reserve a memory region of the specified number of
bytes starting at a random location. If an policy is specified, it is randomized to determine the start offset of
the region. If no policy is specified, the policy found in the uvm_mem_mam::default_alloc class property is
randomized.

A descriptor of the allocated region is returned. If no region can be allocated, the member function shall return
NULL.

290
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

It shall not be possible to allocate a region because there is no area in the memory with enough consecutive
locations to meet the size requirements or because there is another contradiction when randomizing the policy.

If the memory allocation is configured to THRIFTY or NEARBY, a suitable region is first sought
procedurally.

15.14.4.3 release_region

void release_region(uvm_mem_region* region);

The member function release_region shall release a previously allocated memory region. An error is issued
if the specified region has not been previously allocated or is no longer allocated.

15.14.4.4 release_all_regions

void release_all_regions();

The member function release_all_regions shall forcibly release all allocated memory regions.

15.14.5 Introspection

15.14.5.1 convert2string

std::string convert2string();

The member function convert2string shall return a human-readable description of the state of the memory
manager and the currently allocated regions.

15.14.5.2 for_each

uvm_mem_region* for_each(bool reset = false);

The member function for_each shall iterate over all currently allocated regions, If argument reset is set to true,
it shall reset the iterator and return the first allocated region. It shall return NULL when there are no additional
allocated regions to iterate on.

15.14.5.3 get_memory

uvm_mem* get_memory() const;

The member function get_memory shall return the reference to the memory abstraction class for the memory
implementing the locations managed by this instance of the allocation manager. It shall return NULL if no
memory abstraction class was specified at construction time.

15.14.6 Data members

15.14.6.1 default_alloc

uvm_mem_mam_policy* default_alloc;

The data member default_alloc shall define the region allocation policy. This object is repeatedly randomized
when allocating new regions.

291
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.14.7 Type definitions

15.14.7.1 alloc_mode_e

typedef enum { GREEDY, THRIFTY } alloc_mode_e;

The type definition alloc_mode_e shall define an enumeration type to specify how to allocate a memory region:
— GREEDY: Consume new, previously unallocated memory
— THRIFTY: Reused previously released memory as much as possible.

15.14.7.2 locality_e

typedef enum { BROAD, NEARBY } locality_e;

The type definition locality_e shall define an enumeration type to specify where to locate new memory regions:
— BROAD: Locate new regions randomly throughout the address space.
— NEARBY: Locate new regions adjacent to existing regions.

15.15 uvm_mem_region

The class uvm_mem_region shall specify the allocated memory region.

Instances of this class are created only by the memory manager, and returned by the member functions
uvm_mem_mam::reserve_region and uvm_mem_mam::request_region.

15.15.1 Class definition

namespace uvm {

 class uvm_mem_region
 {
 public:

 unsigned long get_start_offset() const;
 unsigned long get_end_offset() const;
 unsigned int get_len() const;
 unsigned int get_n_bytes() const;
 void release_region();
 uvm_mem* get_memory() const;
 uvm_vreg* get_virtual_registers() const;

 void write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 void read(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",

292
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 int lineno = 0);

 void burst_write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t> value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 void burst_read(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t>& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 void poke(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 void peek(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 }; // class uvm_mem_region

} // namespace uvm

15.15.2 Member functions

15.15.2.1 get_start_offset

unsigned long get_start_offset() const;

The member function get_start_offset shall return the address offset, within the memory, where this memory
region starts.

15.15.2.2 get_end_offset

unsigned long get_end_offset() const;

The member function get_end_offset shall return the address offset, within the memory, where this memory
region ends.

15.15.2.3 get_len

unsigned int get_len() const;

293
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_len shall return the number of consecutive memory locations (not necessarily bytes)
in the allocated region.

15.15.2.4 get_n_bytes

unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the number of consecutive bytes in the allocated region. If the
managed memory contains more than one byte per address, the number of bytes in an allocated region may be
greater than the number of requested or reserved bytes.

15.15.2.5 release_region

void release_region();

The member function release_region shall release this region.

15.15.2.6 get_memory

uvm_mem* get_memory() const;

The member function get_memory shall return a reference to the memory abstraction class for the memory
implementing this allocated memory region. It shall return NULL if no memory abstraction class was specified
for the allocation manager that allocated this region.

15.15.2.7 get_virtual_registers

uvm_vreg* get_virtual_registers() const;

The member function get_virtual_registers shall return a reference to the virtual register array abstraction
class implemented in this region. It shall return NULL if the memory region is not known to implement virtual
registers.

15.15.2.8 write

void write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write shall write to the memory location that corresponds to the specified offset within
this region. Requires that the memory abstraction class be associated with the memory allocation manager that
allocated this region.

See Section 15.6.5.1 for more details.

15.15.2.9 read

void read(uvm_status_e& status,

294
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read shall read from the memory location that corresponds to the specified offset within
this region. Requires that the memory abstraction class be associated with the memory allocation manager that
allocated this region.

See Section 15.6.5.2 for more details.

15.15.2.10 burst_write

void burst_write(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t> value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function burst_write shall write to the memory locations that corresponds to the specified burst
within this region. Requires that the memory abstraction class be associated with the memory allocation
manager that allocated this region.

See Section 15.6.5.3 for more details.

15.15.2.11 burst_read

void burst_read(uvm_status_e& status,
 uvm_reg_addr_t offset,
 std::vector<uvm_reg_data_t>& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 uvm_sequence_base* parent = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function burst_read shall read from the memory locations that corresponds to the specified
burst within this region. Requires that the memory abstraction class be associated with the memory allocation
manager that allocated this region.

See Section 15.6.5.4 for more details.

15.15.2.12 poke

void poke(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",

295
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 int lineno = 0);

The member function poke shall deposit the specified value in the memory location that corresponds to the
specified offset within this region. Requires that the memory abstraction class be associated with the memory
allocation manager that allocated this region.

See Section 15.6.5.5 for more details.

15.15.2.13 peek

void peek(uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_sequence_base* parent = NULL,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function peek shall sample the memory location that corresponds to the specified offset within
this region. Requires that the memory abstraction class be associated with the memory allocation manager that
allocated this region.

See Section 15.6.5.6 for more details.

15.16 Global declarations

This subclause defines the globally available types, enums, and utility classes as part of the UVM register layer.

15.16.1 Types

15.16.1.1 uvm_reg_data_t

The type uvm_reg_data_t shall define a 2-state data value with UVM_REG_DATA_WIDTH bits.
Depending on the size of UVM_REG_DATA_WIDTH, the appropriate SystemC data type is selected.

15.16.1.2 uvm_reg_data_logic_t

The type uvm_reg_data_logic_t shall define a 4-state data value with UVM_REG_DATA_WIDTH bits.
Depending on the size of UVM_REG_DATA_WIDTH, the appropriate SystemC data type is selected.

15.16.1.3 uvm_reg_addr_t

The type uvm_reg_addr_t shall define a 2-state address value with UVM_REG_ADDR_WIDTH bits.
Depending on the size of UVM_REG_ADDR_WIDTH, the appropriate SystemC data type is selected.

15.16.1.4 uvm_reg_addr_logic_t

The type uvm_reg_addr_logic_t shall define a 4-state address value with UVM_REG_ADDR_WIDTH bits.
Depending on the size of UVM_REG_ADDR_WIDTH, the appropriate SystemC data type is selected.

296
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.16.1.5 uvm_reg_byte_en_t

The type uvm_reg_byte_en_t shall define a 2-state byte_enable value
with UVM_REG_BYTENABLE_WIDTH bits. Depending on the size of
UVM_REG_BYTENABLE_WIDTH, the appropriate SystemC data type is selected.

15.16.1.6 uvm_reg_cvr_t

The type uvm_reg_cvr_t shall define a coverage model value set with UVM_REG_CVR_WIDTH bits.
Symbolic values for individual coverage models are defined by the uvm_coverage_model_e type. The
following bits in the set are assigned as follows

Table 15.2—Bits

0-7 UVM pre-defined coverage models
8-15 Coverage models defined by EDA vendors, implemented in a register model generator.
8-15 Coverage models defined
16-23 User-defined coverage models
24.. Reserved

NOTE—Coverage is not yet supported in UVM-SystemC.

15.16.1.7 uvm_hdl_path_slice

namespace uvm {
 typedef struct
 {
 std::string path;
 int offset;
 int size;
 } uvm_hdl_path_slice;

}

The type uvm_hdl_path_slice shall define a slice of an HDL path. It shall specify the HDL variable that
corresponds to all or a portion of a register:

— path: Path to the HDL variable.
— offset: Offset of the LSB in the register that this variable implements.
— size: Number of bits (toward the MSB) that this variable implements.

If the HDL variable implements all of the register, offset and size are specified as -1.

15.16.2 Enumerations

15.16.2.1 uvm_status_e

The enumeration uvm_status_e shall return the status for register operations:
— UVM_IS_OK: Operation completed successfully.
— UVM_NOT_OK: Operation completed with error.
— UVM_HAS_X: Operation completed successfully bit had unknown bits.

15.16.2.2 uvm_path_e

The enumeration uvm_path_e shall define the path used for register operation:

297
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— UVM_FRONTDOOR: Use the front door.
— UVM_BACKDOOR: Use the back door.
— UVM_PREDICT: Operation derived from observations by a bus monitor via the class

uvm_reg_predictor.
— UVM_DEFAULT_PATH: Operation specified by the context.

15.16.2.3 uvm_check_e

The enumeration uvm_check_e shall define the values for read-only or read-and-check:
— UVM_NO_CHECK: Read only.
— UVM_CHECK: Read and check.

15.16.2.4 uvm_endianness_e

The enumeration uvm_endianness_e shall specify the byte ordering:
— UVM_NO_ENDIAN: Byte ordering not applicable.
— UVM_LITTLE_ENDIAN: Least-significant bytes first in consecutive addresses.
— UVM_BIG_ENDIAN: Most-significant bytes first in consecutive addresses.
— UVM_LITTLE_FIFO: Least-significant bytes first at the same address.
— UVM_BIG_FIFO: Most-significant bytes first at the same address.

15.16.2.5 uvm_elem_kind_e

The enumeration uvm_elem_kind_e shall define the type of element being read or written:
— UVM_REG: Register.
— UVM_FIELD: Field.
— UVM_MEM: Memory location.

15.16.2.6 uvm_access_e

The enumeration uvm_access_e shall define the type of operation being performed:
— UVM_READ: Read operation.
— UVM_WRITE: Write operation.

15.16.2.7 uvm_hier_e

The enumeration uvm_hier_e shall define whether to provide the requested information from a hierarchical
context:

— UVM_NO_HIER: Provide info from the local context.
— UVM_HIER: Provide info based on the hierarchical context.

15.16.2.8 uvm_predict_e

The enumeration uvm_predict_e shall define how the mirror is to be updated:
— UVM_PREDICT_DIRECT: Predicted value is as-is.
— UVM_PREDICT_READ: Predict based on the specified value having been read.
— UVM_PREDICT_WRITE: Predict based on the specified value having been written.

298
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.16.2.9 uvm_coverage_model_e

The enumeration uvm_coverage_model_e shall define coverage models available or desired. Multiple models
may be specified by bitwise OR’ing individual model identifiers:

— UVM_NO_COVERAGE: None.
— UVM_CVR_REG_BITS: Individual register bits.
— UVM_CVR_ADDR_MAP: Individual register and memory addresses.
— UVM_CVR_FIELD_VALS: Field values.
— UVM_CVR_ALL: All coverage models.

NOTE—Coverage is not yet supported in UVM-SystemC.

15.16.2.10 uvm_reg_mem_tests_e

The enumeration uvm_reg_mem_tests_e shall select which pre-defined test sequence to execute. Multiple
test sequences may be selected by bitwise OR’ing their respective symbolic values:

— UVM_DO_REG_HW_RESET: Run uvm_reg_hw_reset_seq.
— UVM_DO_REG_BIT_BASH: Run uvm_reg_bit_bash_seq.
— UVM_DO_REG_ACCESS: Run uvm_reg_access_seq.
— UVM_DO_MEM_ACCESS: Run uvm_mem_access_seq.
— UVM_DO_SHARED_ACCESS: Run uvm_reg_mem_shared_access_seq.
— UVM_DO_MEM_WALK: Run uvm_mem_walk_seq.
— UVM_DO_ALL_REG_MEM_TESTS: Run all of the above.

Test sequences, when selected, are executed in the order in which they are specified above.

NOTE—UVM-SystemC only contains the pre-defined test sequence uvm_reg_bit_bash_seq.

299
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16. Register interaction with DUT

This clause defines classes to enable generic register read-write operations and classes to convert transactions
between these generic register read-write operations and physical bus accesses.

The following classes are defined:
— uvm_reg_item
— uvm_reg_bus_op
— uvm_reg_adapter
— uvm_reg_tlm_adapter
— uvm_reg_predictor
— uvm_reg_sequence
— uvm_reg_frontdoor

The class uvm_reg_item defines the abstract register transaction item. The class uvm_reg_bus_op defines
a descriptor for a physical bus operation that is used by uvm_reg_adapter subtypes to convert from a
protocol-specific address, data, and read-writre operation to a bus-independent, canonical read-write operation.
The class uvm_reg_adapter defines an interface for converting between uvm_reg_bus_op and a specific
bus transaction. The class uvm_reg_tlm_adapter enables conversion between uvm_reg_bus_op and TLM
transactions of type uvm_tlm_gp. The class uvm_reg_predictor defines a predictor component, which is used
to update the register model’s mirror values based on transactions explicitly observed on a physical bus. The
class uvm_reg_sequence provides the base functionality for both user-defined register model test sequences
and register translation sequences. The class uvm_reg_frontdoor is a facade class for register and memory
frontdoor access.

16.1 uvm_reg_item

The class uvm_reg_item shall define an abstract register transaction item. No bus-specific information is
present, although a handle to a uvm_reg_map is provided in case a user wishes to implement a custom address
translation algorithm.

16.1.1 Class definition

namespace uvm {

 class uvm_reg_item : public uvm_sequence_item
 {
 public:

 // Constructor
 explicit uvm_reg_item(const std::string& name = "");

 // Member functions

 virtual std::string convert2string() const;
 virtual void do_copy(const uvm_object& rhs);

 // Data members

 uvm_elem_kind_e element_kind;
 uvm_object* element;
 uvm_access_e access_kind;
 std::vector<uvm_reg_data_t> value;
 uvm_reg_addr_t offset;
 uvm_status_e status;
 uvm_reg_map* local_map;
 uvm_reg_map* map;
 uvm_path_e path;

300
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_sequence_base* parent;
 int prior;
 uvm_object* extension;
 std::string bd_kind;
 std::string fname;
 int lineno;

 }; // class uvm_reg_item

} // namespace uvm

16.1.2 Constructor

explicit uvm_reg_item(const std::string& name = "");

The constructor shall create a new instance of this type, giving it the optional name.

16.1.3 Member functions

16.1.3.1 convert2string

virtual std::string convert2string() const;

The member function convert2string shall return a string showing the contents of this transaction.

16.1.3.2 do_copy

virtual void do_copy(const uvm_object& rhs);

The member function do_copy shall copy the rhs object into this object. The rhs object shall be derived from
uvm_reg_item.

16.1.4 Data members

16.1.4.1 element_kind

uvm_elem_kind_e element_kind;

The data member element_kind defines the kind of element being accessed: REG, MEM, or FIELD. See
Section 15.16.2.5.

16.1.4.2 element

uvm_object* element;

The data member element defines the handle to the register model associated with this transaction. Use
element_kind to determine the type to cast to: uvm_reg, uvm_mem, or uvm_reg_field.

16.1.4.3 access_kind

uvm_access_e access_kind;

The data member access_kind defines the kind of access: READ or WRITE.

301
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.1.4.4 value

std::vector<uvm_reg_data_t> value;

The data member value defines the value to write to, or after completion, the value read from the DUT. Burst
operations use the values property.

16.1.4.5 offset

uvm_reg_addr_t offset;

The data member offset defines the offset. For memory accesses, the offset address. For bursts, the starting
offset address.

16.1.4.6 status

uvm_status_e status;

The data member status defines the result of the transaction: IS_OK, HAS_X, or ERROR. See uvm_status_e
(Section 15.16.2.1).

16.1.4.7 local_map

uvm_reg_map* local_map;

The data member local_map defines the local map used to obtain addresses. An application may
customize address-translation using this map. Access to the sequencer and bus adapter can be obtained
by getting this map’s root map, then calling member functions uvm_reg_map::get_sequencer and
uvm_reg_map::get_adapter.

16.1.4.8 map

uvm_reg_map* map;

The data member map defines the original map specified for the operation. The actual map used may differ
when a test or sequence written at the block level is reused at the system level.

16.1.4.9 path

uvm_path_e path;

The data member path defines the path being used: UVM_FRONTDOOR or UVM_BACKDOOR.

16.1.4.10 parent

uvm_sequence_base* parent;

The data member parent defines the sequence from which the operation originated.

302
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.1.4.11 prior

int prior;

The data member prior defines the priority requested of this transfer, as defined by
uvm_sequence_base::start_item.

16.1.4.12 extension

uvm_object* extension;

The data member extension defines the handle to optional user data, as conveyed in the call to write, read,
mirror, or update used to trigger the operation.

16.1.4.13 bd_kind

std::string bd_kind;

The data member bd_kind specifies the abstraction kind for the backdoor access, if the data member path is
set to UVM_BACKDOOR.

16.1.4.14 fname

std::string fname;

The data member fname specifies the file name from where this transaction originated, if provided at the call
site.

16.1.4.15 lineno

int lineno;

The data member lineno specifies the line number from where this transaction originated, if provided at the
call site.

16.2 uvm_reg_bus_op

The class uvm_reg_bus_op shall define a generic bus transaction for register and memory accesses, having
kind (read or write), address, data, and byte enable information. If the bus is narrower than the register or
memory location being accessed, there are multiple of these bus operations for every abstract uvm_reg_item
transaction. In this case, data represents the portion of uvm_reg_item::value being transferred during this bus
cycle. If the bus is wide enough to perform the register or memory operation in a single cycle, data is equal
to uvm_reg_item::value.

16.2.1 Class definition

namespace uvm {

 class uvm_reg_bus_op
 {
 public:

 // Data members

303
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_access_e kind;
 uvm_reg_addr_t addr;
 uvm_reg_data_t data;
 unsigned int n_bits;
 uvm_reg_byte_en_t byte_en;
 uvm_status_e status;

 }; // class uvm_reg_bus_op

} // namespace uvm

16.2.2 Data members

16.2.2.1 kind

uvm_access_e kind;

The data member kind defines the kind of access: READ or WRITE.

16.2.2.2 addr

uvm_reg_addr_t addr;

The data member addr defines the bus address.

16.2.2.3 data

uvm_reg_data_t data;

The data member data defines the data to write. If the bus width is smaller than the register or memory width,
data represents only the portion of value that is being transferred this bus cycle.

16.2.2.4 n_bits

unsigned int n_bits;

The data member n_bits defines the number of bits of uvm_reg_item::value being transferred by this
transaction.

16.2.2.5 byte_en

uvm_reg_byte_en_t byte_en;

The data member byte_en enables for the byte lanes on the bus. Meaningful only when the bus supports byte
enables and the operation originates from a field write/read.

16.2.2.6 status

uvm_status_e status;

The data member status defines the result of the transaction: UVM_IS_OK, UVM_HAS_X,
UVM_NOT_OK. See uvm_status_e (Section 15.16.2.1).

304
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.3 uvm_reg_adapter

The class uvm_reg_adapter shall define the interface for converting between uvm_reg_bus_op and a specific
bus transaction.

16.3.1 Class definition

namespace uvm {

 class uvm_reg_adapter : public uvm_object
 {
 public:

 // Constructor

 explicit uvm_reg_adapter(const std::string& name = "");

 // Member functions

 virtual uvm_sequence_item* reg2bus(const uvm_reg_bus_op& rw) = 0;

 virtual void bus2reg(const uvm_sequence_item* bus_item,
 uvm_reg_bus_op& rw) = 0;

 virtual uvm_reg_item* get_item() const;

 // Data members

 bool supports_byte_enable;
 bool provides_responses;
 uvm_sequence_base* parent_sequence;

 }; // class uvm_reg_adapter

} // namespace uvm

16.3.2 Constructor

explicit uvm_reg_adapter(const std::string& name = "");

The constructor shall create a new instance of this type, giving it the optional name.

16.3.3 Member functions

16.3.3.1 reg2bus

virtual uvm_sequence_item* reg2bus(const uvm_reg_bus_op& rw) = 0;

The member function reg2bus shall allocate a new bus-specific uvm_sequence_item, assign its data members
from the corresponding data members from the given generic rw bus operation, then return it.

Extensions of this class shall implement this member function to convert the specified uvm_reg_bus_op to a
corresponding uvm_sequence_item subtype that defines the bus transaction.

16.3.3.2 bus2reg

virtual void bus2reg(const uvm_sequence_item* bus_item,
 uvm_reg_bus_op& rw) = 0;

The member function bus2reg shall copy the data members of the given bus-specific bus_item to the
corresponding data members of the provided instance rw.

305
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Extensions of this class shall implement this member function. Unlike reg2bus, the resulting transaction is
not allocated from scratch. This is to accommodate applications where the bus response needs to be returned
in the original request.

16.3.3.3 get_item

virtual uvm_reg_item* get_item() const;

The member function get_item shall returns the bus-independent read/write information that corresponds to
the generic bus transaction currently translated to a bus-specific transaction. This member function returns a
value reference only when called in the member function uvm_reg_adapter::reg2bus. The member function
returns NULL at all other times. The content of the return uvm_reg_item instance shall not be modified and
used strictly to obtain additional information about the operation.

16.3.4 Data members

16.3.4.1 supports_byte_enable

bool supports_byte_enable;

The data member supports_byte_enable is used in extensions of this class to specify if the bus protocol
supports byte enables.

16.3.4.2 provides_responses

bool provides_responses;

The data member provides_responses is used in extensions of this class to specify if the bus driver provides
separate response items.

16.3.4.3 parent_sequence

uvm_sequence_base* parent_sequence;

The data member parent_sequence is used in extensions of this class if the bus driver requires bus items be
executed via a particular sequence base type. The sequence assigned to this data member shall implement the
member function do_clone.

16.4 uvm_reg_tlm_adapter

The class uvm_reg_tlm_adapter shall define the interface for converting For converting between
uvm_reg_bus_op and uvm_tlm_gp items.

16.4.1 Class definition

namespace uvm {

 class uvm_reg_tlm_adapter : public uvm_reg_adapter
 {
 public:

 // Constructor

 uvm_reg_tlm_adapter(const std::string& name = "uvm_reg_tlm_adapter");

306
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 // Member functions

 virtual uvm_sequence_item* reg2bus(const uvm_reg_bus_op& rw);

 virtual void bus2reg(const uvm_sequence_item* bus_item,
 uvm_reg_bus_op& rw);

 }; // class uvm_reg_tlm_adapter

} // namespace uvm

16.4.2 Constructor

uvm_reg_tlm_adapter(const std::string& name = "uvm_reg_tlm_adapter");

The constructor shall create a new instance of this type with the specified name.

