
Improving Verification Efficiency Using IP-XACT
Members of IP-XACT Technical Committee

Improving Verification Efficiency
Using IP-XACT

John A. Swanson

Synopsys

Agenda

 Why is the IP-XACT Accellera Systems Initiative working group
looking into verification?

 What is IP-XACT

 How IP-XACT can be used in verification

 Media tablets galore!

 It’s smart everything!

 Everything is connected
- 1 trillion connected devices, or 140 devices

per person by 2013

 Video anywhere and anytime
- Watch your shows on any device; And in 3D

 Smartphone, smart TV, smart grid,
smart car

 The user experience is everything
- Same user experience on any device

Major Consumer Electronics
Trends 2011

Connected
Device

Connected
TV/Home

Connected
Car

Connected Life

+

+

=

 Rapidly increasing # of protocols
on SoCs

 Highly optimized for end-user
applications
- PCIe, USB 3.0, Ethernet, SDIO, SATA6G,

OCP 3.0, AMBA AXI4, ACE, …

Explosion in the Number of Protocols!

Consumers driving
speed and features

3G 4G 3Gv3

DPI DSI DSI/u

CSI-2 CSI-3

1.0 2.0 6G

1.0 1.3 1.4

1.1 2.0 G3

1.1 OTG 3.0 2.0

AMBA AMBA 3 AMBA 4 AMBA2 ACE

1G 40/100G TB 10G

Ethernet

 Rapidly increasing # of protocols
on SoCs

 Highly optimized for end-user
applications
- PCIe, USB 3.0, Ethernet, SDIO, SATA6G,

OCP 3.0, AMBA AXI4, ACE, …

Explosion in the Number of Protocols!

Companies keeping
up with demand

3G 4G 3Gv3

DPI DSI DSI/u

CSI-2 CSI-3

1.0 2.0 6G

1.0 1.3 1.4

1.1 2.0 G3

1.1 OTG 3.0 2.0

AMBA AMBA 3 AMBA 4 AMBA2 ACE

1G 40/100G TB 10G

Ethernet

 $-

 $0.50

 $1.00

 $1.50

 $2.00

 $2.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

$M

Months

HW & SW Development Costs
App-Specific SW

Low-Level SW

OS Support

Design Management

Post-silicon Validation

Masks

Physical Design

RTL Verification

RTL Development

Spec Development

IP Qualification

SW is Half of Time-To-Market!

Source: IBS, Synopsys

… And Approaching 50% of the Effort

Hardware, 54%

Software, 36%

Other, 10%

Hardware Software Other
Indicate the percentage of total project effort spent?
2010 N = 860; Margin of error = +/- 3%

Source: WW GUS Survey 2010

All of This Yields Incredible Schedule
Pressure

For your most recently taped-out design, how did the tapeout date compare to the initial tapeout target date?
2010 N = 575; Margin of error = +/- 4%
"Don't know“ and “N/A” responses are excluded from analysis.

Early
Tapeout, 3%

No Delay,
26%

<1 Month,
35%

2-3 Months,
22%

>3 Months,
15%

2010
Source: WW GUS Survey 2010

And it’s your Job to make sure it works!

Will this core
do what I want? Did I connect

this core to my bus
correctly?

Will I meet my
performance goals ?

How can I be sure
it works properly?

Can I use it in
my own

tool environment ?

Will it work in
my technology?

So…

 If you know how your components are configured
- Modes of operation
- Register maps
- Address space
- Interface configurations
- Language
- …

You can streamline your verification flow!
using IP-XACT XML

Agenda

 Why is the IP-XACT Accellera Systems Initiative working group
looking into verification?

 What is IP-XACT

 How IP-XACT can be used in verification

What is IEEE 1685-2009 (IP-XACT)
 An XML schema for language and vendor-neutral IP descriptions

 Includes a generator interface for “plug-in” functionality

 It has proven:
- Low adoption costs
- Value
- The data needed to expand on for:

- Verification
- Software tools
- Documentation
- ...

IP-XACT provides the information that you would expect to find in a
data book in an electronic tool independent format so you can use the

data to enhance your companies productivity

The IP-XACT Specification

 Is design language neutral

 Is design tool neutral

 Is efficient

 Is proven

 Is built on the existing XML (W3C) standard

 Includes a standardized API for generator integration (TGI)

 Validated and released in accordance with the IEEE policies

Why is this so important?

Languages used to

describe SOC design
Languages used to write SOC testbench &

assertions
C++ 44.4% 38.9%
VHDL 41.7% 33.3%
Verilog 38.9% 2.3%
C 36.1% 36.1%
SystemC 22.2% 30.6%
System Verilog 22.2% 27.8%
Netlists 8.3% *
e 5.6% 5.6%
Open Vera 5.6% 2.8%
PSL 2.8% 2.8%
In-House Developed 5.6% 5.6%
Other 0.0% 0.0%
N/A 11.1% 8.3%

Why is this Important?

Source VDC Research 2009 Service Year Track 1: Embedded Software Engineering Market Technologies

* Not offered as a choice

% > 100% due to multiple languages used in a project

Languages used by IC/SoC Designers

 The purpose of a schema is to define the legal building blocks
of an XML document
- It defines the document structure with a list of legal elements

 An XML schema defines:
- Elements and attributes that can appear in a document
- Which elements are child elements
- The number and order of child elements
- Whether an element is empty or can include text
- Data types for elements and attributes
- Default and fixed values for elements and attributes

What is an XML Schema?

 XML does NOT DO ANYTHING
- XML was created to structure, store, and transport information

 XML is just plain text
- XML is nothing special. It is just plain text. Software that can handle plain text

can also handle XML.
- However, XML-aware applications can handle the XML tags specially.
- The functional meaning of the tags depends on the nature of the application.

 With XML you invent your own tags
- XML has no pre-defined tags
- XML is designed to allow things like… IP-XACT and XML Schema

XML 101

IP-XACT: An XML Schema for Components

 IP-XACT is an IEEE specification
for documenting IP
- Enables automated

design creation and
configuration

- Tool independent
- Machine readable

 Benefits
- Documentation of all aspects of IP

using an XML databook format
- Documentation of models in a

quantifiable and language-
independent way

- Enables designers to deploy specialist
knowledge in their design

Design Views
(Files)

IP-XACT Generators

IP-XACT XML

Design Views
(Files) Design Views (Files)

C1 C2 C3

On-Chip Interface(s)

C4 C5 Cn

D
esign

Environm
ent
Design Components

Design Components

IP-XACT for Component Descriptions

• Component XML
describes
–Memory maps
–Registers
–Bus interfaces
–Ports
–Views (additional data files)
–Parameters
–Generators
–File sets

Design Views
(Files)

IP-XACT Generators

IP-XACT XML

Design Views
(Files) Design Views (Files)

C1 C2 C3

On-Chip Interface(s)

C4 C5 Cn

D
esign

Environm
ent

Agenda

 Why is the IP-XACT Accellera Systems Initiative working group
looking into verification?

