
©2007 Open SystemC Initiative (OSCI)
1

Transaction Level Modeling using OSCI TLM 2.0
By Marcelo Montoreano, Synopsys, Inc.

May 31, 2007

1. Introduction
Currently, Transaction Level Modeling is being used in the industry to solve a variety of
practical problems during the design, development and deployment of electronic systems.
These problems include:

• Providing an early platform for software development.
• Aiding software/hardware integration.
• Enabling software performance analysis.
• System Level Design architecture analysis.
• Functional hardware verification.

As the level of abstraction becomes higher, the current OSCI TLM 1.0 standard becomes
less applicable and not fast enough for the task.
Another issue ailing the current approach is the lack of model interoperability, where
different vendors create models to be used by a common customer; it is up to the latter to
interface the components so they talk to each other.
The main objective for the TLM 2.0 standard is to solve these problems while defining a
solid API and suggested data structures that, when used as proposed, enable model
interoperability. The intention is that two models written by different people, without any
knowledge about each other, when written according to the standard, will be
interoperable.
The API is based on templates, providing a generic framework to be used in case the
proposed data structures prove unworkable for the protocol being modeled. In that case,
interoperability will suffer and adaptors will be required to interface with standard TLM
2.0-based components.

The standard is being worked out in phases. The current roadmap is as follows:
TLM 2.0:

• Generic TLM APIs and data structures for transaction execution
• Interoperable Memory Mapped Bus (API + data + protocol semantics) for

loosely-timed and approx-timed coding styles
• Support for non-intrusive/debug transactions
• Support for unobtrusively monitoring or probing transaction activity (Analysis

ports)
• Recommendations on common data-types

TLM 2.0 stretch:
• Direct-memory interface
• Model synchronization

©2007 Open SystemC Initiative (OSCI)
2

After TLM 2.0:
• PV Synchronization and Interrupts
• Temporal Decoupling
• Model-model Memory Map transfer
• Language Reference Manual
• Cycle accurate coding style
• More General (System/Component) Debug APIs
• More General Configuration APIs to Include Memory Map
• Profiling APIs
• Hardware Watchpoints
• Registers/memories

This document provides a high-level description of the TLM 2.0. For a more detailed
description, please consult the TLM 2.0 Requirements document. If this document
diverges or contradicts the Requirements document, the latter takes precedence.

2. OSCI TLM 2.0 proposal
Different use models of Transaction Level simulations require different levels of timing
accuracy and resource contention modeling. Software development, for example, can
ignore most if not all resource contention issues, assuming that the hardware will sort it
out. That is, the code path the software takes doesn’t generally depend on any resource
contention that the CPU transactions may be subjected to.
On the other extreme, hardware performance analysis requires that contention be fully
modeled for the component of interest, and maybe even some surrounding components.
TLM 2.0 defines two coding styles for Transaction-Level models, depending on the
timing-to-data model dependency.

2.1. API Architecture
The TLM 2.0 API is constructed as follows

• A generic TLM API that is based on user-defined templates.
• Low-Level data type recommendations to be used in user-defined templates.
• Data structures for the TLM API that make it fully specialized and model a

“Generic” memory-mapped bus.
The Generic memory-mapped bus may be good enough to simulate some “real”
protocols, at a loosely-timed functional level. Some other protocols may have functional
details that cannot be mapped to the proposed data structures. In those cases, direct
interoperability will be limited and bridges will be required.

2.2. OSCI TLM 2.0 Model coding styles
Models can be separated into two coding styles depending on the timing-to-data
dependency that they must obey. Sometimes these coding styles are confused with
“levels of abstraction”, but the presented coding styles can both be used in very detailed
models or models that include little detail of the modeled component.

©2007 Open SystemC Initiative (OSCI)
3

2.2.1. Loosely-timed models
Sometimes called PV models, these models have a loose dependency between timing and
data, and are able to provide timing information and the requested data at the point when
a transaction is being initiated.
These models do not depend on the advancement of time to be able to produce a
response. Normally, resource contention and arbitration are not modeled using this style.
Due to the limited dependencies and minimal context switches, these models can be made
to run the fastest and are particularly useful for doing software development on a Virtual
Platform. Reaching simulation speeds of 50 M Transactions per second allows software
developers to boot an OS and run test code in seconds.