16.4.3 Member functions

16.4.3.1 reg2bus

virtual uvm_sequence_item* reg2bus(const uvm_reg_bus_op& rw);

The member function reg2bus shall convert the provided bus transaction rw of type uvm_reg_bus_op to a
sequence item of type uvm_tlm_gp.

16.4.3.2 bus2reg

virtual void bus2reg(const uvm_sequence_item* bus_item,
 uvm_reg_bus_op& rw);

The member function bus2reg shall converts a TLM transaction item bus_item of type uvm_tlm_gp to a read-
write bus transaction rw of type uvm_reg_bus_op.

16.5 uvm_reg_predictor

The class uvm_reg_predictor shall convert the observed bus transactions of type BUSTYPE to generic
registers transactions, determines the register being accessed based on the bus address, then updates the
register’s mirror value with the observed bus data, subject to the register’s access mode.

See Section 15.4.5.15 for details.

NOTE—Memories can be large, so their accesses are not predicted.

16.5.1 Class definition

namespace uvm {

 template <typename BUSTYPE = int>
 class uvm_reg_predictor : public uvm_component,
 public tlm::tlm_analysis_if<BUSTYPE>
 {
 public:

 // Constructor

 explicit uvm_reg_predictor(uvm_component_name name);

307
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 // Ports

 uvm_analysis_imp< BUSTYPE, uvm_reg_predictor<BUSTYPE> > bus_in;
 uvm_analysis_port<uvm_reg_item> reg_ap;

 // Member functions

 virtual void pre_predict(uvm_reg_item* rw);
 virtual void check_phase(uvm_phase& phase);

 // data members

 uvm_reg_map* map;
 uvm_reg_adapter* adapter;

 }; // class uvm_reg_predictor

} // namespace uvm

16.5.2 Constructor

explicit uvm_reg_predictor(uvm_component_name name);

The constructor shall create a new instance of this type with the specified name.

16.5.3 Ports

16.5.3.1 bus_in

uvm_analysis_imp< BUSTYPE, uvm_reg_predictor<BUSTYPE> > bus_in;

The port bus_in shall implement an analysis input port which shall observe bus transactions of type
BUSTYPE. For each incoming transaction, the predictor shall attempt to get the register or memory handle
corresponding to the observed bus address. If there is a match, the predictor calls the register or memory’s
member function predict, passing in the observed bus data. The register or memory mirror shall be updated
with this data, subject to its configured access behavior--RW, RO, WO, etc. The predictor shall also convert
the bus transaction to a generic uvm_reg_item and send it out the reg_ap analysis port.

If the register is wider than the bus, the predictor shall collect the multiple bus transactions needed to determine
the value being read or written.

16.5.3.2 reg_ap

uvm_analysis_port<uvm_reg_item> reg_ap;

The port reg_ap shall implement an analysis output port that publishes transactions of type uvm_reg_item,
which are converted from bus transactions received by port bus_in.

16.5.4 Member functions

16.5.4.1 pre_predict

virtual void pre_predict(uvm_reg_item* rw);

The member function pre_predict shall override this member function to change the value or re-direct the
target register.

308
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.5.4.2 check_phase

virtual void check_phase(uvm_phase& phase);

The member function check_phase shall check that no pending register transactions are still queued.

16.5.5 Data members

16.5.5.1 map

uvm_reg_map* map;

The data member map is used to convert a bus address to the corresponding register or memory handle. It
shall be configured before the run phase.

16.5.5.2 adapter

uvm_reg_adapter* adapter;

The data member adapter is used to convey the parameters of a bus operation in terms of a canonical
uvm_reg_bus_op datum. The uvm_reg_adapter shall be configured before the run phase.

16.6 uvm_reg_sequence

The class uvm_reg_sequence shall provide the base functionality for both user-defined register model test
sequences and register translation sequences.

— When used as a base for user-defined register model test sequences, this class provides convenience
member functions for reading and writing registers and memories. An application implements the
member function body to interact directly with the register model (held in the model property) or
indirectly via the delegation member functions in this class.

— When used as a registertranslation sequence, objects of this class are executed directly on a bus
sequencer which are used in support of a layered sequencer use model, a pre-defined convert-and-
execute algorithm is provided.

Register operations do not require extending this class if none of the above services are needed. Register test
sequences can be extend from the base class uvm_sequence(REQ,RSP) or even from outside a sequence.

NOTE—The convenience API is not yet implemented.

16.6.1 Class definition

namespace uvm {

 template <typename BASE = uvm_sequence<uvm_reg_item> >
 class uvm_reg_sequence : public BASE
 {
 public:

 // Constructor

 explicit uvm_reg_sequence(const std::string& name = "uvm_reg_sequence_inst");

 // Group: Sequence API

 virtual void body();

309
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void do_reg_item(uvm_reg_item* rw);

 // Group: Convenience Write/Read API

 virtual void write_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void poke_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void peek_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void update_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void mirror_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void write_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void read_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,

310
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void poke_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 virtual void peek_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

 // Data members

 uvm_reg_block* model;
 uvm_reg_adapter* adapter;
 uvm_sequencer<uvm_reg_item>* reg_seqr;

 }; // class uvm_reg_sequence

} // namespace uvm

16.6.2 Constructor

explicit uvm_reg_sequence(const std::string& name = "uvm_reg_sequence_inst");

The constructor shall create a new instance of this type with the specified name.

16.6.3 Sequence API

16.6.3.1 body

virtual void body();

The member function body shall continually get a register transaction from the configured upstream sequencer,
reg_seqr, and executes the corresponding bus transaction via do_reg_item.

NOTE—User-defined register model test sequences should override the member function body and not call
the member function body of the base class, else a warning shall be issued and the calling process not return.

16.6.3.2 do_reg_item

virtual void do_reg_item(uvm_reg_item* rw);

The member function do_reg_item shall execute the given register transaction, rw, via the sequencer on
which this sequence was started (i.e. m_sequencer). It shall use the configured adapter to convert the register
transaction into the type expected by this sequencer.

311
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.6.4 Convenience Write/Read API

16.6.4.1 write_reg

virtual void write_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write_reg shall write the given register rg using member function uvm_reg::write,
supplying this as the parent argument.

16.6.4.2 read_reg

virtual void read_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read_reg shall read the given register rg using member function uvm_reg::read,
supplying this as the parent argument.

16.6.4.3 poke_reg

virtual void poke_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function poke_reg shall poke the given register rg using member function uvm_reg::poke,
supplying this as the parent argument.

16.6.4.4 peek_reg

virtual void peek_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function peek_reg shall peek the given register rg using member function uvm_reg::peek,
supplying this as the parent argument.

16.6.4.5 update_reg

virtual void update_reg(uvm_reg* rg,

312
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_status_e& status,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function update_reg shall update the given register rg using member function uvm_reg::update,
supplying this as the parent argument.

16.6.4.6 mirror_reg

virtual void mirror_reg(uvm_reg* rg,
 uvm_status_e& status,
 uvm_check_e check = UVM_NO_CHECK,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function mirror_reg shall mirror the given register rg using member function uvm_reg::mirror,
supplying this as the parent argument.

16.6.4.7 write_mem

virtual void write_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function write_mem shall write the given memory mem using member function
uvm_mem::write, supplying this as the parent argument.

16.6.4.8 read_mem

virtual void read_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 uvm_path_e path = UVM_DEFAULT_PATH,
 uvm_reg_map* map = NULL,
 int prior = -1,
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function read_mem shall read the given memory mem using member function uvm_mem::read,
supplying this as the parent argument.

16.6.4.9 poke_mem

virtual void poke_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,

313
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 uvm_reg_data_t value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function poke_mem shall poke the given memory mem using member function
uvm_mem::poke, supplying this as the parent argument.

16.6.4.10 peek_mem

virtual void peek_mem(uvm_mem* mem,
 uvm_status_e& status,
 uvm_reg_addr_t offset,
 uvm_reg_data_t& value,
 const std::string& kind = "",
 uvm_object* extension = NULL,
 const std::string& fname = "",
 int lineno = 0);

The member function peek_mem shall peek the given memory mem using member function uvm_mem::peek,
supplying this as the parent argument.

16.6.5 Data members

16.6.5.1 model

uvm_reg_block* model;

The data member model shall define the register block abstraction the sequence executes on, defined only
when this sequence is a user-defined test sequence.

16.6.5.2 adapter

uvm_reg_adapter* adapter;

The data member adapter shall define the adapter to use for translating between abstract register transactions
and physical bus transactions, defined only when this sequence is a translation sequence.

16.6.5.3 reg_seqr

uvm_sequencer<uvm_reg_item>* reg_seqr;

The data member reg_seqr shall specify the upstream sequencer between abstract register transactions and
physical bus transactions. This data member is only defined when the sequence is a translation sequence,
enabling a “pull” from an upstream sequencer.

16.7 uvm_reg_frontdoor

The class uvm_reg_frontdoor shall provide a base class for user-defined access to register and memory reads
and writes through a physical interface.

By default, different registers and memories are mapped to different addresses in the address space and are
accessed via those exclusively through physical addresses. The frontdoor allows access using a non-linear and/
or non-mapped mechanism. Users can extend this class to provide the physical access to these registers.

314
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.7.1 Class definition

namespace uvm {

 class uvm_reg_frontdoor : public uvm_reg_sequence<uvm_sequence<uvm_sequence_item> >
 {
 public:

 // Constructor

 explicit uvm_reg_frontdoor(const std::string& name = "");

 // Data members

 uvm_reg_item* rw_info;
 uvm_sequencer_base* sequencer;

 }; // class uvm_reg_frontdoor

} // namespace uvm

16.7.2 Constructor

explicit uvm_reg_frontdoor(const std::string& name = "");

The constructor shall create a new instance of this type with the specified name.

16.7.3 Data members

16.7.3.1 rw_info

uvm_reg_item* rw_info;

The data member rw_info shall specify the information about the register being read or written.

16.7.3.2 sequencer

uvm_sequencer_base* sequencer;

The data member sequencer shall specify the sequencer executing the operation.

315
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17. Global functionality

UVM provides other global functionality including functions, enums, defines, and classes. Some of these are
targeted towards specific aspects of the functionality described in the UVM standard, and others are useful
across multiple aspects.

All global functions reside in the UVM namespace. Functions marked with the symbol § are specific to UVM-
SystemC and not available in the UVM-SystemVerilog standard.

17.1 Global functions

17.1.1 uvm_set_config_int§

namespace uvm {

 void uvm_set_config_int§(const std::string& inst_name,
 const std::string& field_name,
 int value);

} // namespace uvm

The global function uvm_set_config_int shall create and place an integer in a configuration database. The
argument inst_name shall define the full hierarchical pathname of the object being configured. The argument
field_name is the specific field that is being searched for. Both arguments inst_name and field_name may
contain wildcards.

NOTE—This global function is made available since there is no command line interface option to pass
configuration data.

17.1.2 uvm_set_config_string§

namepace uvm {

 void uvm_set_config_string§(const std::string& inst_name,
 const std::string& field_name,
 const std::string& value);

} // namespace uvm

The global function uvm_set_config_string shall create and place a string in a configuration database. The
argument inst_name shall define the full hierarchical pathname of the object being configured. The argument
field_name is the specific field that is being searched for. Both arguments inst_name and field_name may
contain wildcards.

NOTE—This global function is made available since there is no command line interface option to pass
configuration data.

17.1.3 run_test

namespace uvm {

 void run_test(const std::string& test_name = "");

} // namespace uvm

The function run_test is a convenience function to start member function uvm_root::run_test. (See Section
4.3).

316
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.2 Global defines

17.2.1 UVM_MAX_STREAMBITS

The definition UVM_MAX_STREAMBITS shall be used to set the maximum size for integer types. If not
defined, a default size of 4096 is used.

17.2.2 UVM_PACKER_MAX_BYTES

The definition UVM_PACKER_MAX_BYTES shall be used to set the maximum bytes to allocate for packing
an object using the uvm_packer. Default is UVM_MAX_STREAMBITS, in bytes.

17.2.3 UVM_DEFAULT_TIMEOUT

The definition UVM_DEFAULT_TIMEOUT shall be used as default timeout for the run phases. If not
defined, a default timeout of 9200 seconds shall be used. The timeout can be overridden by using the member
function uvm_root::set_timeout (see Section 4.3.2.3).

17.3 Global type definitions (typedefs)

17.3.1 uvm_bitstream_t

The typedef uvm_bitstream_t shall define an integer type with a size defined by
UVM_MAX_STREAMBITS. An application can use this type in member functions such as
uvm_printer::print_field (see Section 5.2.3.1), uvm_packer::pack_field (see Section 5.1.3.1) and
uvm_packer::unpack_field (see Section 5.1.4.3).

17.3.2 uvm_integral_t

The typedef uvm_integral_t shall define an integer type with a size of 64 bits. An application
can use this type in member functions such as uvm_printer::print_field_int (see Section 5.2.3.2),
uvm_packer::pack_field_int (see Section 5.1.3.2) and uvm_packer::unpack_field_int (see Section
5.1.4.2).

17.3.3 UVM_FILE

The typedef UVM_FILE shall define the file descriptor which supports output streams.

17.3.4 uvm_report_cb

The typedef uvm_report_cb is the alias for uvm_callbacks<uvm_report_object, uvm_report_catcher >.

17.3.5 uvm_config_int

The typedef uvm_config_int is the alias for uvm_config_db<uvm_bitstream_t >.

17.3.6 uvm_config_string

The typedef uvm_config_string is the alias for uvm_config_db<std::string>.

17.3.7 uvm_config_object

The typedef uvm_config_object is the alias for uvm_config_db<uvm_object*>.

317
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.3.8 uvm_config_wrapper

The typedef uvm_config_wrapper is the alias for uvm_config_db<uvm_object_wrapper*>.

17.4 Global enumeration

17.4.1 uvm_action

The enumeration type uvm_action shall define all possible values for report actions. Each report is configured
to execute one or more actions, determined by the bitwise OR of any or all of the following enumeration
constants.

— UVM_NO_ACTION: No action is taken.
— UVM_DISPLAY: Sends the report to the standard output.
— UVM_LOG: Sends the report to the file(s) for this (severity, id) pair.
— UVM_COUNT: Counts the number of reports with the COUNT attribute. When this value reaches

max_quit_count, the simulation terminates.
— UVM_EXIT: Terminates the simulation immediately.
— UVM_CALL_HOOK: Callback the report hook methods.
— UVM_STOP: Causes the simulator to stop, enabling continuation as interactive session.

17.4.2 uvm_severity

The enumeration type uvm_severity shall define all possible values for report severity:
— UVM_INFO: Informative message.
— UVM_WARNING: Indicates a potential problem.
— UVM_ERROR: Indicates a real problem. Simulation continues subject to the configured message

action.
— UVM_FATAL: Indicates a problem from which simulation cannot recover. The simulation shall be

terminated immediately.

17.4.3 uvm_verbosity

The enumeration type uvm_verbosity shall define standard verbosity levels for reports.
— UVM_NONE: Report is always printed. Verbosity level setting cannot disable it.
— UVM_LOW: Report is issued if configured verbosity is set to UVM_LOW or above.
— UVM_MEDIUM: Report is issued if configured verbosity is set to UVM_MEDIUM or above.
— UVM_HIGH: Report is issued if configured verbosity is set to UVM_HIGH or above.
— UVM_FULL: Report is issued if configured verbosity is set to UVM_FULL or above.

17.4.4 uvm_active_passive_enum

The enumeration type uvm_active_passive_enum shall define whether a component, usually an agent, is in
“active” mode or “passive” mode.

— UVM_ACTIVE: uvm_agent is in “active” mode, which means that the sequencer, driver and monitor
are enabled.

— UVM_PASSIVE: uvm_agent is in “passive” mode, which means that only the monitor is enabled.

318
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.4.5 uvm_sequence_state_enum

The enumeration type uvm_sequence_state_enum shall define the current sequence state.

— UVM_CREATED: The sequence has been allocated.
— UVM_PRE_START: The sequence is started and the callback uvm_sequence_base::pre_start is

being executed.
— UVM_PRE_BODY: The sequence is started and the callback uvm_sequence_base::pre_body is

being executed.
— UVM_BODY: The sequence is started and the callback uvm_sequence_base::body is being executed.
— UVM_ENDED: The sequence has completed the execution of the callback

uvm_sequence_base::body.
— UVM_POST_BODY: The sequence is started and the callback uvm_sequence_base::post_body is

being executed.
— UVM_POST_START: The sequence is started and the callback uvm_sequence_base::post_start is

being executed.
— UVM_STOPPED: The sequence has been forcibly ended by issuing a uvm_sequence_base::kill on

the sequence.
— UVM_FINISHED: The sequence is completely finished executing.

17.4.6 uvm_phase_type

The typedef uvm_phase_type shall define an enumeration list which defines the phase type.
— UVM_PHASE_IMP: The phase object is used to traverse the component hierarchy and call the

component phase method as well as the callbacks phase_started and phase_ended.
— UVM_PHASE_NODE: The object represents a simple node instance in the graph. These nodes shall

contain a reference to their corresponding IMP object.
— UVM_PHASE_SCHEDULE: The object represents a portion of the phasing graph, typically

consisting of several NODE types, in series, parallel, or both.
— UVM_PHASE_TERMINAL: This internal object serves as the termination NODE for a SCHEDULE

phase object.
— UVM_PHASE_DOMAIN: This object represents an entire graph segment that executes in parallel

with the run phase. Domains may define any network of NODEs and SCHEDULEs. The built-in
domain called uvm consists of a single schedule of all the run-time phases, starting with pre_reset and
ending with post_shutdown.

17.5 uvm_coreservices_t

The class uvm_coreservice_t shall provide a common point for all central UVM services such as
uvm_factory, uvm_report_server, etc. Each service class shall provide a static member function get which
returns an instance adhering to the corresponding service provided by uvm_coreservice_t.

17.5.1 Class definition

namespace uvm {

 class uvm_coreservice_t
 {
 public:

 virtual uvm_factory* get_factory() const = 0;

319
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

 virtual void set_factory(uvm_factory* factory) = 0;

 virtual uvm_report_server* get_report_server() const = 0;
 virtual void set_report_server(uvm_report_server* server) = 0;

 virtual uvm_root* get_root() const = 0;

 static uvm_default_coreservice_t* get();

 }; // class uvm_coreservice_t

} // namespace uvm

17.5.2 Member functions

17.5.2.1 get_factory

virtual uvm_factory* get_factory() const = 0;

The member function get_factory shall return the currently enabled UVM factory. (See Section 6.4).

17.5.2.2 set_factory

virtual void set_factory(uvm_factory* facory) = 0;

The member function set_factory shall specify the currently used UVM factory given as argument.

17.5.2.3 get_report_server

virtual uvm_report_server* get_report_server() const = 0;

The member function get_report_server shall return the current global report server. (See Section 12.4).

17.5.2.4 set_report_server

virtual void set_report_server(uvm_report_server* server) = 0;

The member function set_report_server shall specify the central report server to server.

17.5.2.5 get_root

virtual uvm_root* get_root() const = 0;

The member function get_root shall return the uvm_root instance. (See Section 4.3).

17.5.2.6 get

static uvm_default_coreservice_t* get();

The member function get shall return an instance providing the uvm_coreservice_t interface.

320
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.6 uvm_default_coreservices_t

The class uvm_default_coreservice_t shall provide a default implementation of the uvm_coreservice_t
API. It shall instantiate the objects uvm_default_factory (see Section 6.5), uvm_default_report_server (see
Section 12.5), and uvm_root (see Section 4.3).

17.6.1 Class definition

namespace uvm {

 class uvm_default_coreservice_t : public uvm_coreservice_t
 {
 public:

 virtual uvm_factory* get_factory() const;
 virtual void set_factory(uvm_factory* factory);

 virtual uvm_report_server* get_report_server() const;
 virtual void set_report_server(uvm_report_server* server);

 virtual uvm_root* get_root() const;

 }; // class uvm_default_coreservice_t

} // namespace uvm

17.6.2 Member functions

17.6.2.1 get_factory

virtual uvm_factory* get_factory() const;

The member function get_factory shall returns the currently enabled UVM factory. When no factory has been
set before, it shall instantiate a uvm_default_factory. (See Section 6.5).

17.6.2.2 set_factory

virtual void set_factory(uvm_factory* factory);

The member function set_factory shall specify the current UVM factory.

NOTE—The application needs to preserve the contents of the original factory or delegate calls to the original
factory.

17.6.2.3 get_report_server

virtual uvm_report_server* get_report_server() const;

The member function get_report_server shall return the current global report server. If no report server has
been set before, it shall return an instance of uvm_default_report_server. (See Section 12.5).

17.6.2.4 set_report_server

virtual void set_report_server(uvm_report_server* server);

The member function set_report_server shall specify the central report server to server.

321
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.6.2.5 get_root

virtual uvm_root* get_root() const = 0;

The member function get_root shall return the uvm_root instance. (See Section 4.3).

17.6.2.6 get

static uvm_default_coreservice_t* get();

The member function get shall return an instance providing the uvm_coreservice_t interface.

322
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Annex A

(informative)

Glossary

This glossary contains brief, informal descriptions for a number of terms and phrases used in this standard.
Where appropriate, the complete, formal definition of each term or phrase is given in the main body of the
standard.

agent: An abstract container used to emulate and verify DUT devices; agents encapsulate a driver, sequencer,
and monitor.

application: A C++ program, written by an end user.

blocking: An interface where tasks block execution until they complete. See also: non blocking.

callback: A member function overridden within a class in the component hierarchy that is called back by the
kernel at certain fixed points during elaboration and simulation. UVM defines pre-defined callback functions
as part of the phasing mechanism, such as end_of_elaboration_phase, build_phase, connect_phase,
run_phase, etc. In addition, UVM supports the creation of user-defined callback classes and functions.

child: An instance that is within a given component. Component A is a child of component B if component
A is within component B. See also: parent.

component: A piece of VIP that provides functionality and interfaces. Also referred to as a transactor.

configuration: Ability to change the properties of components or objects independent from the component
hierarchy and composition. Configuration parameters can be stored in and retrieved from a central database,
which can be accessed at any place in the verification environment, and at any time during the simulation.

consumer: A verification component that receives transactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usually interacting with
the device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides the implementation of methods used for
communication. Used in UVM to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time,
the exact specification of the object to be created.

fifo: An instance of a primitive channel that models a first-in-first-out buffer.

foreign methodology: A verification methodology that is different from the methodology being used for the
majority of the verification environment.

generator: A verification component that provides transactions to another component. Also referred to as a
producer.