 What is IP-XACT

 How IP-XACT can be used in verification

The information to help build your
Verification Environment

Low(er) Speed Peripheral Bus

Bridge

Block 7 Block 8 Block 5 Block 9

Block 2

Processor Bus (Very High Speed)

CPU

High Speed Peripheral Bus

Block 3 Block 4 Block 5

Block 1

New Logic

Bridge

Block n

Master
Slave

Monitor

Master
Slave

Monitor

Master
Slave

Monitor

Application
Specific Logic

Testbench

-Interface testing
-Functional testing
-Bandwidth testing
-Software testing
-Compliance testing
-Prototyping
-…

Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios

The information to help build your
Verification Environment

Low(er) Speed Peripheral Bus

Bridge

Block 7 Block 8 Block 5 Block 9

Block 2

Processor Bus (Very High Speed)

CPU

High Speed Peripheral Bus

Block 3 Block 4 Block 5

Block 1

New Logic

Bridge

Block n

Master
Slave

Monitor

Master
Slave

Monitor

Master
Slave

Monitor

Application
Specific Logic

Testbench

-Interface testing
-Functional testing
-Bandwidth testing
-Software testing
-Compliance testing
-Prototyping
-…

Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios

Where to Connect the BFM?
What is the schema version?

<?xml version="1.0" encoding="utf-8" ?>
- <spirit:component xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009" …>
<spirit:vendor>ThirdParty</spirit:vendor>
<spirit:library>ThirdParty</spirit:library>
<spirit:name>Subsystem1</spirit:name>
<spirit:version>1.0</spirit:version>
- <spirit:busInterfaces>
- <spirit:busInterface>
<spirit:name>HCLK_0</spirit:name>
<spirit:description>Clock signal for AHB masters and slaves… </spirit:description>
<spirit:busType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb" spirit:version="r1p0" />
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb_rtl" spirit:version="r1p0" />
- <spirit:system>
<spirit:group>AHB_CLK</spirit:group>
</spirit:system>
- <spirit:portMaps>
- <spirit:portMap>
- <spirit:logicalPort>
<spirit:name>HCLK</spirit:name>
</spirit:logicalPort>
- <spirit:physicalPort>
<spirit:name>HCLK_hclk</spirit:name>
</spirit:physicalPort>
</spirit:portMap>
</spirit:portMaps>
-<spirit:vendorExtensions>
-…

Where to Connect the BFM?
Find the top-level of the DUT

<?xml version="1.0" encoding="utf-8" ?>
- <spirit:component xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009" …>
<spirit:vendor>ThirdParty</spirit:vendor>
<spirit:library>ThirdParty</spirit:library>
<spirit:name>Subsystem1</spirit:name>
<spirit:version>1.0</spirit:version>
- <spirit:busInterfaces>
- <spirit:busInterface>
<spirit:name>HCLK_0</spirit:name>
<spirit:description>Clock signal for AHB masters and slaves… </spirit:description>
<spirit:busType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb" spirit:version="r1p0" />
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb_rtl" spirit:version="r1p0" />
- <spirit:system>
<spirit:group>AHB_CLK</spirit:group>
</spirit:system>
- <spirit:portMaps>
- <spirit:portMap>
- <spirit:logicalPort>
<spirit:name>HCLK</spirit:name>
</spirit:logicalPort>
- <spirit:physicalPort>
<spirit:name>HCLK_hclk</spirit:name>
</spirit:physicalPort>
</spirit:portMap>
</spirit:portMaps>
-<spirit:vendorExtensions>
-…

Where to Connect the BFM?
Find the top-level interfaces

<?xml version="1.0" encoding="utf-8" ?>
- <spirit:component xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009" …>
<spirit:vendor>ThirdParty</spirit:vendor>
<spirit:library>ThirdParty</spirit:library>
<spirit:name>Subsystem1</spirit:name>
<spirit:version>1.0</spirit:version>
- <spirit:busInterfaces>
- <spirit:busInterface>
<spirit:name>HCLK_0</spirit:name>
<spirit:description>Clock signal for AHB masters and slaves… </spirit:description>
<spirit:busType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb" spirit:version="r1p0" />
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb_rtl" spirit:version="r1p0" />
- <spirit:system>
<spirit:group>AHB_CLK</spirit:group>
</spirit:system>
- <spirit:portMaps>
- <spirit:portMap>
- <spirit:logicalPort>
<spirit:name>HCLK</spirit:name>
</spirit:logicalPort>
- <spirit:physicalPort>
<spirit:name>HCLK_hclk</spirit:name>
</spirit:physicalPort>
</spirit:portMap>
</spirit:portMaps>
-<spirit:vendorExtensions>
-…

Where to Connect the BFM?
Find the top-level interfaces(2)
…
- <spirit:busInterface>
<spirit:name>ex_i_ahb_AHB_Master</spirit:name>
<spirit:description>Bus Master side of the AHB. On this interface the 'consumer's are AHB masters…</spirit:description>
<spirit:busType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb" spirit:version="r1p0" />
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="busdef.amba.amba2" spirit:name="ahb_rtl" spirit:version="r1p0" />
<spirit:mirroredMaster />
- <spirit:portMaps>
- <spirit:portMap>
- <spirit:logicalPort>
<spirit:name>HSIZE</spirit:name>
</spirit:logicalPort>
- <spirit:physicalPort>
<spirit:name>ex_i_ahb_AHB_Master_hsize</spirit:name>
</spirit:physicalPort>
</spirit:portMap>
- <spirit:portMap>
- <spirit:logicalPort>
<spirit:name>HBURST</spirit:name>
</spirit:logicalPort>
- <spirit:physicalPort>
<spirit:name>ex_i_ahb_AHB_Master_hburst</spirit:name>
</spirit:physicalPort>
</spirit:portMap>
- <spirit:portMap>
- <spirit:logicalPort>
<spirit:name>HGRANTx</spirit:name>
</spirit:logicalPort>
- <spirit:physicalPort>
<spirit:name>ex_i_ahb_AHB_Master_hgrant</spirit:name>
</spirit:physicalPort>
</spirit:portMap>