2.2.2. Approximately-timed models
These models have a much stronger dependency between timing and data. They are not
able to provide timing information and/or the requested data when a transaction is being
initiated.
These models can depend on internal/external events firing and/or time advancing before
they can provide a response. Resource contention and arbitration can be modeled easily
with this style.
Since these models must synchronize/order the transactions before processing them, they
are forced to trigger multiple context switches in the simulation, resulting in performance
penalties.

2.2.3. Mixes of models
In some cases, it is desirable to create models that can behave in either style, deferring the
decision of which to use as a run-time decision. Models of busses and arbitration are
particularly useful when coded in this hybrid style.
This enables execution of the simulation at high speed with limited accuracy, while
allowing the user to switch to a more accurate mode for further inspection.

To enable maximal reuse of models and enable functional HW verification, it is
necessary to be able to mix models of both styles.
The TLM 2.0 allows this by sharing API and data structures across the coding styles.
Models written in one style can be directly connected to models written in the other,
without the need of adaptors.
Models can be easily and gradually refined from loosely-timed to approx-timed.
Conversely, we are also able to take advantage of available approx-timed models for
software development.

2.3. Compatibility with TLM 1.0
We will not deprecate any parts of TLM 1.0. It may continue to be used in its original
form after the availability of a TLM 2.0 standard.

©2007 Open SystemC Initiative (OSCI)
4

3. TLM 2.0 Recommended Methodology

3.1. Developing new components
The following methodology is recommended when developing components for the TLM
2.0 standard:

• Start with creating a loosely-timed model of the component, even if the final
model will be approximately-timed.
It should include:

o Component functionality
o Debug functionality
o Memory map functionality

This initial model can be used to kick-start target software development,
functional verification, and system-model assembly.

• Add timing details to the loosely-timed model, modeling contention if applicable.
Not all models need to be refined to Approximately-timed style, only those in the
path of interest.

3.2. Adapting existing components
The complexity of adapting existing components greatly depends on the coding style of
the original component. The common case is probably cycle-driven models. For those, a
bridge needs to be written that takes an incoming transaction and passes it through to the
model. Part of the bridge should clock the model as SystemC time advances and notify an
event once a response is received and translated to the TLM 2.0 data structures.

4. Details and Areas under discussion

4.1. Pass by pointer vs. pass by value
Passing transaction data by pointer minimizes data copying and maximizes speed.
Transaction data should be passed by pointer and respecting the ownership rules that
define the lifetime of the pointers.

4.2. Direct Memory Interface
Providing models direct access to another model’s memory storage bypasses function
calls, allowing faster simulation execution.

4.3. Temporal decoupling of modules
Allowing models to run ahead and then wait for the system to catch up exploits host
machine cache and minimizes context switches

4.4. On the fly switching to more accurate mode
To enable SW performance analysis at an acceptable speed, TLM 2.0 recommends that
most high-traffic components that require an approximate-timed style be coded in the
“combination” style. This creates a simulation that can execute very fast during

©2007 Open SystemC Initiative (OSCI)
5

uninteresting parts (e.g. target SW decompression), and then switch to a more accurate
mode (e.g. driver feeding HW accelerator).

4.5. Model synchronization
When dealing with loosely-timed systems, it is necessary to enforce model
synchronization to make the model advance time in a predictable manner. TLM 2.0
provides means for model synchronization.

4.6. Blocking in the master vs. Blocking in the slave
Approx-timed models cannot complete transactions at initiation time, as they depend of
other parts system to do so. Whether the transaction call into the model should be
blocking or non-blocking, or both styles supported, has not been decided.

4.7. Extension mechanisms
Although there is consensus that extensions to the data structure would add flexibility to
the standard, it seems that there is no practical extension mechanism that can handle the
mix of optional and must-have extended attributes that are likely to be required.

4.8. Moments in time
Six “moments in time” seem to be enough to represent the phases of most protocols.
However, the way these “moments” will be communicated has not been decided.

5. Summary
TLM 2.0 provides a standardized approach for creating models and transaction-level
simulations. The standard enables exchange of models and a common ground for
interfacing.
A simple but solid architecture allows TLM newcomers to quickly get up to speed and
produce interoperable models. For seasoned TLMers, the standard provides a solution for
the increasingly hard problem of model interoperability.