323
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

implementation: A specific concrete implementation of the UVM-SystemC class library as defined in this
standard. It only implements the public shell which need be exposed to the application (for example, parts may
be precompiled and distributed as object code by a tool vendor). See also: kernel.

kernel: The core of any UVM-SystemC implementation including the underlying elaboration and simulation
engines. The kernel honors the semantics defined by this standard but may also contain implementation-
specific functionality outside the scope of this standard. See also: implementation.

member function: A function declared within a class definition, excluding friend functions. Outside of a
constructor or member function of the class or of any derived class, a non-static member function can only be
accessed using the dot . and arrow -> operators. See also: method.

method: A function that implements the behavior of a class. This term is synonymous with the C++ term
member function. In UVM-SystemC, the term method is used in the context of an interface method call.
Throughout this standard, the term member function is used when defining C++ classes (for conformance
to the C++ standard), and the term method is used in more informal contexts and when discussing interface
method calls.

monitor: A passive entity that samples DUT signals, but does not drive them.

non blocking: A call that returns immediately. See also: blocking.

primary (host) methodology: The methodology that manages the top-level operation of the verification
environment and with which the user/integrator is presumably more familiar.

process: A process instance belongs to an implementation-defined class derived from class uvm_object. Each
process instance has an associated function that represents the behavior of the process. A process may be a
static or a dynamic (e.g., spawned) process. See also: spawned process.

request: A transaction that provides information to initiate the processing of a particular operation.

recipient: The component that implements a callback or function that receives and processes a transaction.
See also: sender.

response: A transaction that provides information about the completion or status of a particular operation.

root sequence: A sequence which has no parent sequence.

scoreboard: The mechanism used to dynamically predict the response of the design and check the observed
response against the predicted response. Usually refers to the entire dynamic response-checking structure.

sender: The component that implements a callback or function that initiates the transmission of a transaction.
See also: recipient.

sequence: A UVM object that procedurally defines a set of transactions to be executed and/or controls the
execution of other sequences.

sequencer: An advanced stimulus generator which executes sequences that define the transactions provided
to the driver for execution.

spawned process: A process instance that is dynamically created by calling the SystemC function
sc_core::sc_spawn. See also: process.

test: Specific customization of an environment to exercise required functionality of the DUT.

324
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

testbench: The structural definition of a set of verification components used to verify a DUT. Also referred
to as a verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more
components.

transactor: See component.

virtual sequence: A conceptual term for a sequence that controls the execution of sequences on other
sequencers.

325
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Index

A

abstract, data member
class uvm::uvm_packer 30

access_kind, data member
class uvm::uvm_reg_item 301

adapter, data member
class uvm::uvm_reg_predictor 309
class uvm::uvm_reg_sequence 314

add_by_name, member function
class uvm::uvm_callbacks 142

add_coverage, member function
class uvm::uvm_mem 262
class uvm::uvm_reg 237
class uvm::uvm_reg_block 205

add_hdl_path_slice, member function
class uvm::uvm_mem 260
class uvm::uvm_reg 235

add_hdl_path, member function
class uvm::uvm_mem 260
class uvm::uvm_reg 235
class uvm::uvm_reg_block 209
class uvm::uvm_reg_file 222

add_int, member function
class uvm::uvm_report_message 150

add_mem, member function
class uvm::uvm_reg_map 214

add_object, member function
class uvm::uvm_report_message 150

add_reg, member function
class uvm::uvm_reg_map 213

add_string, member function
class uvm::uvm_report_message 150

add_submap, member function
class uvm::uvm_reg_map 214

add_uvm_phases, member function
class uvm::uvm_domain 131

add, member function
class uvm::uvm_callbacks 142
class uvm::uvm_phase 128

addr, data member
class uvm::uvm_reg_bus_op 304

adjust_name, member function
class uvm::uvm_printer 35

agent, glossary 323
all_dropped, member function

class uvm::uvm_component 71
class uvm::uvm_objection 137

allocate, member function
class uvm::uvm_vreg 271

analysis_export, export
class uvm::uvm_subscriber 81

application, glossary 323

B

backdoor_read, member function
class uvm::uvm_mem 261
class uvm::uvm_reg 236

backdoor_watch, member function
class uvm::uvm_reg 236

backdoor_write, member function
class uvm::uvm_mem 261
class uvm::uvm_reg 236

backdoor, member function
class uvm::uvm_reg_map 220

bd_kind, data member
class uvm::uvm_reg_item 303

big_endian, data member
class uvm::uvm_packer 31

blocking, glossary 323
body, member function

class uvm::uvm_reg_sequence 311
class uvm::uvm_sequence_base 98

BROAD
enum uvm::uvm_mem_mam::locality_e 292

build_coverage, member function
class uvm::uvm_mem 262
class uvm::uvm_reg 237
class uvm::uvm_reg_block 205

build_phase, member function
class uvm::uvm_component 65

burst_read, member function
class uvm::uvm_mem 258
class uvm::uvm_mem_region 295

burst_write, member function
class uvm::uvm_mem 257
class uvm::uvm_mem_region 295

bus_in, port
class uvm::uvm_reg_predictor 308

bus2reg, member function
class uvm::uvm_reg_adapter 305
class uvm::uvm_reg_tlm_adapter 307

byte_en, data member
class uvm::uvm_reg_bus_op 304

C

callback_mode, member function
class uvm::uvm_callback 139

callback, glossary 323
can_get, member function

class uvm::uvm_nonblocking_get_peek_port 186
class uvm::uvm_nonblocking_get_port 183

can_peek, member function
class uvm::uvm_nonblocking_get_peek_port 186
class uvm::uvm_nonblocking_peek_port 185

can_put, member function
class uvm::uvm_nonblocking_put_port 182

326
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

capacity, member function
class uvm::uvm_reg_fifo 266

check_data_width, member function
class uvm::uvm_reg_block 201

check_phase, member function
class uvm::uvm_component 68
class uvm::uvm_reg_predictor 309

child, glossary 323
classes

uvm::uvm_agent 78
uvm::uvm_analysis_export 188
uvm::uvm_analysis_imp 189
uvm::uvm_analysis_port 186
uvm::uvm_blocking_get_peek_port 180
uvm::uvm_blocking_get_port 178
uvm::uvm_blocking_peek_port 179
uvm::uvm_blocking_put_port 177
uvm::uvm_bottomup_phase 132
uvm::uvm_callback 138
uvm::uvm_callback_iter 140
uvm::uvm_callbacks 141
uvm::uvm_comparer 37
uvm::uvm_component 59
uvm::uvm_component_name 24
uvm::uvm_component_registry 47
uvm::uvm_config_db 107
uvm::uvm_coreservices_t 319
uvm::uvm_default_coreservices_t 321
uvm::uvm_default_factory 55
uvm::uvm_default_report_server 162
uvm::uvm_domain 130
uvm::uvm_driver 76
uvm::uvm_env 79
uvm::uvm_export_base 22
uvm::uvm_factory 49
uvm::uvm_line_printer 37
uvm::uvm_mem 250
uvm::uvm_mem_mam 289
uvm::uvm_mem_region 292
uvm::uvm_monitor 77
uvm::uvm_nonblocking_get_peek_port 185
uvm::uvm_nonblocking_get_port 183
uvm::uvm_nonblocking_peek_port 184
uvm::uvm_nonblocking_put_port 181
uvm::uvm_object 10
uvm::uvm_object_registry 45
uvm::uvm_object_wrapper 44
uvm::uvm_objection 134
uvm::uvm_packer 26
uvm::uvm_phase 125
uvm::uvm_port_base 21
uvm::uvm_printer 31
uvm::uvm_process_phase 133
uvm::uvm_reg 223
uvm::uvm_reg_adapter 305
uvm::uvm_reg_block 198
uvm::uvm_reg_bus_op 303
uvm::uvm_reg_cbs 285
uvm::uvm_reg_field 239
uvm::uvm_reg_fifo 264

uvm::uvm_reg_file 220
uvm::uvm_reg_frontdoor 314
uvm::uvm_reg_indirect_data 263
uvm::uvm_reg_item 300
uvm::uvm_reg_map 211
uvm::uvm_reg_predictor 307
uvm::uvm_reg_sequence 309
uvm::uvm_reg_tlm_adapter 306
uvm::uvm_report_catcher 166
uvm::uvm_report_handler 157
uvm::uvm_report_message 145
uvm::uvm_report_object 151
uvm::uvm_report_server 159
uvm::uvm_resource 121
uvm::uvm_resource_base 113
uvm::uvm_resource_db 109
uvm::uvm_resource_db_options 112
uvm::uvm_resource_options 113
uvm::uvm_resource_pool 117
uvm::uvm_resource_types 124
uvm::uvm_root 18
uvm::uvm_scoreboard 80
uvm::uvm_seq_item_pull_export 196
uvm::uvm_seq_item_pull_imp 197
uvm::uvm_seq_item_pull_port 195
uvm::uvm_sequence 105
uvm::uvm_sequence_base 96
uvm::uvm_sequence_item 93
uvm::uvm_sequencer 89
uvm::uvm_sequencer_base 83
uvm::uvm_sequencer_param_base 87
uvm::uvm_sqr_if_base 193
uvm::uvm_subscriber 81
uvm::uvm_table_printer 36
uvm::uvm_test 80
uvm::uvm_tlm_req_rsp_channel 190
uvm::uvm_topdown_phase 132
uvm::uvm_transaction 92
uvm::uvm_tree_printer 36
uvm::uvm_void 10
uvm::uvm_vreg 268
uvm::uvm_vreg_cbs 277
uvm::uvm_vreg_field 278
uvm::uvm_vreg_field_cbs 284

clear_hdl_path, member function
class uvm::uvm_mem 259
class uvm::uvm_reg 234
class uvm::uvm_reg_block 209
class uvm::uvm_reg_file 222

clear_response_queue, member function
class uvm::uvm_sequence_base 104

clear, member function
class uvm::uvm_objection 135

clone, member function
class uvm::uvm_object 13

compare_field_int, member function
class uvm::uvm_comparer 39

compare_field_real, member function
class uvm::uvm_comparer 39

327
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

compare_field, member function
class uvm::uvm_comparer 39

compare_object, member function
class uvm::uvm_comparer 39

compare_string, member function
class uvm::uvm_comparer 40

compare_type, member function
class uvm::uvm_comparer 42

compare, member function
class uvm::uvm_object 15

component, glossary 323
compose_report_message, member function

class uvm::uvm_default_report_server 165
class uvm::uvm_report_server 161

configuration_phase, member function
class uvm::uvm_component 66

configuration, glossary 323
configure, member function

class uvm::uvm_mem 253
class uvm::uvm_reg 226
class uvm::uvm_reg_block 201
class uvm::uvm_reg_field 241
class uvm::uvm_reg_file 221
class uvm::uvm_reg_indirect_data 264
class uvm::uvm_reg_map 213
class uvm::uvm_vreg 270
class uvm::uvm_vreg_field 280

connect_phase, member function
class uvm::uvm_component 65

connect, member function
class uvm::uvm_analysis_export 188
class uvm::uvm_analysis_imp 190
class uvm::uvm_analysis_port 187
class uvm::uvm_export_base 23
class uvm::uvm_port_base 22

constructors
class uvm::uvm_agent 78
class uvm::uvm_analysis_export 188
class uvm::uvm_analysis_imp 189
class uvm::uvm_analysis_port 187
class uvm::uvm_blocking_get_peek_port 181
class uvm::uvm_blocking_get_port 179
class uvm::uvm_blocking_peek_port 180
class uvm::uvm_blocking_put_port 178
class uvm::uvm_bottomup_phase 132
class uvm::uvm_callback 139
class uvm::uvm_callback_iter 140
class uvm::uvm_callbacks 142
class uvm::uvm_component 61
class uvm::uvm_component_name 24
class uvm::uvm_default_report_server 163
class uvm::uvm_domain 131
class uvm::uvm_driver 77
class uvm::uvm_env 79
class uvm::uvm_export_base 23
class uvm::uvm_line_printer 37
class uvm::uvm_mem 253
class uvm::uvm_mem_mam 289
class uvm::uvm_monitor 78
class uvm::uvm_nonblocking_get_peek_port 185

class uvm::uvm_nonblocking_get_port 183
class uvm::uvm_nonblocking_peek_port 184
class uvm::uvm_nonblocking_put_port 182
class uvm::uvm_object 11
class uvm::uvm_objection 135
class uvm::uvm_phase 126
class uvm::uvm_port_base 21
class uvm::uvm_reg 226
class uvm::uvm_reg_adapter 305
class uvm::uvm_reg_block 200
class uvm::uvm_reg_field 241
class uvm::uvm_reg_fifo 265
class uvm::uvm_reg_file 221
class uvm::uvm_reg_frontdoor 315
class uvm::uvm_reg_indirect_data 264
class uvm::uvm_reg_item 301
class uvm::uvm_reg_map 213
class uvm::uvm_reg_predictor 308
class uvm::uvm_reg_sequence 311
class uvm::uvm_reg_tlm_adapter 307
class uvm::uvm_report_catcher 167
class uvm::uvm_report_handler 158
class uvm::uvm_report_message 146
class uvm::uvm_report_object 152
class uvm::uvm_resource_base 114
class uvm::uvm_scoreboard 81
class uvm::uvm_seq_item_pull_export 197
class uvm::uvm_seq_item_pull_port 196
class uvm::uvm_sequence 105
class uvm::uvm_sequence_base 97
class uvm::uvm_sequence_item 94
class uvm::uvm_sequencer 89
class uvm::uvm_sequencer_base 84
class uvm::uvm_sequencer_param_base 88
class uvm::uvm_subscriber 82
class uvm::uvm_table_printer 36
class uvm::uvm_test 80
class uvm::uvm_tlm_req_rsp_channel 193
class uvm::uvm_topdown_phase 133
class uvm::uvm_transaction 92
class uvm::uvm_tree_printer 37
class uvm::uvm_vreg 270
class uvm::uvm_vreg_field 280

consumer, glossary 323
convert2string, member function

class uvm::uvm_mem_mam 291
class uvm::uvm_object 13
class uvm::uvm_reg_item 301

copy, member function
class uvm::uvm_object 14

create_component_by_name, member function
class uvm::uvm_default_factory 57
class uvm::uvm_factory 53

create_component_by_type, member function
class uvm::uvm_default_factory 57
class uvm::uvm_factory 53

create_component, member function
class uvm::uvm_component 72
class uvm::uvm_component_registry 48
class uvm::uvm_object_registry 45

328
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

create_item, member function
class uvm::uvm_sequence_base 102

create_map, member function
class uvm::uvm_reg_block 201

create_object_by_name, member function
class uvm::uvm_default_factory 57
class uvm::uvm_factory 52

create_object_by_type, member function
class uvm::uvm_default_factory 57
class uvm::uvm_factory 52

create_object, member function
class uvm::uvm_component 72
class uvm::uvm_object_registry 44, 46

create, member function
class uvm::uvm_component_registry 48
class uvm::uvm_object 12
class uvm::uvm_object_registry 46

current_grabber, member function
class uvm::uvm_sequencer_base 86

D

data, data member
class uvm::uvm_reg_bus_op 304

debug_create_by_name, member function
class uvm::uvm_factory 54

debug_create_by_type, member function
class uvm::uvm_factory 54

debug_object_by_name, member function
class uvm::uvm_default_factory 57

debug_object_by_type, member function
class uvm::uvm_default_factory 57

decode, member function
class uvm::uvm_reg_cbs 288

default_alloc, data member
class uvm::uvm_mem_mam 291

default_map, data member
class uvm::uvm_reg_block 211

default_path, data member
class uvm::uvm_reg_block 211

default_precedence, data member
class uvm::uvm_resource_base 116

define_access, member function
class uvm::uvm_reg_field 243

define_domain, member function
class uvm::uvm_component 69

defines
UVM_DEFAULT_TIMEOUT 317
UVM_MAX_STREAMBITS 317
UVM_PACKER_MAX_BYTES 317

delete_by_name, member function
class uvm::uvm_callbacks 143

destroy, member function
class uvm::uvm_component_registry 48
class uvm::uvm_object_registry 46

destructors
class uvm::uvm_component_name 25

die, member function
class uvm::uvm_root 19

display_objections, member function
class uvm::uvm_objection 138

display, member function
class uvm::uvm_callbacks 144

do_bus_read, member function
class uvm::uvm_reg_map 220

do_bus_write, member function
class uvm::uvm_reg_map 219

do_catch, member function
class uvm::uvm_report_catcher 169

do_compare, member function
class uvm::uvm_object 15

do_copy, member function
class uvm::uvm_object 14
class uvm::uvm_reg_item 301
class uvm::uvm_report_server 161

do_delete, member function
class uvm::uvm_callbacks 143

do_kill, member function
class uvm::uvm_sequence_base 102

do_pack, member function
class uvm::uvm_object 16

do_predict, member function
class uvm::uvm_reg_fifo 267

do_print, member function
class uvm::uvm_default_report_server 165
class uvm::uvm_object 13
class uvm::uvm_report_message 146
class uvm::uvm_resource_base 116

do_read, member function
class uvm::uvm_reg_map 220

do_record, member function
class uvm::uvm_object 14

do_reg_item, member function
class uvm::uvm_reg_sequence 311

do_register, member function
class uvm::uvm_default_factory 56
class uvm::uvm_factory 50

do_unpack, member function
class uvm::uvm_object 17

do_write, member function
class uvm::uvm_reg_map 220

driver, glossary 323
drop_objection, member function

class uvm::uvm_objection 136
class uvm::uvm_phase 129

dropped, member function
class uvm::uvm_component 71
class uvm::uvm_objection 137

dump, member function
class uvm::uvm_resource_db 112
class uvm::uvm_resource_pool 121

E

element_kind, data member
class uvm::uvm_reg_item 301

element, data member
class uvm::uvm_reg_item 301

329
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

emit, member function
class uvm::uvm_line_printer 37
class uvm::uvm_printer 34
class uvm::uvm_table_printer 36
class uvm::uvm_tre_printer 37

enable_print_topology, member function
class uvm::uvm_root 20

encode, member function
class uvm::uvm_reg_cbs 288

end_of_elaboration_phase, member function
class uvm::uvm_component 65

enumerations
uvm::uvm_access_e 298
uvm::uvm_action 318
uvm::uvm_active_passive_enum 318
uvm::uvm_check_e 298
uvm::uvm_coverage_model_e 299
uvm::uvm_elem_kind_e 298
uvm::uvm_endianness_e 298
uvm::uvm_hier_e 298
uvm::uvm_mem_mam::alloc_mode_e 292
uvm::uvm_mem_mam::locality_e 292
uvm::uvm_path_e 297
uvm::uvm_phase_type 319
uvm::uvm_predict_e 298
uvm::uvm_reg_mem_tests_e 299
uvm::uvm_resource_types::priority_e 124
uvm::uvm_sequence_state_enum 319
uvm::uvm_severity 318
uvm::uvm_status_e 297
uvm::uvm_verbosity 318

environment, glossary 323
exec_func, member function

class uvm::uvm_phase 127
exec_process, member function

class uvm::uvm_phase 128
execute_item, member function

class uvm::uvm_sequencer_base 84
execute_report_message, member function

class uvm::uvm_default_report_server 165
class uvm::uvm_report_server 161

execute, member function
class uvm::uvm_bottomup_phase 132
class uvm::uvm_process_phase 134
class uvm::uvm_topdown_phase 133

exists, member function
class uvm::uvm_config_db 108

export, glossary 323
extension, data member

class uvm::uvm_reg_item 303
extract_phase, member function

class uvm::uvm_component 68

F

factory method, glossary 323
fifo, data member

class uvm::uvm_reg_fifo 268
fifo, glossary 323

final_phase, member function
class uvm::uvm_component 68

find_all, member function
class uvm::uvm_root 20

find_block, member function
class uvm::uvm_reg_block 203

find_blocks, member function
class uvm::uvm_reg_block 202

find_by_name, member function
class uvm::uvm_phase 127

find_override_by_name, member function
class uvm::uvm_default_factory 58
class uvm::uvm_factory 54

find_override_by_type, member function
class uvm::uvm_default_factory 58
class uvm::uvm_factory 54

find_unused_resources, member function
class uvm::uvm_resource_pool 121

find, member function
class uvm::uvm_phase 127
class uvm::uvm_root 19

finish_item, member function
class uvm::uvm_sequence_base 102

first, member function
class uvm::uvm_callback_iter 140

fname, data member
class uvm::uvm_reg_item 303

for_each, member function
class uvm::uvm_mem_mam 291

format_action, member function
class uvm::uvm_report_handler 159

format_footer, member function
class uvm::uvm_printer 35

format_header, member function
class uvm::uvm_printer 35

format_row, member function
class uvm::uvm_printer 35

G

generator, glossary 323
get_access, member function

class uvm::uvm_mem 254
class uvm::uvm_reg_field 243
class uvm::uvm_vreg 273
class uvm::uvm_vreg_field 281

get_action, member function
class uvm::uvm_report_catcher 168
class uvm::uvm_report_handler 158
class uvm::uvm_report_message 149

get_adapter, member function
class uvm::uvm_reg_map 216

get_addr_unit_bytes, member function
class uvm::uvm_reg_map 216

get_address, member function
class uvm::uvm_mem 256
class uvm::uvm_reg 229
class uvm::uvm_vreg 274

get_addresses, member function
class uvm::uvm_mem 256

330
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvm::uvm_reg 229
get_arbitration, member function

class uvm::uvm_sequencer_base 87
get_auto_predict, member function

class uvm::uvm_reg_map 219
get_automatic_phase_objection, member function

class uvm::uvm_sequence_base 99
get_backdoor, member function

class uvm::uvm_mem 259
class uvm::uvm_reg 234
class uvm::uvm_reg_block 209

get_base_addr, member function
class uvm::uvm_reg_map 216

get_block_by_name, member function
class uvm::uvm_reg_block 204

get_blocks, member function
class uvm::uvm_reg_block 203

get_by_name, member function
class uvm::uvm_resource 122
class uvm::uvm_resource_db 110
class uvm::uvm_resource_pool 119

get_by_type, member function
class uvm::uvm_resource 123
class uvm::uvm_resource_db 110
class uvm::uvm_resource_pool 119

get_cb, member function
class uvm::uvm_callback_iter 141

get_check_on_read, member function
class uvm::uvm_reg_map 219

get_child, member function
class uvm::uvm_component 62

get_children, member function
class uvm::uvm_component 62

get_client, member function
class uvm::uvm_report_catcher 167

get_common_domain, member function
class uvm::uvm_domain 131

get_compare, member function
class uvm::uvm_reg_field 248

get_context, member function
class uvm::uvm_report_message 149

get_coverage, member function
class uvm::uvm_mem 263
class uvm::uvm_reg 237
class uvm::uvm_reg_block 206

get_current_item, member function
class uvm::uvm_sequence 105
class uvm::uvm_sequencer_param_base 88

get_default_hdl_path, member function
class uvm::uvm_reg_block 210
class uvm::uvm_reg_file 223

get_default_map, member function
class uvm::uvm_reg_block 202

get_default_path, member function
class uvm::uvm_reg_block 207

get_depth, member function
class uvm::uvm_component 63
class uvm::uvm_sequence_item 95

get_domain_name, member function
class uvm::uvm_phase 129

get_domain, member function
class uvm::uvm_component 69
class uvm::uvm_phase 129

get_domains, member function
class uvm::uvm_domain 131

get_drain_time, member function
class uvm::uvm_objection 138

get_element_container, member function
class uvm::uvm_report_message 150

get_end_offset, member function
class uvm::uvm_mem_region 293

get_endian, member function
class uvm::uvm_reg_map 216

get_factory, member function
class uvm::uvm_coreservices_t 320
class uvm::uvm_default_coreservices_t 321

get_field_attribute, member function
class uvm::uvm_comparer 42

get_field_by_name, member function
class uvm::uvm_reg 228
class uvm::uvm_reg_block 205
class uvm::uvm_vreg 274

get_fields, member function
class uvm::uvm_reg 228
class uvm::uvm_reg_block 203
class uvm::uvm_reg_map 217
class uvm::uvm_vreg 274

get_file_handle, member function
class uvm::uvm_report_handler 158

get_file, member function
class uvm::uvm_report_message 149

get_filename, member function
class uvm::uvm_report_message 148

get_finish_on_completion, member function
class uvm::uvm_root 19

get_first_child, member function
class uvm::uvm_component 62

get_first, member function
class uvm::uvm_callbacks 143

get_fname, member function
class uvm::uvm_report_catcher 168

get_frontdoor, member function
class uvm::uvm_mem 259
class uvm::uvm_reg 234

get_full_hdl_path, member function
class uvm::uvm_mem 260
class uvm::uvm_reg 235
class uvm::uvm_reg_block 210
class uvm::uvm_reg_file 223

get_full_name, member function
class uvm::uvm_component 62
class uvm::uvm_export_base 23
class uvm::uvm_mem 254
class uvm::uvm_object 11
class uvm::uvm_phase 128
class uvm::uvm_port_base 22
class uvm::uvm_reg 227
class uvm::uvm_reg_block 202
class uvm::uvm_reg_field 242
class uvm::uvm_reg_file 221