What is inside the DUT?
Find the components
<?xml version="1.0" encoding="utf-8" ?>
- <spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009" xmlns:xsi="http://www.w3.org/2001/...">
<spirit:vendor>ThirdParty</spirit:vendor>
<spirit:library>ThirdParty</spirit:library>
<spirit:name>design_Subsystem1</spirit:name>
<spirit:version>1.0</spirit:version>
- <spirit:componentInstances>
- <spirit:componentInstance>
<spirit:instanceName>i_ahb</spirit:instanceName>
<spirit:componentRef spirit:vendor=“IPProvider" spirit:library=“MyLibrary" spirit:name="i_ahb_NAME" spirit:version="2.10b" />
</spirit:componentInstance>
+ <spirit:componentInstance>
<spirit:instanceName>i_apb</spirit:instanceName>
<spirit:componentRef spirit:vendor=“IPProvider" spirit:library=“MyLibrary" spirit:name="i_apb_NAME" spirit:version="2.02b" />
</spirit:componentInstance>
- <spirit:componentInstance>
<spirit:instanceName>i_uart</spirit:instanceName>
<spirit:componentRef spirit:vendor=“IPProvider" spirit:library=“MyLibrary" spirit:name="i_uart_NAME" spirit:version="3.12c" />
</spirit:componentInstance>
</spirit:componentInstances>
+ <spirit:interconnections>
- <spirit:interconnection>
<spirit:name>i_ahb_AHB_Slave_0</spirit:name>
<spirit:activeInterface spirit:componentRef="i_apb" spirit:busRef="AHB_Slave" />
<spirit:activeInterface spirit:componentRef="i_ahb" spirit:busRef="AHB_Slave_0" />
</spirit:interconnection>
- <spirit:interconnection>
<spirit:name>i_apb_APB_Slave</spirit:name>
<spirit:activeInterface spirit:componentRef="i_uart" spirit:busRef="APB_Slave" />
<spirit:activeInterface spirit:componentRef="i_apb" spirit:busRef="APB_Slave" />
</spirit:interconnection>
</spirit:interconnections>

What is inside the DUT?
Find the connections between components (Interface Level)
<?xml version="1.0" encoding="utf-8" ?>
- <spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1685-2009" xmlns:xsi="http://www.w3.org/2001/...">
<spirit:vendor>ThirdParty</spirit:vendor>
<spirit:library>ThirdParty</spirit:library>
<spirit:name>design_Subsystem1</spirit:name>
<spirit:version>1.0</spirit:version>
- <spirit:componentInstances>
- <spirit:componentInstance>
<spirit:instanceName>i_ahb</spirit:instanceName>
<spirit:componentRef spirit:vendor=“IPProvider" spirit:library=“MyLibrary" spirit:name="i_ahb_NAME" spirit:version="2.10b" />
</spirit:componentInstance>
+ <spirit:componentInstance>
<spirit:instanceName>i_apb</spirit:instanceName>
<spirit:componentRef spirit:vendor=“IPProvider" spirit:library=“MyLibrary" spirit:name="i_apb_NAME" spirit:version="2.02b" />
</spirit:componentInstance>
- <spirit:componentInstance>
<spirit:instanceName>i_uart</spirit:instanceName>
<spirit:componentRef spirit:vendor=“IPProvider" spirit:library=“MyLibrary" spirit:name="i_uart_NAME" spirit:version="3.12c" />
</spirit:componentInstance>
</spirit:componentInstances>
+ <spirit:interconnections>
- <spirit:interconnection>
<spirit:name>i_ahb_AHB_Slave_0</spirit:name>
<spirit:activeInterface spirit:componentRef="i_apb" spirit:busRef="AHB_Slave" />
<spirit:activeInterface spirit:componentRef="i_ahb" spirit:busRef="AHB_Slave_0" />
</spirit:interconnection>
- <spirit:interconnection>
<spirit:name>i_apb_APB_Slave</spirit:name>
<spirit:activeInterface spirit:componentRef="i_uart" spirit:busRef="APB_Slave" />
<spirit:activeInterface spirit:componentRef="i_apb" spirit:busRef="APB_Slave" />
</spirit:interconnection>
</spirit:interconnections>

- <spirit:adHocConnections>
- <spirit:adHocConnection>
<spirit:name>i_ahb_pause</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_ahb" spirit:portRef="pause" />
<spirit:externalPortReference spirit:portRef="i_ahb_pause" />
</spirit:adHocConnection>
- <spirit:adHocConnection>
<spirit:name>i_apb_pclk_en</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_apb" spirit:portRef="pclk_en" />
<spirit:externalPortReference spirit:portRef="i_apb_pclk_en" />
</spirit:adHocConnection>
- <spirit:adHocConnection>
<spirit:name>i_uart_dcd_n</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_uart" spirit:portRef="dcd_n" />
<spirit:externalPortReference spirit:portRef="i_uart_dcd_n" />
</spirit:adHocConnection>
- <spirit:adHocConnection>
<spirit:name>i_uart_dsr_n</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_uart" spirit:portRef="dsr_n" />
<spirit:externalPortReference spirit:portRef="i_uart_dsr_n" />
</spirit:adHocConnection>

What is inside the DUT?
Find the connections between components (AdHoc Connections)

- <spirit:hierConnections>
- <spirit:hierConnection spirit:interfaceRef="SIO">
<spirit:interface spirit:componentRef="i_uart" spirit:busRef="SIO" />
</spirit:hierConnection>
+ <spirit:hierConnection spirit:interfaceRef="ex_i_ahb_AHB_Master">
<spirit:interface spirit:componentRef="i_ahb" spirit:busRef="AHB_Master" />
</spirit:hierConnection>
- <spirit:hierConnection spirit:interfaceRef="PRESETn">
<spirit:interface spirit:componentRef="i_uart" spirit:busRef="PRESETn" />
</spirit:hierConnection>
- <spirit:hierConnection spirit:interfaceRef="PCLK">
<spirit:interface spirit:componentRef="i_uart" spirit:busRef="PCLK" />
</spirit:hierConnection>
- <spirit:hierConnection spirit:interfaceRef="HRESETn_0">
<spirit:interface spirit:componentRef="i_ahb" spirit:busRef="HRESETn" />
-</spirit:hierConnection>
</spirit:hierConnections>
</spirit:design>

What is inside the DUT?
Find the connections between components (Hierarchical Connections)