331
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvm::uvm_reg_map 215
class uvm::uvm_vreg 272
class uvm::uvm_vreg_field 280

get_hdl_path_kinds, member function
class uvm::uvm_mem 261
class uvm::uvm_reg 235

get_hdl_path, member function
class uvm::uvm_mem 260
class uvm::uvm_reg 235
class uvm::uvm_reg_block 210
class uvm::uvm_reg_file 222

get_highest_precedence, member function
class uvm::uvm_resource 123
class uvm::uvm_resource_pool 119

get_id_count, member function
class uvm::uvm_default_report_server 165
class uvm::uvm_report_server 161

get_id_set, member function
class uvm::uvm_default_report_server 165
class uvm::uvm_report_server 161

get_id, member function
class uvm::uvm_report_catcher 168
class uvm::uvm_report_message 148

get_imp, member function
class uvm::uvm_phase 129

get_incr, member function
class uvm::uvm_vreg 274

get_inst_count, member function
class uvm::uvm_object 12

get_inst_id, member function
class uvm::uvm_object 12

get_is_active, member function
class uvm::uvm_agent 79

get_item, member function
class uvm::uvm_reg_adapter 306

get_jump_target, member function
class uvm::uvm_phase 130

get_last, member function
class uvm::uvm_callbacks 143

get_len, member function
class uvm::uvm_mem_region 293

get_line, member function
class uvm::uvm_report_catcher 168
class uvm::uvm_report_message 149

get_lsb_pos_in_register, member function
class uvm::uvm_vreg_field 280

get_lsb_pos, member function
class uvm::uvm_reg_field 242

get_map_by_name, member function
class uvm::uvm_reg_block 204

get_maps, member function
class uvm::uvm_mem 254
class uvm::uvm_reg 227
class uvm::uvm_reg_block 203
class uvm::uvm_vreg 272

get_max_messages, member function
class uvm::uvm_comparer 40

get_max_quit_count, member function
class uvm::uvm_default_report_server 163
class uvm::uvm_report_server 160

get_max_size, member function
class uvm::uvm_mem 255
class uvm::uvm_reg 228
class uvm::uvm_reg_field 242

get_mem_by_name, member function
class uvm::uvm_reg_block 205

get_mem_by_offset, member function
class uvm::uvm_reg_map 218

get_memories, member function
class uvm::uvm_reg_block 203
class uvm::uvm_reg_map 217

get_memory, member function
class uvm::uvm_mem_mam 291
class uvm::uvm_mem_region 294
class uvm::uvm_vreg 272

get_message, member function
class uvm::uvm_report_catcher 168
class uvm::uvm_report_message 148

get_mirrored_value, member function
class uvm::uvm_reg 230
class uvm::uvm_reg_field 245

get_miscompare_string, member function
class uvm::uvm_comparer 41

get_n_bits, member function
class uvm::uvm_mem 255
class uvm::uvm_reg 228
class uvm::uvm_reg_field 242
class uvm::uvm_vreg_field 281

get_n_bytes, member function
class uvm::uvm_mem 255
class uvm::uvm_mem_region 294
class uvm::uvm_reg 228
class uvm::uvm_reg_map 216
class uvm::uvm_vreg 273

get_n_maps, member function
class uvm::uvm_mem 254
class uvm::uvm_reg 227
class uvm::uvm_vreg 272

get_n_memlocs, member function
class uvm::uvm_vreg 273

get_name, member function
class uvm::uvm_export_base 23
class uvm::uvm_mem 253
class uvm::uvm_object 11
class uvm::uvm_port_base 21
class uvm::uvm_reg 227
class uvm::uvm_reg_block 202
class uvm::uvm_reg_field 242
class uvm::uvm_reg_file 221
class uvm::uvm_reg_map 215
class uvm::uvm_vreg 272
class uvm::uvm_vreg_field 280

get_next_child, member function
class uvm::uvm_component 62

get_next_item, member function
class uvm::uvm_sequencer 89
class uvm::uvm_sqr_if_base 193

get_next, member function
class uvm::uvm_callbacks 144

332
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

get_num_children, member function
class uvm::uvm_component 62

get_object_type, member function
class uvm::uvm_object 12

get_objection_count, member function
class uvm::uvm_objection 138

get_objection_total, member function
class uvm::uvm_objection 138

get_objection, member function
class uvm::uvm_phase 129

get_objectors, member function
class uvm::uvm_objection 138

get_offset_in_memory, member function
class uvm::uvm_vreg 274

get_offset, member function
class uvm::uvm_mem 256
class uvm::uvm_reg 229

get_packed_size, member function
class uvm::uvm_packer 30

get_parent_map, member function
class uvm::uvm_reg_map 216

get_parent_sequence, member function
class uvm::uvm_sequence_item 95

get_parent, member function
class uvm::uvm_component 61
class uvm::uvm_export_base 23
class uvm::uvm_mem 254
class uvm::uvm_phase 128
class uvm::uvm_port_base 22
class uvm::uvm_reg 227
class uvm::uvm_reg_block 202
class uvm::uvm_reg_field 242
class uvm::uvm_reg_file 222
class uvm::uvm_reg_map 215
class uvm::uvm_vreg 272
class uvm::uvm_vreg_field 280

get_peek_request_export, export
class uvm::uvm_tlm_req_rsp_channel 192

get_peek_response_export, export
class uvm::uvm_tlm_req_rsp_channel 192

get_phase_type, member function
class uvm::uvm_phase 126

get_physical_addresses, member function
class uvm::uvm_reg_map 218

get_policy, member function
class uvm::uvm_comparer 40

get_prev, member function
class uvm::uvm_callbacks 144

get_priority, member function
class uvm::uvm_sequence_base 100

get_quit_count, member function
class uvm::uvm_default_report_server 163
class uvm::uvm_report_server 160

get_reg_by_name, member function
class uvm::uvm_reg_block 204

get_reg_by_offset, member function
class uvm::uvm_reg_map 218

get_regfile, member function
class uvm::uvm_reg 227
class uvm::uvm_reg_file 222

get_region, member function
class uvm::uvm_vreg 271

get_registers, member function
class uvm::uvm_reg_block 203
class uvm::uvm_reg_map 217

get_report_action, member function
class uvm::uvm_report_object 155

get_report_catcher, member function
class uvm::uvm_report_catcher 169

get_report_file_handle, member function
class uvm::uvm_report_object 155

get_report_handler, member function
class uvm::uvm_report_message 147
class uvm::uvm_report_object 157

get_report_object, member function
class uvm::uvm_report_message 146

get_report_server, member function
class uvm::uvm_coreservices_t 320
class uvm::uvm_default_coreservices_t 321
class uvm::uvm_report_message 147

get_report_verbosity_level, member function
class uvm::uvm_report_object 154

get_request_export, export
class uvm::uvm_tlm_req_rsp_channel 191

get_reset, member function
class uvm::uvm_reg 230
class uvm::uvm_reg_field 245

get_response_export, export
class uvm::uvm_tlm_req_rsp_channel 192

get_response_queue_depth, member function
class uvm::uvm_sequence_base 104

get_response_queue_error_report_disabled, member
function

class uvm::uvm_sequence_base 104
get_response, member function

class uvm::uvm_sequence 106
get_result, member function

class uvm::uvm_comparer 42
get_rights, member function

class uvm::uvm_mem 254
class uvm::uvm_reg 228
class uvm::uvm_vreg 273

get_root_blocks, member function
class uvm::uvm_reg_block 202

get_root_map, member function
class uvm::uvm_reg_map 215

get_root_sequence_name, member function
class uvm::uvm_sequence_item 95

get_root_sequence, member function
class uvm::uvm_sequence_item 95

get_root, member function
class uvm::uvm_coreservices_t 320
class uvm::uvm_default_coreservices_t 322

get_run_count, member function
class uvm::uvm_phase 127

get_schedule_name, member function
class uvm::uvm_phase 128

get_schedule, member function
class uvm::uvm_phase 128

333
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

get_scope, member function
class uvm::uvm_resource_base 115

get_sequence_path, member function
class uvm::uvm_sequence_item 95

get_sequence_state, member function
class uvm::uvm_sequence_base 97

get_sequencer, member function
class uvm::uvm_reg_map 216
class uvm::uvm_sequence_item 94

get_server, member function
class uvm::uvm_report_server 162

get_severity_count, member function
class uvm::uvm_default_report_server 164
class uvm::uvm_report_server 160

get_severity_set, member function
class uvm::uvm_default_report_server 164
class uvm::uvm_report_server 161

get_severity, member function
class uvm::uvm_comparer 41
class uvm::uvm_report_catcher 167
class uvm::uvm_report_message 147

get_size, member function
class uvm::uvm_mem 255
class uvm::uvm_vreg 273

get_start_offset, member function
class uvm::uvm_mem_region 293

get_starting_phase, member function
class uvm::uvm_sequence_base 99

get_state, member function
class uvm::uvm_phase 126

get_submap_offset, member function
class uvm::uvm_reg_map 215

get_submaps, member function
class uvm::uvm_reg_map 217

get_transaction_id, member function
class uvm::uvm_transaction 93

get_type_handle, member function
class uvm::uvm_resource 122
class uvm::uvm_resource_base 114

get_type_name, member function
class uvm::uvm_agent 79
class uvm::uvm_analysis_export 188
class uvm::uvm_analysis_imp 189
class uvm::uvm_analysis_port 187
class uvm::uvm_blocking_get_peek_port 181
class uvm::uvm_blocking_get_port 179
class uvm::uvm_blocking_peek_port 180
class uvm::uvm_blocking_put_port 178
class uvm::uvm_callback 139
class uvm::uvm_component_registry 48
class uvm::uvm_driver 77
class uvm::uvm_env 79
class uvm::uvm_export_base 23
class uvm::uvm_monitor 78
class uvm::uvm_nonblocking_get_peek_port 185
class uvm::uvm_nonblocking_get_port 183
class uvm::uvm_nonblocking_peek_port 184
class uvm::uvm_nonblocking_put_port 182
class uvm::uvm_object 12
class uvm::uvm_object_registry 45, 46

class uvm::uvm_port_base 22
class uvm::uvm_scoreboard 81
class uvm::uvm_seq_item_pull_export 197
class uvm::uvm_seq_item_pull_imp 197
class uvm::uvm_seq_item_pull_port 196
class uvm::uvm_subscriber 82
class uvm::uvm_test 80

get_type, member function
class uvm::uvm_object 12
class uvm::uvm_resource 122

get_use_response_handler, member function
class uvm::uvm_sequence_base 104

get_use_sequence_info, member function
class uvm::uvm_sequence_item 94

get_uvm_domain, member function
class uvm::uvm_domain 131

get_uvm_schedule, member function
class uvm::uvm_domain 131

get_verbosity_level, member function
class uvm::uvm_report_handler 158

get_verbosity, member function
class uvm::uvm_comparer 41
class uvm::uvm_report_catcher 167
class uvm::uvm_report_message 148

get_vfield_by_name, member function
class uvm::uvm_mem 256
class uvm::uvm_reg_block 205

get_virtual_fields, member function
class uvm::uvm_mem 255
class uvm::uvm_reg_block 204
class uvm::uvm_reg_map 217

get_virtual_registers, member function
class uvm::uvm_mem 255
class uvm::uvm_mem_region 294
class uvm::uvm_reg_block 204
class uvm::uvm_reg_map 217

get_vreg_by_name, member function
class uvm::uvm_mem 255
class uvm::uvm_reg_block 205

get_vreg_by_offset, member function
class uvm::uvm_mem 256

get, member function
class uvm::uvm_blocking_get_peek_port 181
class uvm::uvm_blocking_get_port 179
class uvm::uvm_component_registry 48
class uvm::uvm_config_db 108
class uvm::uvm_coreservices_t 320
class uvm::uvm_default_coreservices_t 322
class uvm::uvm_factory 50
class uvm::uvm_object_registry 46
class uvm::uvm_reg 230
class uvm::uvm_reg_field 245
class uvm::uvm_reg_fifo 267
class uvm::uvm_resource_pool 118
class uvm::uvm_sequencer 90
class uvm::uvm_sqr_if_base 194

global objects
uvm::uvm_default_comparer 43
uvm::uvm_default_line_printer 42
uvm::uvm_default_packer 43

334
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm::uvm_default_printer 43
uvm::uvm_default_recorder 43
uvm::uvm_default_table_printer 42
uvm::uvm_default_tree_printer 42

global types
uvm::uvm_hdl_path_slice 297
uvm::uvm_reg_addr_logic_t 296
uvm::uvm_reg_addr_t 296
uvm::uvm_reg_byte_en_t 297
uvm::uvm_reg_cvr_t 297
uvm::uvm_reg_data_logic_t 296
uvm::uvm_reg_data_t 296

grab, member function
class uvm::uvm_sequence_base 101
class uvm::uvm_sequencer_base 85

GREEDY
uvm::uvm_mem_mam::alloc_mode_e, enumeration
292

H

has_child, member function
class uvm::uvm_component 62

has_coverage, member function
class uvm::uvm_mem 262
class uvm::uvm_reg 237
class uvm::uvm_reg_block 206

has_do_available, member function
class uvm::uvm_sequencer_base 86

has_hdl_path, member function
class uvm::uvm_mem 260
class uvm::uvm_reg 235
class uvm::uvm_reg_block 210
class uvm::uvm_reg_file 222

has_lock, member function
class uvm::uvm_sequence_base 101
class uvm::uvm_sequencer_base 85

has_reset, member function
class uvm::uvm_reg 231
class uvm::uvm_reg_field 245

I

implement, member function
class uvm::uvm_vreg 270

implementation, glossary 324
include_coverage, member function

class uvm::uvm_reg 236
incr_id_count, member function

class uvm::uvm_default_report_server 165
incr_quit_count, member function

class uvm::uvm_default_report_server 163
incr_severity_count, member function

class uvm::uvm_default_report_server 164
init_access_record, member function

class uvm::uvm_resource_base 116
is_after, member function

class uvm::uvm_phase 127

is_auditing, member function
class uvm::uvm_resource_options 113

is_before, member function
class uvm::uvm_phase 127

is_blocked, member function
class uvm::uvm_sequence_base 101
class uvm::uvm_sequencer_base 85

is_busy, member function
class uvm::uvm_reg 233

is_child, member function
class uvm::uvm_sequencer_base 84

is_enabled, member function
class uvm::uvm_callback 139

is_grabbed, member function
class uvm::uvm_sequencer_base 86

is_hdl_path_root, member function
class uvm::uvm_reg_block 211

is_in_map, member function
class uvm::uvm_mem 254
class uvm::uvm_reg 227
class uvm::uvm_vreg 272

is_indv_accessible, member function
class uvm::uvm_reg_field 248

is_item, member function
class uvm::uvm_sequence_item 95

is_known_access, member function
class uvm::uvm_reg_field 244

is_locked, member function
class uvm::uvm_reg_block 202

is_null, member function
class uvm::uvm_packer 28

is_quit_count_reached, member function
class uvm::uvm_default_report_server 164

is_read_only, member function
class uvm::uvm_resource_base 115

is_relevant, member function
class uvm::uvm_sequence_base 100

is_tracing, member function
class uvm::uvm_resource_db_options 112

is_volatile, member function
class uvm::uvm_reg_field 244

is, member function
class uvm::uvm_phase 127

issue, member function
class uvm::uvm_report_catcher 170

item_done, member function
class uvm::uvm_sequencer 90
class uvm::uvm_sqr_if_base 194

J

jump, member function
class uvm::uvm_phase 130

K

kernel, glossary 324
kill, member function

class uvm::uvm_sequence_base 102

335
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

kind, data member
class uvm::uvm_reg_bus_op 304

knobs, data member
class uvm::uvm_printer 36

L

last, member function
class uvm::uvm_callback_iter 140

lineno, data member
class uvm::uvm_reg_item 303

local_map, data member
class uvm::uvm_reg_item 302

locality_e, enumeration
class uvm::uvm_mem_mam 292

lock_model, member function
class uvm::uvm_reg_block 202

lock, member function
class uvm::uvm_sequence_base 101
class uvm::uvm_sequencer_base 85

lookup_name, member function
class uvm::uvm_resource_pool 119

lookup_regex_names, member function
class uvm::uvm_resource_pool 120

lookup_regex, member function
class uvm::uvm_resource_pool 120

lookup_scope, member function
class uvm::uvm_resource_pool 120

lookup_type, member function
class uvm::uvm_resource_pool 119

lookup, member function
class uvm::uvm_component 63

M

macros
UVM_COMPONENT_PARAM_UTILS 172
UVM_COMPONENT_UTILS 172
UVM_CREATE 174
UVM_CREATE_ON 174
UVM_DECLARE_P_SEQUENCER 90, 174
UVM_DO 174
UVM_DO_CALLBACKS 176
UVM_DO_ON 174
UVM_DO_ON_PRI 174
UVM_DO_PRI 174
UVM_ERROR 173
UVM_FATAL 173
UVM_INFO 173
UVM_OBJECT_PARAM_UTILS 172
UVM_OBJECT_UTILS 172
UVM_REGISTER_CB 176
UVM_WARNING 173

main_phase, member function
class uvm::uvm_component 67

map, data member
class uvm::uvm_reg_item 302
class uvm::uvm_reg_predictor 309

master_export, export
class uvm::uvm_tlm_req_rsp_channel 192

match_scope, member function
class uvm::uvm_resource_base 115

member function, glossary 324
method, glossary 324
mid_do, member function

class uvm::uvm_sequence_base 98
mirror_reg, member function

class uvm::uvm_reg_sequence 313
mirror, member function

class uvm::uvm_reg 232
class uvm::uvm_reg_block 208
class uvm::uvm_reg_field 248
class uvm::uvm_reg_fifo 267

model, data member
class uvm::uvm_reg_sequence 314

monitor, glossary 324

N

n_bits, data member
class uvm::uvm_reg_bus_op 304

NEARBY
enum uvm::uvm_mem_mam::locality_e 292

needs_update, member function
class uvm::uvm_reg 230
class uvm::uvm_reg_block 207
class uvm::uvm_reg_field 246

next, member function
class uvm::uvm_callback_iter 141

non blocking, glossary 324

O

offset, data member
class uvm::uvm_reg_item 302

operator const char*()
class uvm::uvm_component_name 25

override_t, typedef
class uvm::uvm_resource_types 124

P

pack_bytes, member function
class uvm::uvm_object 15

pack_field_int, member function
class uvm::uvm_packer 28

pack_field, member function
class uvm::uvm_packer 27

pack_ints, member function
class uvm::uvm_object 16

pack_object, member function
class uvm::uvm_packer 28

pack_real, member function
class uvm::uvm_packer 28

pack_string, member function
class uvm::uvm_packer 28

336
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

pack_time, member function
class uvm::uvm_packer 28

pack, member function
class uvm::uvm_object 15

parent_sequence, data member
class uvm::uvm_reg_adapter 306

parent, data member
class uvm::uvm_reg_item 302

path, data member
class uvm::uvm_reg_item 302

peek_mem, member function
class uvm::uvm_reg_sequence 314

peek_reg, member function
class uvm::uvm_reg_sequence 312

peek, member function
class uvm::uvm_blocking_get_peek_port 181
class uvm::uvm_blocking_peek_port 180
class uvm::uvm_mem 258
class uvm::uvm_mem_region 296
class uvm::uvm_reg 232
class uvm::uvm_reg_field 247
class uvm::uvm_sequencer 90
class uvm::uvm_sqr_if_base 195
class uvm::uvm_vreg 275
class uvm::uvm_vreg_field 282

phase_ended, member function
class uvm::uvm_component 69

phase_ready_to_end, member function
class uvm::uvm_component 69

phase_started, member function
class uvm::uvm_component 68

physical, data member
class uvm::uvm_packer 30

poke_mem, member function
class uvm::uvm_reg_sequence 313

poke_reg, member function
class uvm::uvm_reg_sequence 312

poke, member function
class uvm::uvm_mem 258
class uvm::uvm_mem_region 295
class uvm::uvm_reg 232
class uvm::uvm_reg_field 247
class uvm::uvm_vreg 275
class uvm::uvm_vreg_field 282

port_write, member function
class uvm::uvm_vreg 276

post_body, member function
class uvm::uvm_sequence_base 99

post_configuration_phase, member function
class uvm::uvm_component 66

post_do, member function
class uvm::uvm_sequence_base 98

post_main_phase, member function
class uvm::uvm_component 67

post_predict, member function
class uvm::uvm_reg_cbs 288

post_read, member function
class uvm::uvm_mem 262
class uvm::uvm_reg 239
class uvm::uvm_reg_cbs 287