<spirit:memoryMaps>
- <spirit:memoryMap>
<spirit:name>uart_memory_map</spirit:name>
- <spirit:addressBlock>
<spirit:name>uart_address_block</spirit:name>
<spirit:baseAddress>0x0</spirit:baseAddress>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>
- <spirit:register>
<spirit:name>RBR</spirit:name>
<spirit:description>Receive Buffer Register, reading this register when the DLAB bit is zero… </spirit:description>
<spirit:addressOffset>0x0</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:volatile>false</spirit:volatile>
<spirit:access>read-only</spirit:access>
- <spirit:reset>
<spirit:value>0x0</spirit:value>
</spirit:reset>
- <spirit:field>
<spirit:name>rbr</spirit:name>
<spirit:description>Receive Buffer Register: This register contains the data byte received on the serial input port …</spirit:description>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>8</spirit:bitWidth>
<spirit:access>read-only</spirit:access>
</spirit:field>
- <spirit:field>
<spirit:name>RSVD_RBR_31to8</spirit:name>
<spirit:description>Reserved bits [31:8] - Read Only</spirit:description>
<spirit:bitOffset>8</spirit:bitOffset>
<spirit:bitWidth>24</spirit:bitWidth>
<spirit:access>read-only</spirit:access>
</spirit:field>
…

What is inside the DUT?
Find the Memory Map / Registers

How do you do all this?

 Vendors have tools

 All IP-XACT design environments must
support the TGI
- You can expand the features of the design

environment as you desire
- You can easily parse the information

- XML is ideal for parsing

- Vendors have “things” to make your job easier

Generators – A Tool for Verification!

Generators are program modules that process IP-XACT XML data
into ‘something useful’ for the design

Key portable mechanism for encapsulating specialist design knowledge

Enables designers to deploy specialist knowledge in their design

Answer = API
() Answer

TGI Socket

Invoke

Info Request

Generator
{
 Program Code
 Answer = API ()
}

Language-Specific
API Implementation

IP-XACT
Design

Environment

Generators – Assembly of the Testbench

Key portable mechanism for encapsulating specialist design knowledge

Enables designers to deploy specialist knowledge in their design
Like a testbench!

Answer = API
() Answer

TGI Socket

Invoke

Info Request

Generator
{
 Program Code
 Answer = API ()
}

Language-Specific
API Implementation

IP-XACT
Design

Environment

DUT DB
Interfaces
Registers

…

Where Are Generators Specified

 Generators can be grouped into generator chains and invoked from
the design environment
- Combining individual generators enables the creation of custom functionality,

like design specific verification tests
- Example: A generator chain may combine a generic HDL netlist generator with a

simulator specific compilation command generator to build a custom command
to run a simulation
- You can also automate connection of VIP to monitor, interfaces, registers, etc.
- You may also want to develop stimulus runs to validate your design
- Set-up different views of components to run more “focused” verification. C/C++, behavioral HDL,

etc…

 Generators can also be attached to a component
- The activate only of the component is included in the design
- Example: Check to see if a more up-to-date version of a component exists in a

your companies RCS

Change Model Views

New Logic

Master
Slave

Monitor

Master
Slave

Monitor

Master
Slave

Monitor
Low(er) Speed Peripheral Bus

Bridge

Block 7 Block 8 Block 5 Block 9

Block 2

Processor Bus (Very High Speed)

CPU

High Speed Peripheral Bus

Block 3 Block 4 Block 5

Block 1

Bridge

Block n

Application
Specific Logic

Testbench

-Interface testing
-Functional testing
-Bandwidth testing
-Software testing
-Compliance testing
-Prototyping
-…

Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios
Low(er) Speed Peripheral Bus

Bridge

Block 7 Block 8 Block 5 Block 9

Block 2

Processor Bus (Very High Speed)

CPU

High Speed Peripheral Bus

Block 3 Block 4 Block 5

Block 1

Bridge

Block n

Application
Specific Logic

The information to help build your
Verification Environment

Low(er) Speed Peripheral Bus

Bridge

Block 7 Block 8 Block 5 Block 9

Block 2

Processor Bus (Very High Speed)

CPU

High Speed Peripheral Bus

Block 3 Block 4 Block 5

Block 1

New Logic

Bridge

Block n

Master
Slave

Monitor

Master
Slave

Monitor

Master
Slave

Monitor

Application
Specific Logic

Testbench

-Interface testing
-Functional testing
-Bandwidth testing
-Software testing
-Compliance testing
-Prototyping
-…

Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios Test
Scenarios Test

Scenarios

Compliance Testing Options

Pre-Silicon Post-Silicon

Development System FPGA Prototype

Development
platforms

In Summary
 IP-XACT provides the information that you would expect to find in a

data book
- An XML schema for language and vendor-neutral IP descriptions
- Generator interfaces for plug-in functionality
- Easy to process with scripts, etc...
- It has

- Low adoption costs
- Proven value at large companies
- The data needed to expand on

- Hardware verification
- Software verification
- Application verification
- ...

Verification Automation Improvement Using IP-XACT
Members of IP-XACT Technical Committee

Use Case: Verification Automation
Improvement Using IP-XACT

Kamlesh Pathak

STMicroelectronics

Agenda

 Typical challenges in verification

 IP-XACT offerings for verification automation

 Applying IP-XACT for verification automation

 Overcoming challenges

 Conclusion

 Q&A

Typical Challenges in Verification

 Developing testbench
- IP Integration needs knowledge of IP
- Mechanisms for accommodating IP configuration

 Use of multiple IP suppliers results in inconsistent IP verification
views
- Methodology, testbenches, coverage data, etc. Industry standards late

 Awareness and impact of IP implementation changes & known
problems

 Concurrent IP development and SoC integration demands
incremental maturity

 Difficult to debug complex interactions between IPs

Typical Challenges in Verification

 Register implementation
- Handling register descriptions at multiple places
- Cost, productivity, quality
- Coherency between design teams

 Writing register test cases
- Large number of registers

 Impact of changes in specification
- Additions/changes are problematic and error prone

 Reuse IP test cases at top level
- Huge effort! What subset is needed for integration verification?

IP-XACT Offerings for Verification Automation

 Single description for all information
- All representations generated from the single source

 Current version of IP-XACT (IEEE 1685-2009) provides
- Metadata to describe components, designs

- Interfaces, ports ,registers, bit-fields
- Component instances, connections between components
- Configurable attributes

- Automated configuration of IPs
- Automated composition, integration and configuration of verification environment
- Automatic insertion of required transactors based on the abstraction
- Parameters of design and verification components
- Design configuration file
- Easy interface for generators

IP-XACT Offerings for Verification Automation

 Supports verification components
- Monitor interfaces
- White-box interfaces
- Complete API for metadata exchange and database querying
- Generator plug-ins support to enable automated configuration

 Portability across multiple tools, multiple vendors, EDA

 Command line tools, GUI based tools, EDA

 Provides language and vendor independent description of the
testbench configuration and connection to DUT

Applying IP-XACT for Verification Automation

 Based on IP-XACT (1.4/IEEE 1685-2009)

 Automatic IP Packaging in IP-XACT via
- Functional specification (Framemaker, Word)
- HDL (Verilog, VHDL)
- Legacy format (PMAP), custom Excel descriptions

 Automatic generation of verification testbenches
- From specs, Excel, EDA GUI, etc.
- In TLM, RTL, mixed TLM-RTL abstraction

 Quickly adaptable to any change in DUT, design, etc.