class uvm::uvm_reg_field 250
class uvm::uvm_vreg 277
class uvm::uvm_vreg_cbs 278
class uvm::uvm_vreg_field 283
class uvm::uvm_vreg_field_cbs 285

post_reset_phase, member function
class uvm::uvm_component 66

post_shutdown_phase, member function
class uvm::uvm_component 68

post_start, member function
class uvm::uvm_sequence_base 99

post_write, member function
class uvm::uvm_mem 261
class uvm::uvm_reg 238
class uvm::uvm_reg_cbs 286
class uvm::uvm_reg_field 249
class uvm::uvm_vreg_cbs 277
class uvm::uvm_vreg_field 283
class uvm::uvm_vreg_field_cbs 284

pre_abort, member function
class uvm::uvm_component 75

pre_body, member function
class uvm::uvm_sequence_base 98

pre_configuration_phase, member function
class uvm::uvm_component 66

pre_do, member function
class uvm::uvm_sequence_base 98

pre_main_phase, member function
class uvm::uvm_component 67

pre_predict, member function
class uvm::uvm_reg_predictor 308

pre_read, member function
class uvm::uvm_mem 261
class uvm::uvm_reg 239
class uvm::uvm_reg_cbs 287
class uvm::uvm_reg_field 249
class uvm::uvm_reg_fifo 268
class uvm::uvm_vreg 276
class uvm::uvm_vreg_cbs 278
class uvm::uvm_vreg_field 283
class uvm::uvm_vreg_field_cbs 285

pre_reset_phase, member function
class uvm::uvm_component 65

pre_shutdown_phase, member function
class uvm::uvm_component 67

pre_start, member function
class uvm::uvm_sequence_base 98

pre_write, member function
class uvm::uvm_mem 261
class uvm::uvm_reg 238
class uvm::uvm_reg_cbs 286
class uvm::uvm_reg_field 249
class uvm::uvm_reg_fifo 268
class uvm::uvm_vreg 276
class uvm::uvm_vreg_cbs 277
class uvm::uvm_vreg_field 282
class uvm::uvm_vreg_field_cbs 284

precedence, data member
class uvm::uvm_resource_base 116

337
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

predict, member function
class uvm::uvm_reg 233
class uvm::uvm_reg_field 248

prev, member function
class uvm::uvm_callback_iter 141

PRI_HIGH
enum uvm::uvm_resource_types::priority_e 124

PRI_LOW
enum uvm::uvm_resource_types::priority_e 124

primary (host) methodology, glossary 324
print_accessors, member function

class uvm::uvm_resource_base 116
print_array_footer, member function

class uvm::uvm_printer 35
print_array_header, member function

class uvm::uvm_printer 35
print_array_range, member function

class uvm::uvm_printer 35
print_catcher, member function

class uvm::uvm_report_catcher 169
print_config_matches, member function

class uvm::uvm_component 71
print_config_with_audit, member function

class uvm::uvm_component 71
print_config, member function

class uvm::uvm_component 70
print_double, member function

class uvm::uvm_printer 33
print_field_int, member function

class uvm::uvm_printer 33
print_field, member function

class uvm::uvm_printer 32
print_generic, member function

class uvm::uvm_printer 34
print_msg, member function

class uvm::uvm_comparer 40
print_object_header, member function

class uvm::uvm_printer 34
print_object, member function

class uvm::uvm_printer 33
print_override_info, member function

class uvm::uvm_component 73
print_real, member function

class uvm::uvm_printer 33
print_resources, member function

class uvm::uvm_resource_pool 121
print_string, member function

class uvm::uvm_printer 34
print_time, member function

class uvm::uvm_printer 34
print_topology, member function

class uvm::uvm_root 20
print, member function

class uvm::uvm_default_factory 58
class uvm::uvm_factory 54
class uvm::uvm_object 13

prior, data member
class uvm::uvm_reg_item 303

priority_e, enumeration
class uvm::uvm_resource_types 124

process, glossary 324
provides_responses, data member

class uvm::uvm_reg_adapter 306
put_request_export, export

class uvm::uvm_tlm_req_rsp_channel 191
put_response_export, export

class uvm::uvm_tlm_req_rsp_channel 191
put, member function

class uvm::uvm_blocking_put_port 178
class uvm::uvm_sequencer 90
class uvm::uvm_sqr_if_base 195

R

raise_objection, member function
class uvm::uvm_objection 136
class uvm::uvm_phase 129

raised, member function
class uvm::uvm_component 71
class uvm::uvm_objection 137

read_by_name, member function
class uvm::uvm_resource_db 111

read_by_type, member function
class uvm::uvm_resource_db 111

read_mem_by_name, member function
class uvm::uvm_reg_block 209

read_mem, member function
class uvm::uvm_reg_sequence 313

read_reg_by_name, member function
class uvm::uvm_reg_block 208

read_reg, member function
class uvm::uvm_reg_sequence 312

read, member function
class uvm::uvm_mem 257
class uvm::uvm_mem_region 294
class uvm::uvm_reg 231
class uvm::uvm_reg_field 247
class uvm::uvm_reg_fifo 266
class uvm::uvm_resource 123
class uvm::uvm_vreg 275
class uvm::uvm_vreg_field 281

recipient, glossary 324
reconfigure, member function

class uvm::uvm_mem_mam 290
record_read_access, member function

class uvm::uvm_resource_base 116
record_write_access, member function

class uvm::uvm_resource_base 116
record, member function

class uvm::uvm_object 14
reg_ap, port

class uvm::uvm_reg_predictor 308
reg_seqr, data member

class uvm::uvm_reg_sequence 314
reg2bus, member function

class uvm::uvm_reg_adapter 305
class uvm::uvm_reg_tlm_adapter 307

release_all_regions, member function
class uvm::uvm_mem_mam 291

338
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

release_region, member function
class uvm::uvm_mem_mam 291
class uvm::uvm_mem_region 294
class uvm::uvm_vreg 271

report_phase, member function
class uvm::uvm_component 68

report_summarize, member function
class uvm::uvm_default_report_server 165
class uvm::uvm_report_server 161

report, member function
class uvm::uvm_report_handler 159

request_ap, port
class uvm::uvm_tlm_req_rsp_channel 191

request_region, member function
class uvm::uvm_mem_mam 290

request, glossary 324
reserve_region, member function

class uvm::uvm_mem_mam 290
reset_phase, member function

class uvm::uvm_component 66
reset_quit_count, member function

class uvm::uvm_default_report_server 164
reset_report_handler, member function

class uvm::uvm_report_object 157
reset_severity_counts, member function

class uvm::uvm_default_report_server 164
reset, member function

class uvm::uvm_reg 230
class uvm::uvm_reg_block 207
class uvm::uvm_reg_field 245
class uvm::uvm_reg_map 215
class uvm::uvm_vreg 276

response_ap, port
class uvm::uvm_tlm_req_rsp_channel 191

response_handler, member function
class uvm::uvm_sequence_base 104

response, glossary 324
resume, member function

class uvm::uvm_component 70
root sequence, glossary 324
rsp_port, port

class uvm::uvm_driver 77
rsrc_q_t, typedef

class uvm::uvm_resource_types 124
run_phase, member function

class uvm::uvm_component 65
run_test, member function

class uvm::uvm_root 18
rw_info, data member

class uvm::uvm_reg_frontdoor 315

S

sample_values, member function
class uvm::uvm_reg 238
class uvm::uvm_reg_block 206

sample, member function
class uvm::uvm_mem 263
class uvm::uvm_reg 238
class uvm::uvm_reg_block 206

scoreboard, glossary 324
send_request, member function

class uvm::uvm_sequence 105
class uvm::uvm_sequence_base 103
class uvm::uvm_sequencer_base 87
class uvm::uvm_sequencer_param_base 88

sender, glossary 324
seq_item_export, export

class uvm::uvm_sequencer 89
seq_item_port, port

class uvm::uvm_driver 77
sequence, glossary 324
sequencer, data member

class uvm::uvm_reg_frontdoor 315
sequencer, glossary 324
set_access, member function

class uvm::uvm_reg_field 242
set_action, member function

class uvm::uvm_report_catcher 169
class uvm::uvm_report_message 149

set_anonymous, member function
class uvm::uvm_resource_db 111

set_arbitration, member function
class uvm::uvm_sequencer_base 87

set_auto_predict, member function
class uvm::uvm_reg_map 218

set_automatic_phase_objection, member function
class uvm::uvm_sequence_base 99

set_backdoor, member function
class uvm::uvm_mem 259
class uvm::uvm_reg 234
class uvm::uvm_reg_block 209

set_base_addr, member function
class uvm::uvm_reg_map 215

set_check_on_read, member function
class uvm::uvm_reg_map 219

set_compare, member function
class uvm::uvm_reg_field 248
class uvm::uvm_reg_fifo 266

set_context, member function
class uvm::uvm_report_message 149

set_coverage, member function
class uvm::uvm_mem 262
class uvm::uvm_reg 237
class uvm::uvm_reg_block 206

set_default_hdl_path, member function
class uvm::uvm_reg_block 210
class uvm::uvm_reg_file 223

set_default_map, member function
class uvm::uvm_reg_block 201

set_default, member function
class uvm::uvm_resource_db 110

set_depth, member function
class uvm::uvm_sequence_item 95

set_domain, member function
class uvm::uvm_component 69

set_drain_time, member function
class uvm::uvm_objection 137

set_factory, member function
class uvm::uvm_coreservices_t 320

339
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvm::uvm_default_coreservices_t 321
set_field_attribute, member function

class uvm::uvm_comparer 41
set_file, member function

class uvm::uvm_report_message 150
set_filename, member function

class uvm::uvm_report_message 148
set_finish_on_completion, member function

class uvm::uvm_root 19
set_frontdoor, member function

class uvm::uvm_mem 258
class uvm::uvm_reg 233

set_hdl_path_root, member function
class uvm::uvm_reg_block 210

set_id_count, member function
class uvm::uvm_default_report_server 164
class uvm::uvm_report_server 160

set_id_info, member function
class uvm::uvm_sequence_item 94

set_id, member function
class uvm::uvm_report_catcher 169
class uvm::uvm_report_message 148

set_inst_override_by_name, member function
class uvm::uvm_default_factory 56
class uvm::uvm_factory 51

set_inst_override_by_type, member function
class uvm::uvm_component 72
class uvm::uvm_default_factory 56
class uvm::uvm_factory 51

set_inst_override, member function
class uvm::uvm_component 73
class uvm::uvm_component_registry 49
class uvm::uvm_object_registry 47

set_line, member function
class uvm::uvm_report_message 149

set_max_messages, member function
class uvm::uvm_comparer 40

set_max_quit_count, member function
class uvm::uvm_default_report_server 163
class uvm::uvm_report_server 160

set_message, member function
class uvm::uvm_report_catcher 169
class uvm::uvm_report_message 148

set_miscompare_string, member function
class uvm::uvm_comparer 41

set_name_override, member function
class uvm::uvm_resource_pool 118

set_name, member function
class uvm::uvm_object 11

set_offset, member function
class uvm::uvm_mem 253
class uvm::uvm_reg 226

set_override, member function
class uvm::uvm_resource 122
class uvm::uvm_resource_pool 118

set_parent_sequence, member function
class uvm::uvm_sequence_item 94

set_phase_imp, member function
class uvm::uvm_component 69

set_policy, member function
class uvm::uvm_comparer 40

set_priority_name, member function
class uvm::uvm_resource_pool 120

set_priority_type, member function
class uvm::uvm_resource_pool 120

set_priority, member function
class uvm::uvm_resource 123
class uvm::uvm_resource_base 115
class uvm::uvm_resource_pool 120
class uvm::uvm_sequence_base 100

set_quit_count, member function
class uvm::uvm_default_report_server 163
class uvm::uvm_report_server 160

set_read_only, member function
class uvm::uvm_resource_base 114

set_report_default_file_hier, member function
class uvm::uvm_component 75

set_report_default_file, member function
class uvm::uvm_report_object 155

set_report_handler, member function
class uvm::uvm_report_message 147
class uvm::uvm_report_object 157

set_report_id_action_hier, member function
class uvm::uvm_component 74

set_report_id_action, member function
class uvm::uvm_report_object 155

set_report_id_file_hier, member function
class uvm::uvm_component 75

set_report_id_file, member function
class uvm::uvm_report_object 156

set_report_id_verbosity_hier, member function
class uvm::uvm_component 74

set_report_id_verbosity, member function
class uvm::uvm_report_object 154

set_report_message, member function
class uvm::uvm_report_message 150

set_report_object, member function
class uvm::uvm_report_message 147

set_report_server, member function
class uvm::uvm_coreservices_t 320
class uvm::uvm_default_coreservices_t 321
class uvm::uvm_report_message 147

set_report_severity_action_hier, member function
class uvm::uvm_component 74

set_report_severity_action, member function
class uvm::uvm_report_object 155

set_report_severity_file_hier, member function
class uvm::uvm_component 75

set_report_severity_file, member function
class uvm::uvm_report_object 156

set_report_severity_id_action_hier, member function
class uvm::uvm_component 74

set_report_severity_id_action, member function
class uvm::uvm_report_object 155

set_report_severity_id_file_hier, member function
class uvm::uvm_component 75

set_report_severity_id_file, member function
class uvm::uvm_report_object 156

340
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

set_report_severity_id_override, member function
class uvm::uvm_report_object 156

set_report_severity_id_verbosity_hier, member function
class uvm::uvm_component 74

set_report_severity_id_verbosity, member function
class uvm::uvm_report_object 154

set_report_severity_override, member function
class uvm::uvm_report_object 156

set_report_verbosity_level_hier, member function
class uvm::uvm_component 75

set_report_verbosity_level, member function
class uvm::uvm_report_object 154

set_reset, member function
class uvm::uvm_reg 231
class uvm::uvm_reg_field 246

set_response_queue_depth, member function
class uvm::uvm_sequence_base 104

set_response_queue_error_report_disabled, member
function

class uvm::uvm_sequence_base 104
set_scope, member function

class uvm::uvm_resource_base 115
set_sequencer, member function

class uvm::uvm_reg_map 214
class uvm::uvm_sequence_item 94

set_server, member function
class uvm::uvm_report_server 162

set_severity_count, member function
class uvm::uvm_default_report_server 164
class uvm::uvm_report_server 160

set_severity, member function
class uvm::uvm_comparer 41
class uvm::uvm_report_catcher 168
class uvm::uvm_report_message 147

set_starting_phase, member function
class uvm::uvm_sequence_base 99

set_submap_offset, member function
class uvm::uvm_reg_map 214

set_timeout, member function
class uvm::uvm_root 19

set_transaction_id, member function
class uvm::uvm_transaction 93

set_type_override_by_name, member function
class uvm::uvm_default_factory 56
class uvm::uvm_factory 52

set_type_override_by_type, member function
class uvm::uvm_component 72
class uvm::uvm_default_factory 56
class uvm::uvm_factory 52

set_type_override, member function
class uvm::uvm_component 73
class uvm::uvm_component_registry 49
class uvm::uvm_object_registry 46
class uvm::uvm_resource_pool 118

set_use_sequence_info, member function
class uvm::uvm_sequence_item 94

set_verbosity, member function
class uvm::uvm_comparer 40
class uvm::uvm_report_catcher 169
class uvm::uvm_report_message 148

set_volatility, member function
class uvm::uvm_reg_field 244

set, member function
class uvm::uvm_config_db 108
class uvm::uvm_reg 229
class uvm::uvm_reg_field 244
class uvm::uvm_reg_fifo 267
class uvm::uvm_resource 122
class uvm::uvm_resource_db 110
class uvm::uvm_resource_pool 118

shutdown_phase, member function
class uvm::uvm_component 67

size, member function
class uvm::uvm_reg_fifo 266

slave_export, export
class uvm::uvm_tlm_req_rsp_channel 192

sort_by_precedence, member function
class uvm::uvm_resource_pool 119

spawned process, glossary 324
spell_check, member function

class uvm::uvm_resource_pool 118
sprint, member function

class uvm::uvm_object 13
start_item, member function

class uvm::uvm_sequence_base 102
start_of_simulation_phase, member function

class uvm::uvm_component 65
start_phase_sequence, member function

class uvm::uvm_sequencer_base 84
start, member function

class uvm::uvm_sequence_base 97
status, data member

class uvm::uvm_reg_bus_op 304
class uvm::uvm_reg_item 302

stop_sequences, member function
class uvm::uvm_sequencer 90
class uvm::uvm_sequencer_base 86

summarize_report_catcher, member function
class uvm::uvm_report_catcher 171

supports_byte_enable, data member
class uvm::uvm_reg_adapter 306

suspend, member function
class uvm::uvm_component 70

sync, member function
class uvm::uvm_phase 129

T

test, glossary 324
testbench, glossary 325
THRIFTY

uvm::uvm_mem_mam::alloc_mode_e, enumeration
292

trace_mode, member function
class uvm::uvm_objection 135

transaction, glossary 325
transactor, glossary 325
traverse, member function

class uvm::uvm_bottomup_phase 132
class uvm::uvm_process_phase 134

341
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvm::uvm_topdown_phase 133
try_get, member function

class uvm::uvm_nonblocking_get_peek_port 186
try_next_item, member function

class uvm::uvm_sequencer 90
class uvm::uvm_sqr_if_base 194

try_peek, member function
class uvm::uvm_nonblocking_get_peek_port 186
class uvm::uvm_nonblocking_peek_port 184

try_put, member function
class uvm::uvm_nonblocking_put_port 182

turn_off_auditing, member function
class uvm::uvm_resource_options 113

turn_off_tracing, member function
class uvm::uvm_resource_db_options 112

turn_on_auditing, member function
class uvm::uvm_resource_options 113

turn_on_tracing, member function
class uvm::uvm_resource_db_options 112

U

ungrab, member function
class uvm::uvm_sequence_base 101
class uvm::uvm_sequencer_base 86

unlock, member function
class uvm::uvm_sequence_base 101
class uvm::uvm_sequencer_base 86

unpack_bytes, member function
class uvm::uvm_object 16

unpack_field_int, member function
class uvm::uvm_packer 29

unpack_field, member function
class uvm::uvm_packer 29

unpack_ints, member function
class uvm::uvm_object 17

unpack_object, member function
class uvm::uvm_packer 29

unpack_real, member function
class uvm::uvm_packer 29

unpack_string, member function
class uvm::uvm_packer 29

unpack_time, member function
class uvm::uvm_packer 29

unpack, member function
class uvm::uvm_object 16

unsync, member function
class uvm::uvm_phase 130

update_reg, member function
class uvm::uvm_reg_sequence 312

update, member function
class uvm::uvm_reg 232
class uvm::uvm_reg_block 207
class uvm::uvm_reg_fifo 267

use_metadata, data member
class uvm::uvm_packer 31

use_response_handler, member function
class uvm::uvm_sequence_base 103

user_priority_arbitration, member function
class uvm::uvm_sequencer_base 84

UVM_ACTIVE
enum uvm::uvm_active_passive_enum 318

UVM_BACKDOOR
uvm::uvm_path_e, enumeration 297

UVM_BIG_ENDIAN
uvm::uvm_endianness_e, enumeration 298

UVM_BIG_FIFO
uvm::uvm_endianness_e, enumeration 298

UVM_BODY
enum uvm::uvm_sequence_state_enum 319

UVM_CALL_HOOK
enum uvm::uvm_action 318

uvm_callback_iter, class 140
uvm_callback, class 138
UVM_CHECK

uvm::uvm_check_e, enumeration 298
UVM_COMPONENT_PARAM_UTILS, macro 172
UVM_COMPONENT_UTILS, macro 172
UVM_COUNT

enum uvm::uvm_action 318
UVM_CREATE

macro 174
UVM_CREATE_ON

macro 174
UVM_CREATED

enum uvm::uvm_sequence_state_enum 319
UVM_CVR_ALL

uvm::uvm_coverage_model_e, enumeration 299
UVM_CVR_FIELD_VALS

uvm::uvm_coverage_model_e, enumeration 299
UVM_CVR_REG_BITS

uvm::uvm_coverage_model_e, enumeration 299
UVM_DECLARE_P_SEQUENCER

macro 174
UVM_DECLARE_P_SEQUENCER, macro

class uvm::uvm_sequencer 90
UVM_DEFAULT_PATH

uvm::uvm_path_e, enumeration 297
UVM_DEFAULT_TIMEOUT, define 317
UVM_DISPLAY

enum uvm::uvm_action 318
UVM_DO

macro 174
UVM_DO_ALL_REG_MEM_TESTS

uvm::uvm_reg_mem_tests_e, enumeration 299
UVM_DO_CALLBACKS, macro 176
UVM_DO_MEM_ACCESS

uvm::uvm_reg_mem_tests_e, enumeration 299
UVM_DO_MEM_WALK

uvm::uvm_reg_mem_tests_e, enumeration 299
UVM_DO_ON

macro 174
UVM_DO_ON_PRI

macro 174
UVM_DO_PRI

macro 174
UVM_DO_REG_ACCESS

uvm::uvm_reg_mem_tests_e, enumeration 299
UVM_DO_REG_BIT_BASH

uvm::uvm_reg_mem_tests_e, enumeration 299

342
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

UVM_DO_REG_HW_RESET
uvm::uvm_reg_mem_tests_e, enumeration 299

UVM_DO_SHARED_ACCESS
uvm::uvm_reg_mem_tests_e, enumeration 299

UVM_ENDED
enum uvm::vm_sequence_state_enum 319

UVM_ERROR
enum uvm::uvm_severity 318
macro 173

UVM_EXIT
enum uvm::uvm_action 318

UVM_FATAL
enum uvm::uvm_severity 318
macro 173

UVM_FIELD
uvm::uvm_elem_kind_e, enumeration 298

UVM_FINISHED
enum uvm::uvm_sequence_state_enum 319

UVM_FRONTDOOR
uvm::uvm_path_e, enumeration 297

UVM_FULL
enum uvm::uvm_verbosity 318

UVM_HAS_X
uvm::uvm_status_e, enumeration 297

UVM_HIER
uvm::uvm_hier_e, enumeration 298

UVM_HIGH
enum uvm::uvm_verbosity 318

UVM_INFO
enum uvm::uvm_severity 318
macro 173

UVM_IS_OK
uvm::uvm_status_e, enumeration 297

UVM_LITTLE_ENDIAN
uvm::uvm_endianness_e, enumeration 298

UVM_LITTLE_FIFO
uvm::uvm_endianness_e, enumeration 298

UVM_LOG
enum uvm::uvm_action 318

UVM_LOW
enum uvm::uvm_verbosity 318

UVM_MAX_STREAMBITS, define 317
UVM_MEDIUM

enum uvm::uvm_verbosity 318
UVM_MEM

uvm::uvm_elem_kind_e, enumeration 298
UVM_NO_ACTION

enum uvm::uvm_action 318
UVM_NO_CHECK

uvm::uvm_check_e, enumeration 298
UVM_NO_COVERAGE

uvm::uvm_coverage_model_e, enumeration 299
UVM_NO_ENDIAN

uvm::uvm_endianness_e, enumeration 298
UVM_NO_HIER

uvm::uvm_hier_e, enumeration 298
UVM_NONE

enum uvm::uvm_verbosity 318
UVM_NOT_OK

uvm::uvm_status_e, enumeration 297

UVM_OBJECT_PARAM_UTILS, macro 172
UVM_OBJECT_UTILS, macro 172
UVM_PACKER_MAX_BYTES, define 317
UVM_PASSIVE

enum uvm::uvm_active_passive_enum 318
UVM_PHASE_DOMAIN

enum uvm::uvm_phase_type 319
UVM_PHASE_IMP

enum uvm::uvm_phase_type 319
UVM_PHASE_NODE

enum uvm::uvm_phase_type 319
UVM_PHASE_SCHEDULE

enum uvm::uvm_phase_type 319
UVM_PHASE_TERMINAL

enum uvm::uvm_phase_type 319
UVM_POST_BODY

enum uvm::uvm_sequence_state_enum 319
UVM_POST_START

enum uvm_sequence_state_enum 319
UVM_PRE_BODY

enum uvm::uvm_sequence_state_enum 319
UVM_PRE_START

enum uvm::uvm_sequence_state_enum 319
UVM_PREDICT

uvm::uvm_path_e, enumeration 297
UVM_PREDICT_DIRECT

uvm::uvm_predict_e, enumeration 298
UVM_PREDICT_READ

uvm::uvm_predict_e, enumeration 298
UVM_PREDICT_WRITE

uvm::uvm_predict_e, enumeration 298
UVM_READ

uvm::uvm_access_e, enumeration 298
UVM_REG

uvm::uvm_elem_kind_e, enumeration 298
UVM_REGISTER_CB, macro 176
uvm_report_enabled, member function

class uvm::uvm_report_object 153
uvm_report_error, member function

class uvm::uvm_report_catcher 170
class uvm::uvm_report_object 154

uvm_report_fatal, member function
class uvm::uvm_report_catcher 170
class uvm::uvm_report_object 154

uvm_report_info, member function
class uvm::uvm_report_catcher 170
class uvm::uvm_report_object 153

uvm_report_warning, member function
class uvm::uvm_report_catcher 170
class uvm::uvm_report_object 153