 Reusable across different design teams and different projects

Applying IP-XACT for Verification Automation

C register
test

IP-XACT
library

PLT Assembly (Excel/EDA)

C header

Design XML

Netlister (EDA)

C test generator

Excel register description

IP-XACT
packager

Verification

Function specification Legacy register description/ HDL

Functional
test

Third-party IPs

Applying IP-XACT for Verification Automation

IP-XACT
Design XML

DUT and other related
components and their

connectivity

 xls tables

EDA netlister

Design import

IP
Database

Verification TB

IP
Database

Applying IP-XACT for Verification Automation

C header
(macros, C

stuct)

IP-XACT
library

C header (sw/fw)

Excel specification

IP-XACT
packager

Function specification Legacy register data

C register test C drivers SV register files Register debug

C register
test

Low level
drivers

SV
register

files

EDA
debugger,

mnemonics,
debug file

• Quickly adaptable to specification changes
• Single source ensures coherency

Applying IP-XACT for Verification Automation

12

register Input format.

ASM

/* MCR - Module Configuration Register */
`define DSPI_A_MCR (`REG_BASE + 32'h0000_0000)

C /* MCR - Module Configuration Register */
#define DSPI_A_MCR (*(vuint32_t *) (DSPI_A_BASEADDRESS+0x0))

SV

MCR - Module Configuration Register
.equ DSPI_A_MCR, (DSPI_A_REGS_BASE+0x0)

M
nem

onic M
ap

errorNbr += VALregister_test_32(address, data)
pattern = 0x55555555;
errorNbr += RWregister_L_test_32(address,
 pattern,uart_data_RWMASK);
pattern = 0xAAAAAAAA;
errorNbr += RWregister_L_test_32(address,
 pattern,uart_data_RWMASK);

C
 register test

 Function spec
 Excel register description
 Legacy format for registers(PMAP)
 Register gui
 Others

<spirit:name>MCR</spirit:name>
<spirit:addressOffset>0x0000</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:access>read-write</spirit:access>
<spirit:reset>
 <spirit:value>0x00004001</spirit:value>
</spirit:reset>
<spirit:field>
<spirit:name>MSTR</spirit:name>
<spirit:bitOffset>31</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>
<spirit:access>read-write</spirit:access>
…
</spirit:field>

Single Source (IP-XACT XML)

#define MCR_SIZE (32)
#define MCR_OFFSET (0x4)
#define MCR_RESET_VALUE (0x6)
#define MCR_BITFIELD_MASK (0xFFFFFFFF)
…
..
#define DATAREADY_OFFSET (0x0)
#define DATAREADY_WIDTH (1)
#define DATAREADY_MASK (0x1)

C
 header

Overcoming Flow Challenges

- Bus-definition misalignment
- Integration issues due to

misalignment in bus definitions
- Use of own copy of bus definition/

abstraction definition of same protocol
- Inconsistency and misalignment between

different teams

- Solutions
- Standardize generic bus definitions
- Centralized bus definitions used by

different teams

 IP1 IP2

vendor1 vendor2

 IP1 IP2

vendor1 vendor2

IP
Database

IP
Database

IP
Database

Overcoming Flow Challenges

 One-to-many connections for
bus interfaces are not allowed in
IP-XACT
- « IP-XACT SCR 2.3 : A particular

component/bus interface combination
shall appear in only one
interconnection element in a design »

 Solutions
- EDA tools allow one to many

connections (with a warning)
- violates IP-XACT compliance

- Auto-insertion of a virtual component
to manage the one-to-many
connection

-

 clock

 IP1

 IP2

 IP3

Virtual
 Component

 IP1

 IP2

 IP3

clock

Overcoming Flow Challenges

- Integration issues due to
incomplete/incorrect IP-XACT
descriptions
- Solution

- Built a set of utilities to create and complete
the IP-XACT descriptions

- Built/use checker utility to ensure
− IP-XACT description compliancy w.r.t.

IP-XACT schema, semantic rules

− IP-XACT description compliancy w.r.t. to
custom requirements for specific flows

- Integration issue due to
different schema versions
- Solution

- Built convertors to align on schema
version (1.4 => 1685-2009)

IP
Database

 IP-XACT
description

 IP-XACT
checker

Custom
checks

IP
Database

O
K

IP
Database

IP-XACT 1.4/1685 IP-XACT 1685/1.4

convert

Overcoming Flow Challenges

 Multiple IP-XACT view
addressing different needs
- Different teams responsible for

assembly, verification, etc. results
multiple IP-XACT files

- Registers from spec/Excel
- Interfaces from HDL
- Additional information (fileSets,

etc.)

 Solution
- Built a utility to merge the several

IP-XACT descriptions with different
information

IP-XACT
interface

description

 IP-XACT
merge

IP-XACT
register

description

IP-XACT
interface

description

Complete
IP-XACT

description

Overcoming Flow Challenges

 Configurable IP-XACT descriptions and
TGI limitations
- TGI APIs are not capable enough to handle

generic IP-XACT component descriptions
- Accellera Systems Initiative IP-XACT TC

requirement 42, SWG
- Not easy to handle configurable IPs

 Solution
- Defined a set of vendor extensions to specify

configurability (plan to be standardize later in
Accellera/IEEE)
- No of ports, registers
- Presence, absence of interfaces/registers/ports
- Many more

- Built a generic generator based on the predefined
vendor extensions to generate configured
IP-XACT description

Overcoming Flow Challenges
 Register configurability

- Added specific vendor extensions to specify the configurability and standalone generator based on
these vendor extensions to create configured IP-XACT

 Register side effects
- Added specific vendor extensions to handle register side effects

 Iterated register descriptions
- Compact notation to describe iterated registers in spec
- Added specific vendor extensions to describe iterated registers

 Special registers behaviors
- Added specific vendor extensions to describe special registers and their behaviors

 Custom flow to address specific needs and legacy
- Through specific vendor extensions
- Through command line, GUI options

 UVM specific needs
- Some specific vendor extensions has been added to address specific needs w.r.t. UVM (to be

standardized in Accellera Systems Initiative)

Conclusion

 IP-XACT simplified integration, verification

 Automatic flow to avoid manual repetitive jobs

 Maximum reuse, no duplication

 Quickly adaptable to any changes

 Ensure coherency with other design teams

 Standard allows multi-vendor IPs/EDA tools use

Verification and Automation Improvement Using IP-XACT
Members of IP-XACT Technical Committee

IP-XACT and UVM

David Murray

Duolog Technologies

Agenda

 Introduce IP-XACT/UVM standards

 Look at benefits of using these standards together

 Use Case: HW/SW interface verification automation

 Conclusions

What is IP-XACT (IEEE-1685)

 IP-XACT is an XML format that defines and describes electronic
components and their designs.

 The goals of the standard are
- to ensure delivery of compatible component descriptions from multiple

component vendors,
- to enable exchanging complex component libraries between electronic design

automation (EDA) tools for SoC design (design environments),
- to describe configurable components using metadata, and
- to enable the provision of EDA vendor-neutral scripts for component creation

and configuration (generators, configurators).

UVM – Universal Verification Methodology

 Goal
- Provide a single, open standard to deliver verification productivity within design teams and

across multi-company design and verification collaborative efforts

 Advanced verification methodology
- Coverage-Driven Verification
- Randomization, phasing, coverage, scoreboard

 HW/SW applications
- Contains a ‘Register Package’
- Predefined test cases

 Benefits
- Open standard: Accellera Systems Initiative
- Advanced Verification Capability
- Interoperability & Reuse
- HW/SW interface verification productivity

Benefits of using these standards together
 IP-XACT can be a single source specification for IP metadata

- Specification is standardized and leads to :
- Less ambiguity
- Higher quality because of SCR checks
- Higher levels of automation through generators
- High levels of interoperability

 UVM provides advanced verification capabilities
- High level of HW/SW verification capability using the built-in UVM test

sequences
- Randomization, phasing, coverage, scoreboard

 If we can leverage the two standards we can get significant levels of
verification automation and productivity
- Does IP-XACT link well with UVM?
- Focus: Let’s investigate HW/SW interface verification

Use-Case: Automating HW/SW Interface Verification

 Overview of HW/SW interface

 UVM Register Model

 IP-XACT Register model

 IP-XACT UVM mapping

HW/SW Interface: IP/Component

Processor
Bus

Interface
(slave)

S

IP

Register

Logic block

Registers

Functional
Interfaces

Read Data
 Multiplexer

Register

Register

Register Select Signals

bitfield read data
from Logic

Write data

State Machine
+

Address
Decoder

+
Write Data

HW/SW Interface: Interrupt Register

Interrupt From HW

SET

CLR

Read Data

Transaction is valid for this block
AND

Address = Interrupt Status
Register

AND
Transaction is a READ

Address

Enable

Control

Interrupt Status Registers

Processor
Bus

Interface
(slave)

S

HW/SW Interface: Registers

RX_FIFO_CTRL[N-1..0]

RO RW RO RO RW RW RW RW RW RW RW RW RO

Name

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Access
type

Status

FIFO
_RESET

Reserved

Reserved

FIFO
_CTRL

FIFO
_RESET

FIFO
_DEPTH

FIFO
_ALARM

ERRO
R_CHK

PARITY
EN

_SYN
CH

F_EXTEN
D

O
E_ERRO

R

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0

Field
Reset

READ-WRITE

fields

Array

0x03

Offset

0x2000C8C1

Register Reset

field
Access

UVM Register Modeling

 UVM contains a set of register
layer classes which are used
to..
- Create a high-level, object-

oriented model that define the
structure and behavior of memory-
mapped registers/memories

- Abstract the read/write operations
to registers and memories in a
DUT/DUV

- Provide a test sequence library
with predefined test cases which
can be used to verify the correct
operation of registers

UVM Environment

S

DUV/DUT
Registers Monitor

Se
qu

en
ce

r

Driver

Register Model

Sequences
reg.read
reg.write

Adapter

Built-in tests
reset

Bit_bash
Access

API to access registers

Shadow

Frontdoor

Backdoor

Verification Component

Predefined Test Sequence Description

uvm_reg_hw_reset_seq Reads all the register in a block and check their value is the
specified reset value.

uvm_reg_single_bit_bash_seq
Sequentially writes 1’s and 0’s in each bit of the register, checking it
is appropriately set or cleared, based on the field access policy
specified for the field containing the target bit.

uvm_reg_bit_bash_seq Executes the uvm_reg_single_bit_bash_seq sequence for all
registers in a block and sub-blocks.

uvm_reg_single_access_seq

For each address map in which the register is accessible, writes the
register then confirms the value was written using the back-door.
Subsequently writes a value via the backdoor and checks the
corresponding value can be read through the address map.

uvm_reg_shared_access_seq

Requires the register be mapped in multiple address maps. For
each address map in which the register is accessible, writes the
register via one map then confirms the value was written by reading
it from all other address maps.

Creating a UVM Register Model
(Manual)

S

IP
Registers

Register Model

Translate

A Manual process is very error prone.
Is the RTL Aligned to the spec?

Specify
Interpret

Specification
(Document)

• UVM User Guide: “Due to the large number of registers in a design and the numerous small details
involved in properly configuring the UVM register layer classes, this specialization is normally done
by a model generator. Model generators work from a specification of the registers and memories in a
design and thus are able to provide an up-to-date, correct-by-construction register model.

Creating a UVM Register Model
(Automatic)

S

IP
Registers

Register Model
Specification

Generator

IP-XACT can be used as a source specification for registers

HOWEVER -> How well do they match?