UVM_STOP
enum uvm::uvm_action 318

UVM_STOPPED
enum uvm::uvm_sequence_state_enum 319

uvm_top, data member
class uvm::uvm_root 20

UVM_WARNING
enum uvm::uvm_severity 318
macro 173

343
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

UVM_WRITE
uvm::uvm_access_e, enumeration 298

uvm::run_test, global function 316
uvm::uvm_access_e, enumeration 298
uvm::uvm_action, enumeration 318
uvm::uvm_active_passive_enum, enumeration 318
uvm::uvm_agent, class 78
uvm::uvm_analysis_export, class 188
uvm::uvm_analysis_imp, class 189
uvm::uvm_analysis_port, class 186
uvm::uvm_bitstream_t, typdef 317
uvm::uvm_blocking_get_peek_port, class 180
uvm::uvm_blocking_get_port, class 178
uvm::uvm_blocking_peek_port, class 179
uvm::uvm_blocking_put_port, class 177
uvm::uvm_bottomup_phase, class 132
uvm::uvm_callbacks, class 141
uvm::uvm_check_e, enumeration 298
uvm::uvm_comparer, class 37
uvm::uvm_component_name, class 24
uvm::uvm_component_registry, class 47
uvm::uvm_component, class 59
uvm::uvm_config_db, class 107
uvm::uvm_config_int, typdef 317
uvm::uvm_config_object, typdef 317
uvm::uvm_config_string, typdef 317
uvm::uvm_config_wrapper, typdef 318
uvm::uvm_coreservices_t, class 319
uvm::uvm_coverage_model_e, enumeration 299
uvm::uvm_default_comparer, global object 43
uvm::uvm_default_coreservices_t, class 321
uvm::uvm_default_factory, class 55
uvm::uvm_default_line_printer, global object 42
uvm::uvm_default_packer, global object 43
uvm::uvm_default_printer, global object 43
uvm::uvm_default_recorder, global object 43
uvm::uvm_default_report_server, class 162
uvm::uvm_default_table_printer, global object 42
uvm::uvm_default_tree_printer, global object 42
uvm::uvm_domain, class 130
uvm::uvm_driver, class 76
uvm::uvm_elem_kind_e, enumeration 298
uvm::uvm_endianness_e, enumeration 298
uvm::uvm_env, class 79
uvm::uvm_export_base, class 22
uvm::uvm_factory, class 49
uvm::UVM_FILE, typdef 317
uvm::uvm_hdl_path_slice, global type 297
uvm::uvm_hier_e, enumeration 298
uvm::uvm_integral_t, typdef 317
uvm::uvm_line_printer, class 37
uvm::uvm_mem_mam, class 289
uvm::uvm_mem_mam::alloc_mode_e, enumeration 292
uvm::uvm_mem_mam::locality_e, enumeration 292
uvm::uvm_mem_region, class 292
uvm::uvm_mem, class 250
uvm::uvm_monitor, class 77
uvm::uvm_nonblocking_get_peek_port, class 185
uvm::uvm_nonblocking_get_port, class 183
uvm::uvm_nonblocking_peek_port, class 184

uvm::uvm_nonblocking_put_port, class 181
uvm::uvm_object_registry, class 45
uvm::uvm_object_wrapper, class 44
uvm::uvm_object, class 10
uvm::uvm_objection, class 134
uvm::uvm_packer, class 26
uvm::uvm_path_e, enumeration 297
uvm::uvm_phase_type, enumeration 319
uvm::uvm_phase, class 125
uvm::uvm_port_base, class 21
uvm::uvm_predict_e, enumeration 298
uvm::uvm_printer, class 31
uvm::uvm_process_phase, class 133
uvm::uvm_reg_adapter, class 305
uvm::uvm_reg_addr_logic_t, global type 296
uvm::uvm_reg_addr_t, global type 296
uvm::uvm_reg_block, class 198
uvm::uvm_reg_bus_op, class 303
uvm::uvm_reg_byte_en_t, global type 297
uvm::uvm_reg_cbs, class 285
uvm::uvm_reg_cvr_t, global type 297
uvm::uvm_reg_data_logic_t, global type 296
uvm::uvm_reg_data_t, global type 296
uvm::uvm_reg_field, class 239
uvm::uvm_reg_fifo, class 264
uvm::uvm_reg_file, class 220
uvm::uvm_reg_frontdoor, class 314
uvm::uvm_reg_indirect_data, class 263
uvm::uvm_reg_item, class 300
uvm::uvm_reg_map, class 211
uvm::uvm_reg_mem_tests_e, enumeration 299
uvm::uvm_reg_predictor, class 307
uvm::uvm_reg_sequence, class 309
uvm::uvm_reg_tlm_adapter, class 306
uvm::uvm_reg, class 223
uvm::uvm_report_catcher, class 166
uvm::uvm_report_cb, typdef 317
uvm::uvm_report_handler, class 157
uvm::uvm_report_message, class 145
uvm::uvm_report_object, class 151
uvm::uvm_report_server, class 159
uvm::uvm_resource_base, class 113
uvm::uvm_resource_db_options, class 112
uvm::uvm_resource_db, class 109
uvm::uvm_resource_options, class 113
uvm::uvm_resource_pool, class 117
uvm::uvm_resource_types, class 124
uvm::uvm_resource_types::priority_e 124
uvm::uvm_resource, class 121
uvm::uvm_root, class 18
uvm::uvm_scoreboard, class 80
uvm::uvm_seq_item_pull_export, class 196
uvm::uvm_seq_item_pull_imp, class 197
uvm::uvm_seq_item_pull_port, class 195
uvm::uvm_sequence_base, class 96
uvm::uvm_sequence_item, class 93
uvm::uvm_sequence_state_enum, enumeration 319
uvm::uvm_sequence, class 105
uvm::uvm_sequencer_base, class 83
uvm::uvm_sequencer_param_base, class 87

344
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm::uvm_sequencer, class 89
uvm::uvm_set_config_int, global function 316
uvm::uvm_set_config_string, global function 316
uvm::uvm_severity, enumeration 318
uvm::uvm_sqr_if_base, class 193
uvm::uvm_status_e, enumeration 297
uvm::uvm_subscriber, class 81
uvm::uvm_table_printer, class 36
uvm::uvm_test, class 80
uvm::uvm_tlm_req_rsp_channel, class 190
uvm::uvm_topdown_phase, class 132
uvm::uvm_transaction, class 92
uvm::uvm_tree_printer, class 36
uvm::uvm_verbosity, enumeration 318
uvm::uvm_void, class 10
uvm::uvm_vreg_cbs, class 277
uvm::uvm_vreg_field_cbs, class 284
uvm::uvm_vreg_field, class 278
uvm::uvm_vreg, class 268

V

value, data member
class uvm::uvm_reg_item 302

virtual sequence, glossary 325

W

wait_for_grant, member function
class uvm::uvm_sequence_base 103
class uvm::uvm_sequencer_base 84

wait_for_item_done, member function
class uvm::uvm_sequence_base 103
class uvm::uvm_sequencer_base 85

wait_for_relevant, member function
class uvm::uvm_sequence_base 100

wait_for_sequence_state, member function
class uvm::uvm_sequence_base 97

wait_for_sequences, member function
class uvm::uvm_sequencer_base 87

wait_for_state, member function
class uvm::uvm_phase 130

wait_for, member function
class uvm::uvm_objection 138

wait_modified, member function
class uvm::uvm_config_db 109
class uvm::uvm_resource_base 115

write_by_name, member function
class uvm::uvm_resource_db 111

write_by_type, member function
class uvm::uvm_resource_db 111

write_mem_by_name, member function
class uvm::uvm_reg_block 208

write_mem, member function
class uvm::uvm_reg_sequence 313

write_reg_by_name, member function
class uvm::uvm_reg_block 208

write_reg, member function
class uvm::uvm_reg_sequence 312

write, member function
class uvm::uvm_analysis_imp 190
class uvm::uvm_analysis_port 187
class uvm::uvm_mem 257
class uvm::uvm_mem_region 294
class uvm::uvm_reg 231
class uvm::uvm_reg_field 246
class uvm::uvm_reg_fifo 266
class uvm::uvm_resource 123
class uvm::uvm_vreg 274
class uvm::uvm_vreg_field 281

345
Copyright © 2020 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

	Notices
	Contributors
	Contents
	1. Introduction
	2. Terminology
	2.1 Shall, should, may, can
	2.2 Implementation, application
	2.3 Call, called from, derived from
	2.4 Implementation-defined

	3. Overview
	3.1 Namespace
	3.2 Header files
	3.3 Global functions
	3.4 Base classes
	3.5 Policy classes
	3.6 Registry and factory classes
	3.7 Component hierarchy classes
	3.8 Sequencer classes
	3.9 Sequence classes
	3.10 Configuration and resource classes
	3.11 Phasing and synchronization classes
	3.12 Reporting classes
	3.13 Macros
	3.14 TLM classes
	3.15 Register abstraction classes
	3.16 Existing SystemC functionality used in UVM-SystemC
	3.17 Methodology for hierarchy construction

	4. Base classes
	4.1 uvm_void
	4.1.1 Class definition

	4.2 uvm_object
	4.2.1 Class definition
	4.2.2 Constructors
	4.2.3 Identification
	4.2.3.1 set_name
	4.2.3.2 get_name
	4.2.3.3 get_full_name
	4.2.3.4 get_inst_id
	4.2.3.5 get_inst_count
	4.2.3.6 get_type
	4.2.3.7 get_object_type
	4.2.3.8 get_type_name

	4.2.4 Creation
	4.2.4.1 create
	4.2.4.2 clone

	4.2.5 Printing
	4.2.5.1 print
	4.2.5.2 sprint
	4.2.5.3 do_print
	4.2.5.4 convert2string

	4.2.6 Recording
	4.2.6.1 record
	4.2.6.2 do_record

	4.2.7 Copying
	4.2.7.1 copy
	4.2.7.2 do_copy

	4.2.8 Comparing
	4.2.8.1 compare
	4.2.8.2 do_compare

	4.2.9 Packing
	4.2.9.1 pack
	4.2.9.2 pack_bytes
	4.2.9.3 pack_ints
	4.2.9.4 do_pack

	4.2.10 Unpacking
	4.2.10.1 unpack
	4.2.10.2 unpack_bytes
	4.2.10.3 unpack_ints
	4.2.10.4 do_unpack

	4.2.11 Object macros

	4.3 uvm_root
	4.3.1 Class definition
	4.3.2 Simulation control
	4.3.2.1 run_test
	4.3.2.2 die
	4.3.2.3 set_timeout
	4.3.2.4 set_finish_on_completion
	4.3.2.5 get_finish_on_completion

	4.3.3 Topology
	4.3.3.1 find
	4.3.3.2 find_all
	4.3.3.3 print_topology
	4.3.3.4 enable_print_topology

	4.3.4 Global variable
	4.3.4.1 uvm_top

	4.4 uvm_port_base
	4.4.1 Class definition
	4.4.2 Template parameter IF
	4.4.3 Constructor
	4.4.4 Member functions
	4.4.4.1 get_name
	4.4.4.2 get_full_name
	4.4.4.3 get_parent
	4.4.4.4 get_type_name
	4.4.4.5 connect

	4.5 uvm_export_base§
	4.5.1 Class definition
	4.5.2 Template parameter IF
	4.5.3 Constructor
	4.5.4 Member functions
	4.5.4.1 get_name
	4.5.4.2 get_full_name
	4.5.4.3 get_parent
	4.5.4.4 get_type_name
	4.5.4.5 connect

	4.6 uvm_component_name§
	4.6.1 Class definition
	4.6.2 Constraints on usage
	4.6.3 Constructor
	4.6.4 Destructor
	4.6.5 operator const char*

	5. Policy classes
	5.1 uvm_packer
	5.1.1 Class definition
	5.1.2 Constraints on usage
	5.1.3 Packing
	5.1.3.1 pack_field
	5.1.3.2 pack_field_int
	5.1.3.3 pack_string
	5.1.3.4 pack_time
	5.1.3.5 pack_real
	5.1.3.6 pack_object

	5.1.4 Unpacking
	5.1.4.1 is_null
	5.1.4.2 unpack_field_int
	5.1.4.3 unpack_field
	5.1.4.4 unpack_string
	5.1.4.5 unpack_time
	5.1.4.6 unpack_real
	5.1.4.7 unpack_object
	5.1.4.8 get_packed_size

	5.1.5 operator<<, operator>>
	5.1.6 Data members (variables)
	5.1.6.1 physical
	5.1.6.2 abstract
	5.1.6.3 use_metadata
	5.1.6.4 big_endian

	5.2 uvm_printer
	5.2.1 Class definition
	5.2.2 Constraints on usage
	5.2.3 Printing types
	5.2.3.1 print_field
	5.2.3.2 print_field_int
	5.2.3.3 print_real
	5.2.3.4 print_double
	5.2.3.5 print_object
	5.2.3.6 print_object_header
	5.2.3.7 print_string
	5.2.3.8 print_time
	5.2.3.9 print_generic

	5.2.4 Printer subtyping
	5.2.4.1 emit
	5.2.4.2 format_row
	5.2.4.3 format_header
	5.2.4.4 format_footer
	5.2.4.5 adjust_name
	5.2.4.6 print_array_header
	5.2.4.7 print_array_range
	5.2.4.8 print_array_footer

	5.2.5 Data members
	5.2.5.1 knobs

	5.3 uvm_table_printer
	5.3.1 Class definition
	5.3.2 Constructor
	5.3.3 emit

	5.4 uvm_tree_printer
	5.4.1 Class definition
	5.4.2 Constructor
	5.4.3 emit

	5.5 uvm_line_printer
	5.5.1 Class definition
	5.5.2 Constructor
	5.5.3 emit

	5.6 uvm_comparer
	5.6.1 Class definition
	5.6.2 Constraints on usage
	5.6.3 Member functions
	5.6.3.1 compare_field
	5.6.3.2 compare_field_int
	5.6.3.3 compare_field_real
	5.6.3.4 compare_object
	5.6.3.5 compare_string
	5.6.3.6 print_msg

	5.6.4 Comparer settings
	5.6.4.1 set_policy
	5.6.4.2 get_policy
	5.6.4.3 set_max_messages
	5.6.4.4 get_max_messages
	5.6.4.5 set_verbosity
	5.6.4.6 get_verbosity
	5.6.4.7 set_severity
	5.6.4.8 get_severity
	5.6.4.9 set_miscompare_string
	5.6.4.10 get_miscompare_string
	5.6.4.11 set_field_attribute
	5.6.4.12 get_field_attribute
	5.6.4.13 compare_type
	5.6.4.14 get_result

	5.7 Default policy objects
	5.7.1 uvm_default_table_printer
	5.7.2 uvm_default_tree_printer
	5.7.3 uvm_default_line_printer
	5.7.4 uvm_default_printer
	5.7.5 uvm_default_packer
	5.7.6 uvm_default_comparer
	5.7.7 uvm_default_recorder

	6. Registry and factory classes
	6.1 uvm_object_wrapper
	6.1.1 Class definition
	6.1.2 Member functions
	6.1.2.1 create_object
	6.1.2.2 create_component
	6.1.2.3 get_type_name

	6.2 uvm_object_registry
	6.2.1 Class definition
	6.2.2 Template parameter T
	6.2.3 Member functions
	6.2.3.1 create_object
	6.2.3.2 get_type_name
	6.2.3.3 get
	6.2.3.4 create
	6.2.3.5 destroy§
	6.2.3.6 set_type_override
	6.2.3.7 set_inst_override

	6.3 uvm_component_registry
	6.3.1 Class definition
	6.3.2 Template parameter T
	6.3.3 Member functions
	6.3.3.1 create_component
	6.3.3.2 get_type_name
	6.3.3.3 get
	6.3.3.4 create
	6.3.3.5 destroy§
	6.3.3.6 set_type_override
	6.3.3.7 set_inst_override

	6.4 uvm_factory
	6.4.1 Class definition
	6.4.2 Access and registration
	6.4.2.1 get
	6.4.2.2 do_register° (register†)

	6.4.3 Type and instance overrides
	6.4.3.1 set_inst_override_by_type
	6.4.3.2 set_inst_override_by_name
	6.4.3.3 set_type_override_by_type
	6.4.3.4 set_type_override_by_name

	6.4.4 Creation
	6.4.4.1 create_object_by_type
	6.4.4.2 create_object_by_name
	6.4.4.3 create_component_by_type
	6.4.4.4 create_component_by_name

	6.4.5 Debug
	6.4.5.1 debug_create_by_type
	6.4.5.2 debug_create_by_name
	6.4.5.3 find_override_by_type
	6.4.5.4 find_override_by_name
	6.4.5.5 print

	6.5 uvm_default_factory
	6.5.1 Class definition
	6.5.2 Registration
	6.5.2.1 do_register° (register†)

	6.5.3 Type and instance overrides
	6.5.3.1 set_inst_override_by_type
	6.5.3.2 set_inst_override_by_name
	6.5.3.3 set_type_override_by_type
	6.5.3.4 set_type_override_by_name

	6.5.4 Creation
	6.5.4.1 create_object_by_type
	6.5.4.2 create_object_by_name
	6.5.4.3 create_component_by_type
	6.5.4.4 create_component_by_name

	6.5.5 Debug
	6.5.5.1 debug_create_by_type
	6.5.5.2 debug_create_by_name
	6.5.5.3 find_override_by_type
	6.5.5.4 find_override_by_name
	6.5.5.5 print

	7. Component hierarchy classes
	7.1 uvm_component
	7.1.1 Class definition
	7.1.2 Construction interface
	7.1.2.1 Constructor

	7.1.3 Hierarchy interface
	7.1.3.1 get_parent
	7.1.3.2 get_full_name
	7.1.3.3 get_children
	7.1.3.4 get_child
	7.1.3.5 get_first_child
	7.1.3.6 get_first_child
	7.1.3.7 get_num_children
	7.1.3.8 has_child
	7.1.3.9 lookup
	7.1.3.10 get_depth

	7.1.4 Phasing interface
	7.1.4.1 Pre-run phases
	7.1.4.2 Run-time phases
	7.1.4.3 Post-run phases
	7.1.4.4 build_phase
	7.1.4.5 connect_phase
	7.1.4.6 end_of_elaboration_phase
	7.1.4.7 start_of_simulation_phase
	7.1.4.8 run_phase
	7.1.4.9 pre_reset_phase
	7.1.4.10 reset_phase
	7.1.4.11 post_reset_phase
	7.1.4.12 pre_configuration_phase
	7.1.4.13 configuration_phase
	7.1.4.14 post_configuration_phase
	7.1.4.15 pre_main_phase
	7.1.4.16 main_phase
	7.1.4.17 post_main_phase
	7.1.4.18 pre_shutdown_phase
	7.1.4.19 shutdown_phase
	7.1.4.20 post_shutdown_phase
	7.1.4.21 extract_phase
	7.1.4.22 check_phase
	7.1.4.23 report_phase
	7.1.4.24 final_phase
	7.1.4.25 phase_started
	7.1.4.26 phase_ready_to_end
	7.1.4.27 phase_ended
	7.1.4.28 set_domain
	7.1.4.29 get_domain
	7.1.4.30 define_domain
	7.1.4.31 set_phase_imp

	7.1.5 Process control interface
	7.1.5.1 suspend
	7.1.5.2 resume

	7.1.6 Configuration interface
	7.1.6.1 print_config
	7.1.6.2 print_config_with_audit
	7.1.6.3 print_config_matches

	7.1.7 Objection interface
	7.1.7.1 raised
	7.1.7.2 dropped
	7.1.7.3 all_dropped

	7.1.8 Factory interface
	7.1.8.1 create_component
	7.1.8.2 create_object
	7.1.8.3 set_type_override_by_type
	7.1.8.4 set_inst_override_by_type
	7.1.8.5 set_type_override
	7.1.8.6 set_inst_override
	7.1.8.7 print_override_info

	7.1.9 Hierarchical reporting interface
	7.1.9.1 set_report_id_verbosity_hier
	7.1.9.2 set_report_severity_id_verbosity_hier
	7.1.9.3 set_report_severity_action_hier
	7.1.9.4 set_report_id_action_hier
	7.1.9.5 set_report_severity_id_action_hier
	7.1.9.6 set_report_default_file_hier
	7.1.9.7 set_report_severity_file_hier
	7.1.9.8 set_report_id_file_hier
	7.1.9.9 set_report_severity_id_file_hier
	7.1.9.10 set_report_verbosity_level_hier
	7.1.9.11 pre_abort