EDA Tool

IP-XACT Register Description

RX_FIFO_CTRL[0..∞]

RO RW RO RO RW RW RW RW RW RW RW RW RO

Name

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status

FIFO
_RESET

Reserved

Reserved

FIFO
_CTRL

FIFO
_RESET

FIFO
_DEPTH

FIFO
_ALARM

ERRO
R_CHK

PARITY
EN

_SYN
CH

F_EXTEN
D

O
E_ERRO

R

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0

read-write (read-only,write-only,read-write, writeOnce, read-writeOnce)

0x03 0x2000C8C1

Register Fields

read

29 28

FIFO
_CTRL writevalueConstraint

name

minimum, maximum, useEnumeratedValues, writeAsRead

clear,set,
modify

modifiedWriteValue

oneToClear, oneToSet,
oneToToggle,
zeroToClear, zeroToSet,
zeroToToggle, clear, set,
modify

0

1

2

3

FIFO_RESET

FIFIO_CLEAR

FIFO_TX_EN

FIFO_RX_EN

EnumeratedValues Name Value

read-only,write-only,read-
write, writeOnce, read-

writeOnce)

Register Files/Blocks

REG_FILE[N-1..0]

dim

0x1FF AddressOffset

name

Range

Registers 0..∞

RegisterFile 0..∞

Registers

RegisterFile

Memory Maps

(u) = Usage
(a) = Access
(p) = Parameters
(n) = Array Address Block

M
em

or
y

M
ap

Bank

Sub-space_map
Master

Interface

8KB
RAM

baseAddress

Recursive
Bank

baseAddress

baseAddress

Memory Block

Registers

Register File

M

Memorymaps

1..∞

0..∞

0..∞

0..∞

0..∞

0..∞

addressOffset

S

Usage:reserved
RESERVED

Usage:memory

Usage:
register

IP-XACT

IP-XACT XML

IP-XACT => UVM Mapping

Reset

Generated UVM

IP-XACT XML

IP-XACT=> UVM Access Mapping

Mapping MemoryMaps

In UVM Registers are
mapped using a map
within the block and not
on the register itself

In UVM, uvm_reg_blocks
are used to describe
components, memory
maps, banks,
adddressBlocks, etc

Generated UVM

IP-XACT XML

IP-XACT => UVM Mapping Issues

 Mapping Issues
- Some UVM constructs are not available in IP-XACT, e.g.:

- HDL Path to Registers
- Multiple Resets
- Coverage Control
- Verification attributes
- Additional register types (indirect accessed, aliased/mirrored, FIFO)

 These can still be handled by IP-XACT
- Extend IP-XACT using VendorExtensions
- IP-XACT TC is aiming to standardize these extensions under

‘StandardExtensions’

 Standardization Route
- These requirements included into the next standard: UVM requirements

New IP-XACT Requirements

Requirement
Number Description Group PSS VE(SE) proposal to

EWG

REQ26 UVM : Registers/register files may share an address RWG Multiple Registers Yes

REQ43 UVM : Allow multiple reset values for registers RWG Multiple Regsiter Resets Yes

REQ44
UVM : Allow aliased/mirrored registers/register files/memories. Aliased/mirored objects
can be accessed on multiple offsets in the memory map with a possible access
restrictions.

RWG Multiple Registers Yes

REQ45 UVM : Support for indirect accessed registers RWG Multiple Registers Yes

REQ46 UVM : Support for indirectly accessed memories RWG Multiple Registers

REQ47 UVM : Support for FIFO registers RWG Multiple Registers Yes

REQ52 UVM : Verification extensions: backdoor access specification SWG UVM Related Attributes Yes

REQ51 UVM : Support for verification extensions/verification views SWG UVM Related Attributes Yes

REQ53 UVM : Verification extensions: randomization constraints and coverage specifications SWG UVM Related Attributes Yes

- Additional functional requirements not covered in IP-XACT
- Additional register verification attributes

- HDL Path, Testability, Constraints, Coverage

Benefits
 IP-XACT, as a single source specification for IP, can be used to

automatically create UVM Environments
- Fewer Specification bugs
- Fewer interpretation bugs
- Fewer translation bugs
- Quicker turn-around time

 Automation Scopes
- HW/SW interface automation
- Testbench Automation

 Advanced verification capabilities
- Built-in register test sequences give high levels of verification productivity

Faster Time-to-HW/SW Interface Qualification

Conclusion

 UVM delivers advanced verification capabilities

 IP-XACT provides a standardized way to define registers

 UVM can be generated from IP-XACT

 Missing UVM constructs in IP-XACT can be modeled by extensions

 Significant boost HW/SW Interface Verification productivity

Verification and Automation Improvement Using IP-XACT
Members of IP-XACT Technical Committee

IP-XACT Extensions

Sylvain Duvillard

Magillem
Design Services

Erwin de Kock

NXP
Semiconductors

Outline

 Introduction

 IP-XACT vendor extensions

 Accellera standard extensions

 Summary

 Acknowledgement

IP-XACT Vendor Extensions

The IP-XACT standard (IEEE 1685-2009) defines

 XML schemas for describing meta-data of IPs, designs, and flows

 Tight Generator Interface for tool access to meta-data

The IP-XACT standard allows extensions

 XML schemas contains extension points

 Tight Generator Interface provides tool access to extension points

Example IP-XACT Vendor Extension
XML schema fragment

<spirit:port>
 …
 <spirit:vendorExtensions>
 <myNameSpace:myMetaData>
 …
 </myNameSpace:myMetaData>
 </spirit:vendorExtensions>
</spirit:port>

XML document fragment

Usage of IP-XACT Vendor Extensions

Companies have been using vendor extensions

 To store company specific IP metadata, e.g., verification data

 To implement specific tool features, e.g., GUI related data

European Projects have been using vendor extensions

 To work together on new areas using IP-XACT

 To propose extensions for the IP-XACT standard

Accellera Standard Extensions

Standard Extensions are vendor extensions defined by Accellera

 Accellera IP-XACT Extensions Working Group

Goals of Standard Extensions

 To support IP-XACT usage in areas not covered by the standard yet

 To foster cross-company IP-XACT usage in these areas

 To prepare and validate potential extensions of the standard

Please join the Accellera IP-XACT EWG if you want to partipicate

http://www.accellera.org/apps/org/workgroup/ewg�

Upcoming Standard Extensions

Currently, the Accellera IP-XACT Extensions Working Group is defining
vendor extensions in the following areas

 Analog-Mixed Signal
- Contribution has been received from European Project Beyond Dreams

 Physical Design Planning
- Contribution has been received from ST Microelectronics

 Power
- Contribution has been received from Magillem Design Services

 Hardware Dependent Software
- Contributions have been received from European Project SoftSoc and Vayavya Labs

 Universal Verification Methodology
- Contribution has been received from Accellera VIP-TC represented via Duolog

Analog-Mixed Signal Extensions

Electrical Networks

 Conservative description
represented by two
dependent quantities,
e.g. the voltage v(t) and
the current i(t)

 Continuous in time and
value

 Analog solver will resolve
the Kirchhoff’s Laws

 Called ‘electrical’ in
Verilog-AMS

Signal Flow

 Non-conservative
description
represented by single
quantity x(t), to
represent e.g. the
voltage or current
(not both)

 Continuous in time
and value

 Often called ‘voltage’
or ‘current’ in Verilog-
AMS

Discrete-time

 Non-conservative
description represented
by single quantity x(t),
to represent e.g. the
voltage or current (not
both)

 Discrete-time samples
only, can hold any
arbitrary data type

 Called “real-value-
modeling” (RVM), like
‘wreal ’ in Verilog-AMS

t

v(t), i(t)

t

x(t)

t

x(t)
abstraction abstraction v(t)

i(t)
t

x(t)
abstraction

Discrete-time & value

 Non-conservative
description represented
by single quantity x(t),
to represent whether
there is e.g. a voltage or
current

 Discrete-time and
discrete-value defined as
logical “0” , “1”, “Z” or “X”

 Called ‘logic’ in
Verilog-AMS

Covered in
IP-XACT standard

Covered in
IP-XACT extensions

Covered in
IP-XACT extensions

Covered in
IP-XACT extensions

Physical Design Planning Extensions

M1

M
3

M2

M1 M2 M3
gates

Standalone physical
implementation

logic synthesis results gateArea

macroArea
x

y

totalArea = x * y

maxMacroWidth

m
ax

M
ac

ro
H

ei
gh

t

Power Extensions

 Extensions for describing
power related information

?

Packaging

Netlister

Assembly

Annotations

 Power data may depend on DfT, IO, and other elements
described within IP-XACT flows

Hardware Dependent Software Ext.

 Extensions for HDS integration
- HDS-1 Hardware Access Layer

- Provides access methods to HW IPs
- Abstracts from CPU I/O interface

- HDS-2 Driver Layer
- Provides ‘classical’ device driver
- Implements control and SW functions
- Integrates with OS

- HDS-3 Feature Abstraction Layer
- Provides abstract features
- Can aggregate multiple HDS-2

 Extensions for driver generation

Application and Middleware Software

Hardware Platform

Operating
system

HDS-2

HDS-1

Libraries HDS-3

Universal Verification Methodology Ext.

Extensions for generating
UVM register models from
IP-XACT register
descriptions, including

 HDL paths to support
backdoor access

 Randomization
constraints

 Coverage specifications

UVM register model

Summary

 The IP-XACT standard supports user-defined vendor extensions
- Typically used by companies to implement specific tool or flow features

 Accellera targets “standard extensions” to enable cross-company
IP-XACT usage in new areas such as
- Analog-Mixed Signal
- Physical Design Planning
- Power
- Hardware Dependent Software
- Universal Verification Methodology

 Early release will be available at DAC 2012

Acknowledgement

Thanks to all people who contributed to the material presented here

 Grégoire Avot

 Martin Barnasconi

 Mukesh Chopra

 Ruud Derwig

 Olivier Florent

 Karthick Gururaj

 Zoltan Sugar

 Emmanuel Vaumorin

And thanks to all people,
not mentioned here, who

are contributing to the
discussions in the

Accellera IP-XACT EWG.

	part1_using_ipxact_2-27-2012
	Improving Verification Efficiency Using IP-XACT
	Improving Verification Efficiency Using IP-XACT
	Agenda
	Major Consumer Electronics Trends 2011
	Explosion in the Number of Protocols!
	Explosion in the Number of Protocols!
	SW is Half of Time-To-Market!
	… And Approaching 50% of the Effort
	All of This Yields Incredible Schedule Pressure
	And it’s your Job to make sure it works!
	So…
	Agenda
	What is IEEE 1685-2009 (IP-XACT)
	The IP-XACT Specification
	Why is this Important?
	What is an XML Schema?
	XML 101
	IP-XACT: An XML Schema for Components
	IP-XACT for Component Descriptions
	Agenda
	The information to help build your Verification Environment
	The information to help build your Verification Environment
	Where to Connect the BFM? �What is the schema version?
	Where to Connect the BFM?�Find the top-level of the DUT
	Where to Connect the BFM?�Find the top-level interfaces
	Where to Connect the BFM?�Find the top-level interfaces(2)
	What is inside the DUT?�Find the components
	What is inside the DUT?�Find the connections between components (Interface Level)
	What is inside the DUT?�Find the connections between components (AdHoc Connections)
	What is inside the DUT?�Find the connections between components (Hierarchical Connections)
	What is inside the DUT?�Find the Memory Map / Registers
	How do you do all this?
	Generators – A Tool for Verification!
	Generators – Assembly of the Testbench
	Where Are Generators Specified
	Change Model Views
	The information to help build your Verification Environment
	Compliance Testing Options
	In Summary

	part2_ipxact_use_case_2-27-2012
	Verification Automation Improvement Using IP-XACT
	Use Case: Verification Automation Improvement Using IP-XACT
	Agenda
	Typical Challenges in Verification
	Typical Challenges in Verification
	IP-XACT Offerings for Verification Automation
	IP-XACT Offerings for Verification Automation
	Applying IP-XACT for Verification Automation
	Applying IP-XACT for Verification Automation
	Applying IP-XACT for Verification Automation
	Applying IP-XACT for Verification Automation
	Applying IP-XACT for Verification Automation
	Overcoming Flow Challenges
	Overcoming Flow Challenges
	Overcoming Flow Challenges
	Overcoming Flow Challenges
	Overcoming Flow Challenges
	Overcoming Flow Challenges
	Conclusion

	part3_ipxact_and_uvm_2-27-2012
	Verification and Automation Improvement Using IP-XACT
	IP-XACT and UVM
	Agenda
	What is IP-XACT (IEEE-1685)
	UVM – Universal Verification Methodology
	Benefits of using these standards together
	Use-Case: Automating HW/SW Interface Verification
	HW/SW Interface: IP/Component
	HW/SW Interface: Interrupt Register
	HW/SW Interface: Registers
	UVM Register Modeling
	UVM Environment
	Creating a UVM Register Model (Manual)
	Creating a UVM Register Model (Automatic)
	IP-XACT Register Description
	Register Fields
	Register Files/Blocks
	Memory Maps
	IP-XACT
	IP-XACT => UVM Mapping
	IP-XACT=> UVM Access Mapping
	Mapping MemoryMaps
	IP-XACT => UVM Mapping Issues
	New IP-XACT Requirements
	Benefits
	Conclusion

	part4_ipxact_extensions_2-27-2012
	Verification and Automation Improvement Using IP-XACT
	IP-XACT Extensions
	Outline
	IP-XACT Vendor Extensions
	Example IP-XACT Vendor Extension
	Usage of IP-XACT Vendor Extensions
	Accellera Standard Extensions
	Upcoming Standard Extensions
	Analog-Mixed Signal Extensions
	Physical Design Planning Extensions
	Power Extensions
	Hardware Dependent Software Ext.
	Universal Verification Methodology Ext.
	Summary
	Acknowledgement