	7.1.10 Macros

	7.2 uvm_driver
	7.2.1 Class definition
	7.2.2 Template parameters
	7.2.3 Ports
	7.2.3.1 seq_item_port
	7.2.3.2 rsp_port

	7.2.4 Member functions
	7.2.4.1 Constructor
	7.2.4.2 get_type_name

	7.3 uvm_monitor
	7.3.1 Class definition
	7.3.2 Member functions
	7.3.2.1 Constructor
	7.3.2.2 get_type_name

	7.4 uvm_agent
	7.4.1 Class definition
	7.4.2 Member functions
	7.4.2.1 Constructor
	7.4.2.2 get_type_name
	7.4.2.3 get_is_active

	7.5 uvm_env
	7.5.1 Class definition
	7.5.2 Member functions
	7.5.2.1 Constructor
	7.5.2.2 get_type_name

	7.6 uvm_test
	7.6.1 Class definition
	7.6.2 Member functions
	7.6.2.1 Constructor
	7.6.2.2 get_type_name

	7.7 uvm_scoreboard
	7.7.1 Class definition
	7.7.2 Member functions
	7.7.2.1 Constructor
	7.7.2.2 get_type_name

	7.8 uvm_subscriber
	7.8.1 Class definition
	7.8.2 Template parameter T
	7.8.3 Export
	7.8.3.1 analysis_export

	7.8.4 Member functions
	7.8.4.1 Constructor
	7.8.4.2 get_type_name

	8. Sequencer classes
	8.1 uvm_sequencer_base
	8.1.1 Class definition
	8.1.2 Constructor
	8.1.3 Member functions
	8.1.3.1 is_child
	8.1.3.2 user_priority_arbitration
	8.1.3.3 execute_item
	8.1.3.4 start_phase_sequence
	8.1.3.5 wait_for_grant
	8.1.3.6 wait_for_item_done
	8.1.3.7 is_blocked
	8.1.3.8 has_lock
	8.1.3.9 lock
	8.1.3.10 grab
	8.1.3.11 unlock
	8.1.3.12 ungrab
	8.1.3.13 stop_sequences
	8.1.3.14 is_grabbed
	8.1.3.15 current_grabber
	8.1.3.16 has_do_available
	8.1.3.17 set_arbitration
	8.1.3.18 get_arbitration
	8.1.3.19 wait_for_sequences
	8.1.3.20 send_request

	8.2 uvm_sequencer_param_base
	8.2.1 Class definition
	8.2.2 Template parameters
	8.2.3 Constructor
	8.2.4 Requests
	8.2.4.1 send_request
	8.2.4.2 get_current_item

	8.3 uvm_sequencer
	8.3.1 Class definition
	8.3.2 Template parameters
	8.3.3 Constructor
	8.3.4 Exports
	8.3.4.1 seq_item_export

	8.3.5 Sequencer interface
	8.3.5.1 get_next_item
	8.3.5.2 try_next_item
	8.3.5.3 item_done
	8.3.5.4 get
	8.3.5.5 peek
	8.3.5.6 put
	8.3.5.7 stop_sequences

	8.3.6 Macros
	8.3.6.1 UVM_DECLARE_P_SEQUENCER

	9. Sequence classes
	9.1 uvm_transaction
	9.1.1 Class definition
	9.1.2 Constructors
	9.1.3 Constraints on usage
	9.1.4 Member functions
	9.1.4.1 set_transaction_id
	9.1.4.2 get_transaction_id

	9.2 uvm_sequence_item
	9.2.1 Class definition
	9.2.2 Constructors
	9.2.3 Member functions
	9.2.3.1 set_use_sequence_info
	9.2.3.2 get_use_sequence_info
	9.2.3.3 set_id_info
	9.2.3.4 set_sequencer
	9.2.3.5 get_sequencer
	9.2.3.6 set_parent_sequence
	9.2.3.7 get_parent_sequence
	9.2.3.8 set_depth
	9.2.3.9 get_depth
	9.2.3.10 is_item
	9.2.3.11 get_root_sequence_name
	9.2.3.12 get_root_sequence
	9.2.3.13 get_sequence_path

	9.3 uvm_sequence_base
	9.3.1 Class definition
	9.3.2 Constructor
	9.3.3 Sequence state
	9.3.3.1 get_sequence_state
	9.3.3.2 wait_for_sequence_state

	9.3.4 Sequence execution
	9.3.4.1 start
	9.3.4.2 pre_start
	9.3.4.3 pre_body
	9.3.4.4 pre_do
	9.3.4.5 mid_do
	9.3.4.6 body
	9.3.4.7 post_do
	9.3.4.8 post_body
	9.3.4.9 post_start

	9.3.5 Run-time phasing
	9.3.5.1 get_starting_phase
	9.3.5.2 set_starting_phase
	9.3.5.3 get_automatic_phase_objection
	9.3.5.4 set_automatic_phase_objection

	9.3.6 Sequence control
	9.3.6.1 set_priority
	9.3.6.2 get_priority
	9.3.6.3 is_relevant
	9.3.6.4 wait_for_relevant
	9.3.6.5 lock
	9.3.6.6 grab
	9.3.6.7 unlock
	9.3.6.8 ungrab
	9.3.6.9 is_blocked
	9.3.6.10 has_lock
	9.3.6.11 kill
	9.3.6.12 do_kill

	9.3.7 Sequence item execution
	9.3.7.1 create_item
	9.3.7.2 start_item
	9.3.7.3 finish_item
	9.3.7.4 wait_for_grant
	9.3.7.5 send_request
	9.3.7.6 wait_for_item_done

	9.3.8 Response interface
	9.3.8.1 use_response_handler
	9.3.8.2 get_use_response_handler
	9.3.8.3 response_handler
	9.3.8.4 set_response_queue_error_report_disabled
	9.3.8.5 get_response_queue_error_report_disabled
	9.3.8.6 set_response_queue_depth
	9.3.8.7 get_response_queue_depth
	9.3.8.8 clear_response_queue

	9.4 uvm_sequence
	9.4.1 Class definition
	9.4.2 Template parameters
	9.4.3 Constructor
	9.4.4 Member functions
	9.4.4.1 send_request
	9.4.4.2 get_current_item
	9.4.4.3 get_response

	10. Configuration and resource classes
	10.1 uvm_config_db
	10.1.1 Class definition
	10.1.2 Template parameter T
	10.1.3 Constraints on usage
	10.1.4 Member functions
	10.1.4.1 set
	10.1.4.2 get
	10.1.4.3 exists
	10.1.4.4 wait_modified

	10.2 uvm_resource_db
	10.2.1 Class definition
	10.2.2 Template parameter T
	10.2.3 Constraints on usage
	10.2.4 Member functions
	10.2.4.1 get_by_type
	10.2.4.2 get_by_name
	10.2.4.3 set_default
	10.2.4.4 set
	10.2.4.5 set_anonymous
	10.2.4.6 read_by_name
	10.2.4.7 read_by_type
	10.2.4.8 write_by_name
	10.2.4.9 write_by_type
	10.2.4.10 dump

	10.3 uvm_resource_db_options
	10.3.1 Class definition
	10.3.2 Member functions
	10.3.2.1 turn_on_tracing
	10.3.2.2 turn_off_tracing
	10.3.2.3 is_tracing

	10.4 uvm_resource_options
	10.4.1 Class definition
	10.4.2 Member functions
	10.4.2.1 turn_on_auditing
	10.4.2.2 turn_off_auditing
	10.4.2.3 is_auditing

	10.5 uvm_resource_base
	10.5.1 Class definition
	10.5.2 Constructor
	10.5.3 Resource database interface
	10.5.3.1 get_type_handle

	10.5.4 Read-only interface
	10.5.4.1 set_read_only
	10.5.4.2 is_read_only

	10.5.5 Notification
	10.5.5.1 wait_modified

	10.5.6 Scope interface
	10.5.6.1 set_scope
	10.5.6.2 get_scope
	10.5.6.3 match_scope

	10.5.7 Priority
	10.5.7.1 set_priority

	10.5.8 Utility functions
	10.5.8.1 do_print

	10.5.9 Audit trail
	10.5.9.1 record_read_access
	10.5.9.2 record_write_access
	10.5.9.3 print_accessors
	10.5.9.4 init_access_record

	10.5.10 Data members
	10.5.10.1 precedence
	10.5.10.2 default_precedence

	10.6 uvm_resource_pool
	10.6.1 Class definition
	10.6.2 get
	10.6.3 spell_check
	10.6.4 Set interface
	10.6.4.1 set
	10.6.4.2 set_override
	10.6.4.3 set_name_override
	10.6.4.4 set_type_override

	10.6.5 Lookup
	10.6.5.1 lookup_name
	10.6.5.2 get_highest_precedence
	10.6.5.3 sort_by_precedence
	10.6.5.4 get_by_name
	10.6.5.5 lookup_type
	10.6.5.6 get_by_type
	10.6.5.7 lookup_regex_names
	10.6.5.8 lookup_regex
	10.6.5.9 lookup_scope

	10.6.6 Priority interface
	10.6.6.1 set_priority_type
	10.6.6.2 set_priority_name
	10.6.6.3 set_priority

	10.6.7 Debug
	10.6.7.1 find_unused_resources
	10.6.7.2 print_resources
	10.6.7.3 dump

	10.7 uvm_resource
	10.7.1 Class definition
	10.7.2 Template parameter T
	10.7.3 Type interface
	10.7.3.1 get_type
	10.7.3.2 get_type_handle

	10.7.4 Set/Get interface
	10.7.4.1 set
	10.7.4.2 set_override
	10.7.4.3 get_by_name
	10.7.4.4 get_by_type

	10.7.5 Read/Write interface
	10.7.5.1 read
	10.7.5.2 write

	10.7.6 Priority interface
	10.7.6.1 set_priority
	10.7.6.2 get_highest_precedence

	10.8 uvm_resource_types
	10.8.1 Class definition
	10.8.2 Type definitions (typedefs)
	10.8.2.1 rsrc_q_t
	10.8.2.2 override_t
	10.8.2.3 priority_e

	11. Phasing and synchronization classes
	11.1 uvm_phase
	11.1.1 Class definition
	11.1.2 Construction
	11.1.2.1 Constructor
	11.1.2.2 get_phase_type

	11.1.3 State
	11.1.3.1 get_state
	11.1.3.2 uvm_phase_get_run_count
	11.1.3.3 find_by_name
	11.1.3.4 find
	11.1.3.5 is
	11.1.3.6 is_before
	11.1.3.7 is_after

	11.1.4 Callbacks
	11.1.4.1 exec_func
	11.1.4.2 exec_process° (exec_task†)

	11.1.5 Schedule
	11.1.5.1 add
	11.1.5.2 get_parent
	11.1.5.3 get_full_name
	11.1.5.4 get_schedule
	11.1.5.5 get_schedule_name
	11.1.5.6 get_domain
	11.1.5.7 get_domain_name
	11.1.5.8 get_imp

	11.1.6 Synchronization
	11.1.6.1 get_objection
	11.1.6.2 raise_objection
	11.1.6.3 drop_objection
	11.1.6.4 sync
	11.1.6.5 unsync
	11.1.6.6 wait_for_state

	11.1.7 Jumping
	11.1.7.1 jump
	11.1.7.2 get_jump_target

	11.2 uvm_domain
	11.2.1 Class definition
	11.2.2 Constructor
	11.2.3 Member functions
	11.2.3.1 get_domains
	11.2.3.2 get_uvm_schedule
	11.2.3.3 get_common_domain
	11.2.3.4 add_uvm_phases
	11.2.3.5 get_uvm_domain

	11.3 uvm_bottomup_phase
	11.3.1 Class definition
	11.3.2 Constructor
	11.3.3 Member functions
	11.3.3.1 traverse
	11.3.3.2 execute

	11.4 uvm_topdown_phase
	11.4.1 Class definition
	11.4.2 Constructor
	11.4.3 Member functions
	11.4.3.1 traverse
	11.4.3.2 execute

	11.5 uvm_process_phase° (uvm_task_phase†)
	11.5.1 Class definition
	11.5.2 Member functions
	11.5.2.1 traverse
	11.5.2.2 execute

	11.6 uvm_objection
	11.6.1 Class definition
	11.6.2 Constructors
	11.6.3 Objection control
	11.6.3.1 clear
	11.6.3.2 trace_mode
	11.6.3.3 raise_objection
	11.6.3.4 drop_objection
	11.6.3.5 set_drain_time

	11.6.4 Callback hooks
	11.6.4.1 raised
	11.6.4.2 dropped
	11.6.4.3 all_dropped

	11.6.5 Objections status
	11.6.5.1 get_objectors
	11.6.5.2 wait_for
	11.6.5.3 get_objection_count
	11.6.5.4 get_objection_total
	11.6.5.5 get_drain_time
	11.6.5.6 display_objections

	11.7 uvm_callback
	11.7.1 Class definition
	11.7.2 Constructor
	11.7.3 Member functions
	11.7.3.1 callback_mode
	11.7.3.2 is_enabled
	11.7.3.3 get_type_name

	11.8 uvm_callback_iter
	11.8.1 Class definition
	11.8.2 Template parameter T
	11.8.3 Template parameter CB
	11.8.4 Constructor
	11.8.5 Member functions
	11.8.5.1 first
	11.8.5.2 last
	11.8.5.3 next
	11.8.5.4 prev
	11.8.5.5 get_cb

	11.9 uvm_callbacks
	11.9.1 Class definition
	11.9.2 Template parameter T
	11.9.3 Template parameter CB
	11.9.4 Constructor
	11.9.5 Add/delete interface
	11.9.5.1 add
	11.9.5.2 add_by_name
	11.9.5.3 do_delete°(delete†)
	11.9.5.4 delete_by_name

	11.9.6 Iterator interfaces
	11.9.6.1 get_first
	11.9.6.2 get_last
	11.9.6.3 get_next
	11.9.6.4 get_prev

	11.9.7 Debug
	11.9.7.1 display

	12. Reporting classes
	12.1 uvm_report_message
	12.1.1 Class definition
	12.1.2 Constructor
	12.1.3 Infrastructure references
	12.1.3.1 do_print
	12.1.3.2 get_report_object
	12.1.3.3 set_report_object
	12.1.3.4 get_report_handler
	12.1.3.5 set_report_handler
	12.1.3.6 get_report_server
	12.1.3.7 set_report_server

	12.1.4 Message fields
	12.1.4.1 get_severity
	12.1.4.2 set_severity
	12.1.4.3 get_id
	12.1.4.4 set_id
	12.1.4.5 get_message
	12.1.4.6 set_message
	12.1.4.7 get_verbosity
	12.1.4.8 set_verbosity
	12.1.4.9 get_filename
	12.1.4.10 set_filename
	12.1.4.11 get_line
	12.1.4.12 set_line
	12.1.4.13 get_context
	12.1.4.14 set_context
	12.1.4.15 get_action
	12.1.4.16 set_action
	12.1.4.17 get_file
	12.1.4.18 set_file
	12.1.4.19 get_element_container
	12.1.4.20 set_report_message

	12.1.5 Message element APIs
	12.1.5.1 add_int
	12.1.5.2 add_string
	12.1.5.3 add_object

	12.2 uvm_report_object
	12.2.1 Class definition
	12.2.2 Constructors
	12.2.3 Reporting
	12.2.3.1 uvm_report_enabled
	12.2.3.2 uvm_report_info
	12.2.3.3 uvm_report_warning
	12.2.3.4 uvm_report_error
	12.2.3.5 uvm_report_fatal

	12.2.4 Verbosity configuration
	12.2.4.1 get_report_verbosity_level
	12.2.4.2 set_report_verbosity_level
	12.2.4.3 set_report_id_verbosity
	12.2.4.4 set_report_severity_id_verbosity

	12.2.5 Action configuration
	12.2.5.1 get_report_action
	12.2.5.2 set_report_severity_action
	12.2.5.3 set_report_id_action
	12.2.5.4 set_report_severity_id_action

	12.2.6 File configuration
	12.2.6.1 get_report_file_handle
	12.2.6.2 set_report_default_file
	12.2.6.3 set_report_id_file
	12.2.6.4 set_report_severity_file
	12.2.6.5 set_report_severity_id_file

	12.2.7 Override configuration
	12.2.7.1 set_report_severity_override
	12.2.7.2 set_report_severity_id_override

	12.2.8 Report handler configuration
	12.2.8.1 set_report_handler
	12.2.8.2 get_report_handler
	12.2.8.3 reset_report_handler

	12.3 uvm_report_handler
	12.3.1 Class definition
	12.3.2 Constructor
	12.3.3 Member functions
	12.3.4 get_verbosity_level
	12.3.5 get_action
	12.3.6 get_file_handle
	12.3.7 report
	12.3.8 format_action

	12.4 uvm_report_server
	12.4.1 Class definition
	12.4.2 Member functions
	12.4.2.1 set_max_quit_count
	12.4.2.2 get_max_quit_count
	12.4.2.3 set_quit_count
	12.4.2.4 get_quit_count
	12.4.2.5 set_severity_count
	12.4.2.6 get_severity_count
	12.4.2.7 set_id_count
	12.4.2.8 get_id_count
	12.4.2.9 get_id_set
	12.4.2.10 get_severity_set
	12.4.2.11 do_copy
	12.4.2.12 execute_report_message
	12.4.2.13 compose_report_message
	12.4.2.14 report_summarize
	12.4.2.15 set_server
	12.4.2.16 get_server

	12.5 uvm_default_report_server
	12.5.1 Class definition
	12.5.2 Constructor
	12.5.3 Quit count
	12.5.3.1 set_max_quit_count
	12.5.3.2 get_max_quit_count
	12.5.3.3 set_quit_count
	12.5.3.4 get_quit_count
	12.5.3.5 incr_quit_count
	12.5.3.6 reset_quit_count
	12.5.3.7 is_quit_count_reached

	12.5.4 Severity count
	12.5.4.1 set_severity_count
	12.5.4.2 get_severity_count
	12.5.4.3 incr_severity_count
	12.5.4.4 reset_severity_counts
	12.5.4.5 get_severity_set

	12.5.5 ID count
	12.5.5.1 set_id_count
	12.5.5.2 get_id_count
	12.5.5.3 incr_id_count
	12.5.5.4 get_id_set

	12.5.6 Message processing
	12.5.6.1 execute_report_message
	12.5.6.2 compose_report_message
	12.5.6.3 report_summarize
	12.5.6.4 do_print

	12.6 uvm_report_catcher
	12.6.1 Class definition
	12.6.2 Constructor
	12.6.3 Current message state
	12.6.3.1 get_client
	12.6.3.2 get_severity
	12.6.3.3 get_verbosity
	12.6.3.4 get_id
	12.6.3.5 get_message
	12.6.3.6 get_action
	12.6.3.7 get_fname
	12.6.3.8 get_line

	12.6.4 Change message state
	12.6.4.1 set_severity
	12.6.4.2 set_verbosity
	12.6.4.3 set_id
	12.6.4.4 set_message
	12.6.4.5 set_action

	12.6.5 Debug
	12.6.5.1 get_report_catcher
	12.6.5.2 print_catcher

	12.6.6 Callback interface
	12.6.6.1 do_catch° (catch†)

	12.6.7 Reporting
	12.6.7.1 uvm_report_fatal
	12.6.7.2 uvm_report_error
	12.6.7.3 uvm_report_warning
	12.6.7.4 uvm_report_info
	12.6.7.5 issue
	12.6.7.6 summarize_report_catcher

	13. Macros
	13.1 Component and object registration macros
	13.1.1 Macro definitions
	13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS
	13.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS

	13.2 Reporting macros
	13.2.1 Macro definitions
	13.2.2 UVM_INFO
	13.2.3 UVM_WARNING
	13.2.4 UVM_ERROR
	13.2.5 UVM_FATAL

	13.3 Sequence execution macros
	13.3.1 Macro definitions
	13.3.2 UVM_DO
	13.3.3 UVM_DO_PRI
	13.3.4 UVM_DO_ON
	13.3.5 UVM_DO_ON_PRI
	13.3.6 UVM_CREATE
	13.3.7 UVM_CREATE_ON
	13.3.8 UVM_DECLARE_P_SEQUENCER

	13.4 Callback macros
	13.4.1 Macro definitions
	13.4.2 UVM_REGISTER_CB
	13.4.3 UVM_DO_CALLBACKS

	14. TLM classes
	14.1 uvm_blocking_put_port
	14.1.1 Class definition
	14.1.2 Template parameter T
	14.1.3 Constructor
	14.1.4 Member functions
	14.1.4.1 get_type_name
	14.1.4.2 put

	14.2 uvm_blocking_get_port
	14.2.1 Class definition
	14.2.2 Template parameter T
	14.2.3 Constructor
	14.2.4 Member functions
	14.2.4.1 get_type_name
	14.2.4.2 get

	14.3 uvm_blocking_peek_port
	14.3.1 Class definition
	14.3.2 Template parameter T
	14.3.3 Constructor
	14.3.4 Member functions
	14.3.4.1 get_type_name
	14.3.4.2 peek

	14.4 uvm_blocking_get_peek_port
	14.4.1 Class definition
	14.4.2 Template parameter T
	14.4.3 Constructor
	14.4.4 Member functions
	14.4.4.1 get_type_name
	14.4.4.2 get
	14.4.4.3 peek

	14.5 uvm_nonblocking_put_port
	14.5.1 Class definition
	14.5.2 Template parameter T
	14.5.3 Constructor
	14.5.4 Member functions
	14.5.4.1 get_type_name
	14.5.4.2 try_put
	14.5.4.3 can_put

	14.6 uvm_nonblocking_get_port
	14.6.1 Class definition
	14.6.2 Template parameter T
	14.6.3 Constructor
	14.6.4 Member functions
	14.6.4.1 get_type_name
	14.6.4.2 can_get

	14.7 uvm_nonblocking_peek_port
	14.7.1 Class definition
	14.7.2 Template parameter T
	14.7.3 Constructor
	14.7.4 Member functions
	14.7.4.1 get_type_name
	14.7.4.2 try_peek
	14.7.4.3 can_peek

	14.8 uvm_nonblocking_get_peek_port
	14.8.1 Class definition
	14.8.2 Template parameter T
	14.8.3 Constructor
	14.8.4 Member functions
	14.8.4.1 get_type_name
	14.8.4.2 try_get
	14.8.4.3 can_get
	14.8.4.4 try_peek
	14.8.4.5 can_peek

	14.9 uvm_analysis_port
	14.9.1 Class definition
	14.9.2 Template parameter T
	14.9.3 Constructor
	14.9.4 Member functions
	14.9.4.1 get_type_name
	14.9.4.2 connect
	14.9.4.3 write

	14.10 uvm_analysis_export
	14.10.1 Class definition
	14.10.2 Template parameter T
	14.10.3 Constructor
	14.10.4 Member functions
	14.10.4.1 get_type_name
	14.10.4.2 connect

	14.11 uvm_analysis_imp
	14.11.1 Class definition
	14.11.2 Template parameters
	14.11.3 Constructors
	14.11.4 Member functions
	14.11.4.1 get_type_name
	14.11.4.2 connect
	14.11.4.3 write

	14.12 uvm_tlm_req_rsp_channel
	14.12.1 Class definition
	14.12.2 Template parameters
	14.12.3 Ports and exports
	14.12.3.1 request_ap
	14.12.3.2 response_ap
	14.12.3.3 put_request_export
	14.12.3.4 put_response_export
	14.12.3.5 get_request_export
	14.12.3.6 get_response_export
	14.12.3.7 get_peek_request_export
	14.12.3.8 get_peek_response_export
	14.12.3.9 master_export
	14.12.3.10 slave_export

	14.12.4 Constructors

	14.13 uvm_sqr_if_base
	14.13.1 Class definition
	14.13.2 Template parameters
	14.13.3 Member functions
	14.13.3.1 get_next_item
	14.13.3.2 try_next_item
	14.13.3.3 item_done
	14.13.3.4 get
	14.13.3.5 peek
	14.13.3.6 put

	14.14 uvm_seq_item_pull_port
	14.14.1 Class definition
	14.14.2 Template parameters
	14.14.3 Constructor
	14.14.4 Member functions
	14.14.4.1 get_type_name

	14.15 uvm_seq_item_pull_export
	14.15.1 Class definition
	14.15.2 Template parameters
	14.15.3 Constructor
	14.15.4 Member functions
	14.15.4.1 get_type_name

	14.16 uvm_seq_item_pull_imp
	14.16.1 Class definition
	14.16.2 Template parameters
	14.16.3 Member functions
	14.16.3.1 get_type_name

	15. Register abstraction classes
	15.1 uvm_reg_block
	15.1.1 Class definition
	15.1.2 Constructor
	15.1.3 Initialization
	15.1.3.1 configure
	15.1.3.2 create_map
	15.1.3.3 check_data_width
	15.1.3.4 set_default_map
	15.1.3.5 get_default_map
	15.1.3.6 lock_model
	15.1.3.7 is_locked

	15.1.4 Introspection
	15.1.4.1 get_name
	15.1.4.2 get_full_name
	15.1.4.3 get_parent
	15.1.4.4 get_root_blocks
	15.1.4.5 find_blocks
	15.1.4.6 find_block
	15.1.4.7 get_blocks
	15.1.4.8 get_maps
	15.1.4.9 get_registers
	15.1.4.10 get_fields
	15.1.4.11 get_memories
	15.1.4.12 get_virtual_registers
	15.1.4.13 get_virtual_fields
	15.1.4.14 get_block_by_name
	15.1.4.15 get_map_by_name
	15.1.4.16 get_reg_by_name
	15.1.4.17 get_field_by_name
	15.1.4.18 get_mem_by_name
	15.1.4.19 get_vreg_by_name
	15.1.4.20 get_vfield_by_name

	15.1.5 Coverage
	15.1.5.1 build_coverage
	15.1.5.2 add_coverage
	15.1.5.3 has_coverage
	15.1.5.4 set_coverage
	15.1.5.5 get_coverage
	15.1.5.6 sample
	15.1.5.7 sample_values

	15.1.6 Access
	15.1.6.1 get_default_path
	15.1.6.2 reset
	15.1.6.3 needs_update
	15.1.6.4 update
	15.1.6.5 mirror
	15.1.6.6 write_reg_by_name
	15.1.6.7 read_reg_by_name
	15.1.6.8 write_mem_by_name
	15.1.6.9 read_mem_by_name

	15.1.7 Backdoor
	15.1.7.1 get_backdoor
	15.1.7.2 set_backdoor
	15.1.7.3 clear_hdl_path
	15.1.7.4 add_hdl_path
	15.1.7.5 has_hdl_path
	15.1.7.6 get_hdl_path
	15.1.7.7 get_full_hdl_path
	15.1.7.8 set_default_hdl_path
	15.1.7.9 get_default_hdl_path
	15.1.7.10 set_hdl_path_root
	15.1.7.11 is_hdl_path_root

	15.1.8 Data members (variables)
	15.1.8.1 default_map
	15.1.8.2 default_path

	15.2 uvm_reg_map
	15.2.1 Class definition
	15.2.2 Constructor
	15.2.3 Initialization
	15.2.3.1 configure
	15.2.3.2 add_reg
	15.2.3.3 add_mem
	15.2.3.4 add_submap
	15.2.3.5 set_sequencer
	15.2.3.6 set_submap_offset
	15.2.3.7 get_submap_offset
	15.2.3.8 set_base_addr
	15.2.3.9 reset

	15.2.4 Introspection
	15.2.4.1 get_name
	15.2.4.2 get_full_name
	15.2.4.3 get_root_map
	15.2.4.4 get_parent
	15.2.4.5 get_parent_map
	15.2.4.6 get_base_addr
	15.2.4.7 get_n_bytes
	15.2.4.8 get_addr_unit_bytes
	15.2.4.9 get_endian
	15.2.4.10 get_sequencer
	15.2.4.11 get_adapter
	15.2.4.12 get_submaps
	15.2.4.13 get_registers
	15.2.4.14 get_fields
	15.2.4.15 get_memories
	15.2.4.16 get_virtual_registers
	15.2.4.17 get_virtual_fields
	15.2.4.18 get_physical_addresses
	15.2.4.19 get_reg_by_offset
	15.2.4.20 get_mem_by_offset

	15.2.5 Bus access
	15.2.5.1 set_auto_predict
	15.2.5.2 get_auto_predict
	15.2.5.3 set_check_on_read
	15.2.5.4 get_check_on_read
	15.2.5.5 do_bus_write
	15.2.5.6 do_bus_read
	15.2.5.7 do_write
	15.2.5.8 do_read

	15.2.6 Backdoor
	15.2.6.1 backdoor

	15.3 uvm_reg_file
	15.3.1 Class definition
	15.3.2 Constructor
	15.3.3 Initialization
	15.3.3.1 configure

	15.3.4 Introspection
	15.3.4.1 get_name
	15.3.4.2 get_full_name
	15.3.4.3 get_parent
	15.3.4.4 get_regfile

	15.3.5 Backdoor
	15.3.5.1 clear_hdl_path
	15.3.5.2 add_hdl_path
	15.3.5.3 has_hdl_path
	15.3.5.4 get_hdl_path
	15.3.5.5 get_full_hdl_path
	15.3.5.6 set_default_hdl_path
	15.3.5.7 get_default_hdl_path

	15.4 uvm_reg
	15.4.1 Class definition
	15.4.2 Constructor
	15.4.3 Initialization
	15.4.3.1 configure
	15.4.3.2 set_offset

	15.4.4 Introspection
	15.4.4.1 get_name
	15.4.4.2 get_full_name
	15.4.4.3 get_parent
	15.4.4.4 get_regfile
	15.4.4.5 get_n_maps
	15.4.4.6 is_in_map
	15.4.4.7 get_maps
	15.4.4.8 get_rights
	15.4.4.9 get_n_bits
	15.4.4.10 get_n_bytes
	15.4.4.11 get_max_size
	15.4.4.12 get_fields
	15.4.4.13 get_field_by_name
	15.4.4.14 get_offset
	15.4.4.15 get_address
	15.4.4.16 get_addresses

	15.4.5 Access
	15.4.5.1 set
	15.4.5.2 get
	15.4.5.3 get_mirrored_value
	15.4.5.4 needs_update
	15.4.5.5 reset
	15.4.5.6 get_reset
	15.4.5.7 has_reset
	15.4.5.8 set_reset
	15.4.5.9 write
	15.4.5.10 read
	15.4.5.11 poke
	15.4.5.12 peek
	15.4.5.13 update
	15.4.5.14 mirror
	15.4.5.15 predict
	15.4.5.16 is_busy

	15.4.6 Frontdoor
	15.4.6.1 set_frontdoor
	15.4.6.2 get_frontdoor

	15.4.7 Backdoor
	15.4.7.1 set_backdoor
	15.4.7.2 get_backdoor
	15.4.7.3 clear_hdl_path
	15.4.7.4 add_hdl_path
	15.4.7.5 add_hdl_path_slice
	15.4.7.6 has_hdl_path
	15.4.7.7 get_hdl_path
	15.4.7.8 get_hdl_path_kinds
	15.4.7.9 get_full_hdl_path
	15.4.7.10 backdoor_read
	15.4.7.11 backdoor_write
	15.4.7.12 backdoor_watch

	15.4.8 Coverage
	15.4.8.1 include_coverage
	15.4.8.2 build_coverage
	15.4.8.3 add_coverage
	15.4.8.4 has_coverage
	15.4.8.5 set_coverage
	15.4.8.6 get_coverage
	15.4.8.7 sample
	15.4.8.8 sample_values

	15.4.9 Callbacks
	15.4.9.1 pre_write
	15.4.9.2 post_write
	15.4.9.3 pre_read
	15.4.9.4 post_read

	15.5 uvm_reg_field
	15.5.1 Class definition
	15.5.2 Constructor
	15.5.3 Initialization
	15.5.3.1 configure

	15.5.4 Introspection
	15.5.4.1 get_name
	15.5.4.2 get_full_name
	15.5.4.3 get_parent
	15.5.4.4 get_lsb_pos
	15.5.4.5 get_n_bits
	15.5.4.6 get_max_size
	15.5.4.7 set_access
	15.5.4.8 define_access
	15.5.4.9 get_access
	15.5.4.10 is_known_access
	15.5.4.11 set_volatility
	15.5.4.12 is_volatile

	15.5.5 Access
	15.5.5.1 set
	15.5.5.2 get
	15.5.5.3 get_mirrored_value
	15.5.5.4 reset
	15.5.5.5 get_reset
	15.5.5.6 has_reset
	15.5.5.7 set_reset
	15.5.5.8 needs_update
	15.5.5.9 write
	15.5.5.10 read
	15.5.5.11 poke
	15.5.5.12 peek
	15.5.5.13 mirror
	15.5.5.14 set_compare
	15.5.5.15 get_compare
	15.5.5.16 is_indv_accessible
	15.5.5.17 predict

	15.5.6 Callbacks
	15.5.6.1 pre_write
	15.5.6.2 post_write
	15.5.6.3 pre_read
	15.5.6.4 post_read

	15.6 uvm_mem
	15.6.1 Class definition
	15.6.2 Constructor
	15.6.3 Initialization
	15.6.3.1 configure
	15.6.3.2 set_offset

	15.6.4 Introspection
	15.6.4.1 get_name
	15.6.4.2 get_full_name
	15.6.4.3 get_parent
	15.6.4.4 get_n_maps
	15.6.4.5 is_in_map
	15.6.4.6 get_maps
	15.6.4.7 get_rights
	15.6.4.8 get_access
	15.6.4.9 get_size
	15.6.4.10 get_n_bytes
	15.6.4.11 get_n_bits
	15.6.4.12 get_max_size
	15.6.4.13 get_virtual_registers
	15.6.4.14 get_virtual_fields
	15.6.4.15 get_vreg_by_name
	15.6.4.16 get_vfield_by_name
	15.6.4.17 get_vreg_by_offset
	15.6.4.18 get_offset
	15.6.4.19 get_address
	15.6.4.20 get_addresses

	15.6.5 HDL access
	15.6.5.1 write
	15.6.5.2 read
	15.6.5.3 burst_write
	15.6.5.4 burst_read
	15.6.5.5 poke
	15.6.5.6 peek

	15.6.6 Frontdoor
	15.6.6.1 set_frontdoor
	15.6.6.2 get_frontdoor

	15.6.7 Backdoor
	15.6.7.1 set_backdoor
	15.6.7.2 get_backdoor
	15.6.7.3 clear_hdl_path
	15.6.7.4 add_hdl_path
	15.6.7.5 add_hdl_path_slice
	15.6.7.6 has_hdl_path
	15.6.7.7 get_hdl_path
	15.6.7.8 get_full_hdl_path
	15.6.7.9 get_hdl_path_kinds
	15.6.7.10 backdoor_read
	15.6.7.11 backdoor_write

	15.6.8 Callbacks
	15.6.8.1 pre_write
	15.6.8.2 post_write
	15.6.8.3 pre_read
	15.6.8.4 post_read

	15.6.9 Coverage
	15.6.9.1 build_coverage
	15.6.9.2 add_coverage
	15.6.9.3 has_coverage
	15.6.9.4 set_coverage
	15.6.9.5 get_coverage
	15.6.9.6 sample

	15.7 uvm_reg_indirect_data
	15.7.1 Class definition
	15.7.2 Constructor
	15.7.3 Member functions
	15.7.3.1 configure

	15.8 uvm_reg_fifo
	15.8.1 Class definition
	15.8.2 Constructor
	15.8.3 Initialization
	15.8.3.1 set_compare

	15.8.4 Introspection
	15.8.4.1 size
	15.8.4.2 capacity

	15.8.5 Access
	15.8.5.1 write
	15.8.5.2 read
	15.8.5.3 set
	15.8.5.4 update
	15.8.5.5 mirror
	15.8.5.6 get
	15.8.5.7 do_predict

	15.8.6 Special overrides
	15.8.6.1 pre_write
	15.8.6.2 pre_read

	15.8.7 Data members
	15.8.7.1 fifo

	15.9 uvm_vreg
	15.9.1 Class definition
	15.9.2 Constructor
	15.9.3 Initialization
	15.9.3.1 configure
	15.9.3.2 implement
	15.9.3.3 allocate
	15.9.3.4 get_region
	15.9.3.5 release_region

	15.9.4 Introspection
	15.9.4.1 get_name
	15.9.4.2 get_full_name
	15.9.4.3 get_parent
	15.9.4.4 get_memory
	15.9.4.5 get_n_maps
	15.9.4.6 is_in_map
	15.9.4.7 get_maps
	15.9.4.8 get_rights
	15.9.4.9 get_access
	15.9.4.10 get_size
	15.9.4.11 get_n_bytes
	15.9.4.12 get_n_memlocs
	15.9.4.13 get_incr
	15.9.4.14 get_fields
	15.9.4.15 get_field_by_name
	15.9.4.16 get_offset_in_memory
	15.9.4.17 get_address

	15.9.5 HDL access
	15.9.5.1 write
	15.9.5.2 read
	15.9.5.3 poke
	15.9.5.4 peek
	15.9.5.5 reset

	15.9.6 Callbacks
	15.9.6.1 pre_write
	15.9.6.2 post_write
	15.9.6.3 pre_read
	15.9.6.4 post_read

	15.10 uvm_vreg_cbs
	15.10.1 Member functions
	15.10.1.1 pre_write
	15.10.1.2 post_write
	15.10.1.3 pre_read
	15.10.1.4 post_read

	15.11 uvm_vreg_field
	15.11.1 Class definition
	15.11.2 Constructor
	15.11.3 Initialization
	15.11.3.1 configure

	15.11.4 Introspection
	15.11.4.1 get_name
	15.11.4.2 get_full_name
	15.11.4.3 get_parent
	15.11.4.4 get_lsb_pos_in_register
	15.11.4.5 get_n_bits
	15.11.4.6 get_access

	15.11.5 HDL access
	15.11.5.1 write
	15.11.5.2 read
	15.11.5.3 poke
	15.11.5.4 peek

	15.11.6 Callbacks
	15.11.6.1 pre_write
	15.11.6.2 post_write
	15.11.6.3 pre_read
	15.11.6.4 post_read

	15.12 uvm_vreg_field_cbs
	15.12.1 Class definition
	15.12.2 Member functions
	15.12.2.1 pre_write
	15.12.2.2 post_write
	15.12.2.3 pre_read
	15.12.2.4 post_read

	15.13 uvm_reg_cbs
	15.13.1 Class definition
	15.13.2 Member functions
	15.13.2.1 pre_write
	15.13.2.2 post_write
	15.13.2.3 pre_read
	15.13.2.4 post_read
	15.13.2.5 post_predict
	15.13.2.6 encode
	15.13.2.7 decode

	15.14 uvm_mem_mam
	15.14.1 Class definition
	15.14.2 Constructor
	15.14.3 Initialization
	15.14.3.1 reconfigure

	15.14.4 Memory management
	15.14.4.1 reserve_region
	15.14.4.2 request_region
	15.14.4.3 release_region
	15.14.4.4 release_all_regions

	15.14.5 Introspection
	15.14.5.1 convert2string
	15.14.5.2 for_each
	15.14.5.3 get_memory

	15.14.6 Data members
	15.14.6.1 default_alloc

	15.14.7 Type definitions
	15.14.7.1 alloc_mode_e
	15.14.7.2 locality_e

	15.15 uvm_mem_region
	15.15.1 Class definition
	15.15.2 Member functions
	15.15.2.1 get_start_offset
	15.15.2.2 get_end_offset
	15.15.2.3 get_len
	15.15.2.4 get_n_bytes
	15.15.2.5 release_region
	15.15.2.6 get_memory
	15.15.2.7 get_virtual_registers
	15.15.2.8 write
	15.15.2.9 read
	15.15.2.10 burst_write
	15.15.2.11 burst_read
	15.15.2.12 poke
	15.15.2.13 peek

	15.16 Global declarations
	15.16.1 Types
	15.16.1.1 uvm_reg_data_t
	15.16.1.2 uvm_reg_data_logic_t
	15.16.1.3 uvm_reg_addr_t
	15.16.1.4 uvm_reg_addr_logic_t
	15.16.1.5 uvm_reg_byte_en_t
	15.16.1.6 uvm_reg_cvr_t
	15.16.1.7 uvm_hdl_path_slice

	15.16.2 Enumerations
	15.16.2.1 uvm_status_e
	15.16.2.2 uvm_path_e
	15.16.2.3 uvm_check_e
	15.16.2.4 uvm_endianness_e
	15.16.2.5 uvm_elem_kind_e
	15.16.2.6 uvm_access_e
	15.16.2.7 uvm_hier_e
	15.16.2.8 uvm_predict_e
	15.16.2.9 uvm_coverage_model_e
	15.16.2.10 uvm_reg_mem_tests_e

	16. Register interaction with DUT
	16.1 uvm_reg_item
	16.1.1 Class definition
	16.1.2 Constructor
	16.1.3 Member functions
	16.1.3.1 convert2string
	16.1.3.2 do_copy

	16.1.4 Data members
	16.1.4.1 element_kind
	16.1.4.2 element
	16.1.4.3 access_kind
	16.1.4.4 value
	16.1.4.5 offset
	16.1.4.6 status
	16.1.4.7 local_map
	16.1.4.8 map
	16.1.4.9 path
	16.1.4.10 parent
	16.1.4.11 prior
	16.1.4.12 extension
	16.1.4.13 bd_kind
	16.1.4.14 fname
	16.1.4.15 lineno

	16.2 uvm_reg_bus_op
	16.2.1 Class definition
	16.2.2 Data members
	16.2.2.1 kind
	16.2.2.2 addr
	16.2.2.3 data
	16.2.2.4 n_bits
	16.2.2.5 byte_en
	16.2.2.6 status

	16.3 uvm_reg_adapter
	16.3.1 Class definition
	16.3.2 Constructor
	16.3.3 Member functions
	16.3.3.1 reg2bus
	16.3.3.2 bus2reg
	16.3.3.3 get_item

	16.3.4 Data members
	16.3.4.1 supports_byte_enable
	16.3.4.2 provides_responses
	16.3.4.3 parent_sequence

	16.4 uvm_reg_tlm_adapter
	16.4.1 Class definition
	16.4.2 Constructor
	16.4.3 Member functions
	16.4.3.1 reg2bus
	16.4.3.2 bus2reg

	16.5 uvm_reg_predictor
	16.5.1 Class definition
	16.5.2 Constructor
	16.5.3 Ports
	16.5.3.1 bus_in
	16.5.3.2 reg_ap

	16.5.4 Member functions
	16.5.4.1 pre_predict
	16.5.4.2 check_phase

	16.5.5 Data members
	16.5.5.1 map
	16.5.5.2 adapter

	16.6 uvm_reg_sequence
	16.6.1 Class definition
	16.6.2 Constructor
	16.6.3 Sequence API
	16.6.3.1 body
	16.6.3.2 do_reg_item

	16.6.4 Convenience Write/Read API
	16.6.4.1 write_reg
	16.6.4.2 read_reg
	16.6.4.3 poke_reg
	16.6.4.4 peek_reg
	16.6.4.5 update_reg
	16.6.4.6 mirror_reg
	16.6.4.7 write_mem
	16.6.4.8 read_mem
	16.6.4.9 poke_mem
	16.6.4.10 peek_mem

	16.6.5 Data members
	16.6.5.1 model
	16.6.5.2 adapter
	16.6.5.3 reg_seqr

	16.7 uvm_reg_frontdoor
	16.7.1 Class definition
	16.7.2 Constructor
	16.7.3 Data members
	16.7.3.1 rw_info
	16.7.3.2 sequencer

	17. Global functionality
	17.1 Global functions
	17.1.1 uvm_set_config_int§
	17.1.2 uvm_set_config_string§
	17.1.3 run_test

	17.2 Global defines
	17.2.1 UVM_MAX_STREAMBITS
	17.2.2 UVM_PACKER_MAX_BYTES
	17.2.3 UVM_DEFAULT_TIMEOUT

	17.3 Global type definitions (typedefs)
	17.3.1 uvm_bitstream_t
	17.3.2 uvm_integral_t
	17.3.3 UVM_FILE
	17.3.4 uvm_report_cb
	17.3.5 uvm_config_int
	17.3.6 uvm_config_string
	17.3.7 uvm_config_object
	17.3.8 uvm_config_wrapper

	17.4 Global enumeration
	17.4.1 uvm_action
	17.4.2 uvm_severity
	17.4.3 uvm_verbosity
	17.4.4 uvm_active_passive_enum
	17.4.5 uvm_sequence_state_enum
	17.4.6 uvm_phase_type

	17.5 uvm_coreservices_t
	17.5.1 Class definition
	17.5.2 Member functions
	17.5.2.1 get_factory
	17.5.2.2 set_factory
	17.5.2.3 get_report_server
	17.5.2.4 set_report_server
	17.5.2.5 get_root
	17.5.2.6 get

	17.6 uvm_default_coreservices_t
	17.6.1 Class definition
	17.6.2 Member functions
	17.6.2.1 get_factory
	17.6.2.2 set_factory
	17.6.2.3 get_report_server
	17.6.2.4 set_report_server
	17.6.2.5 get_root
	17.6.2.6 get

	Annex A (informative) Glossary
	Index

